/**
|
* \file
|
* Simple generational GC.
|
*
|
* Copyright 2011 Novell, Inc (http://www.novell.com)
|
* Copyright 2011 Xamarin Inc (http://www.xamarin.com)
|
* Copyright 2001-2003 Ximian, Inc
|
* Copyright 2003-2010 Novell, Inc.
|
*
|
* Licensed under the MIT license. See LICENSE file in the project root for full license information.
|
*/
|
|
#include "config.h"
|
|
#ifdef HAVE_SGEN_GC
|
|
#include <stdlib.h>
|
#include <errno.h>
|
|
#include "sgen/sgen-gc.h"
|
#include "sgen-bridge-internals.h"
|
#include "sgen/sgen-hash-table.h"
|
#include "sgen/sgen-qsort.h"
|
#include "sgen/sgen-client.h"
|
#include "tabledefs.h"
|
#include "utils/mono-logger-internals.h"
|
|
#define OPTIMIZATION_COPY
|
#define OPTIMIZATION_FORWARD
|
#define OPTIMIZATION_SINGLETON_DYN_ARRAY
|
#include "sgen-dynarray.h"
|
|
//#define NEW_XREFS
|
#ifdef NEW_XREFS
|
//#define TEST_NEW_XREFS
|
#endif
|
|
#if !defined(NEW_XREFS) || defined(TEST_NEW_XREFS)
|
#define OLD_XREFS
|
#endif
|
|
#ifdef NEW_XREFS
|
#define XREFS new_xrefs
|
#else
|
#define XREFS old_xrefs
|
#endif
|
|
/*
|
* Bridge data for a single managed object
|
*
|
* FIXME: Optimizations:
|
*
|
* Don't allocate a srcs array for just one source. Most objects have
|
* just one source, so use the srcs pointer itself.
|
*/
|
typedef struct _HashEntry {
|
gboolean is_bridge;
|
|
union {
|
struct {
|
guint32 is_visited : 1;
|
guint32 finishing_time : 31;
|
struct _HashEntry *forwarded_to;
|
} dfs1;
|
struct {
|
// Index in sccs array of SCC this object was folded into
|
int scc_index;
|
} dfs2;
|
} v;
|
|
// "Source" managed objects pointing at this destination
|
DynPtrArray srcs;
|
} HashEntry;
|
|
typedef struct {
|
HashEntry entry;
|
double weight;
|
} HashEntryWithAccounting;
|
|
// The graph of managed objects/HashEntries is reduced to a graph of strongly connected components
|
typedef struct _SCC {
|
int index;
|
int api_index;
|
|
// How many bridged objects does this SCC hold references to?
|
int num_bridge_entries;
|
|
gboolean flag;
|
|
/*
|
* Index in global sccs array of SCCs holding pointers to this SCC
|
*
|
* New and old xrefs are typically mutually exclusive. Only when TEST_NEW_XREFS is
|
* enabled we do both, and compare the results. This should only be done for
|
* debugging, obviously.
|
*/
|
#ifdef OLD_XREFS
|
DynIntArray old_xrefs; /* these are incoming, not outgoing */
|
#endif
|
#ifdef NEW_XREFS
|
DynIntArray new_xrefs;
|
#endif
|
} SCC;
|
|
static char *dump_prefix = NULL;
|
|
// Maps managed objects to corresponding HashEntry stricts
|
static SgenHashTable hash_table = SGEN_HASH_TABLE_INIT (INTERNAL_MEM_BRIDGE_HASH_TABLE, INTERNAL_MEM_BRIDGE_HASH_TABLE_ENTRY, sizeof (HashEntry), mono_aligned_addr_hash, NULL);
|
|
static guint32 current_time;
|
|
static gboolean bridge_accounting_enabled = FALSE;
|
|
static SgenBridgeProcessor *bridge_processor;
|
|
/* Core functions */
|
|
/*SCC */
|
|
static void
|
dyn_array_scc_init (DynSCCArray *da)
|
{
|
dyn_array_init (&da->array);
|
}
|
|
static void
|
dyn_array_scc_uninit (DynSCCArray *da)
|
{
|
dyn_array_uninit (&da->array, sizeof (SCC));
|
}
|
|
static int
|
dyn_array_scc_size (DynSCCArray *da)
|
{
|
return da->array.size;
|
}
|
|
static SCC*
|
dyn_array_scc_add (DynSCCArray *da)
|
{
|
return (SCC *)dyn_array_add (&da->array, sizeof (SCC));
|
}
|
|
static SCC*
|
dyn_array_scc_get_ptr (DynSCCArray *da, int x)
|
{
|
return &((SCC*)da->array.data)[x];
|
}
|
|
/* Merge code*/
|
|
static DynIntArray merge_array;
|
|
#ifdef NEW_XREFS
|
static gboolean
|
dyn_array_int_contains (DynIntArray *da, int x)
|
{
|
int i;
|
for (i = 0; i < dyn_array_int_size (da); ++i)
|
if (dyn_array_int_get (da, i) == x)
|
return TRUE;
|
return FALSE;
|
}
|
#endif
|
|
static void
|
set_config (const SgenBridgeProcessorConfig *config)
|
{
|
if (config->accounting) {
|
SgenHashTable table = SGEN_HASH_TABLE_INIT (INTERNAL_MEM_BRIDGE_HASH_TABLE, INTERNAL_MEM_BRIDGE_HASH_TABLE_ENTRY, sizeof (HashEntryWithAccounting), mono_aligned_addr_hash, NULL);
|
bridge_accounting_enabled = TRUE;
|
hash_table = table;
|
}
|
if (config->dump_prefix) {
|
dump_prefix = strdup (config->dump_prefix);
|
}
|
}
|
|
static MonoGCBridgeObjectKind
|
class_kind (MonoClass *klass)
|
{
|
MonoGCBridgeObjectKind res = bridge_callbacks.bridge_class_kind (klass);
|
|
/* If it's a bridge, nothing we can do about it. */
|
if (res == GC_BRIDGE_TRANSPARENT_BRIDGE_CLASS || res == GC_BRIDGE_OPAQUE_BRIDGE_CLASS)
|
return res;
|
|
/* Non bridge classes with no pointers will never point to a bridge, so we can savely ignore them. */
|
if (!klass->has_references) {
|
SGEN_LOG (6, "class %s is opaque\n", klass->name);
|
return GC_BRIDGE_OPAQUE_CLASS;
|
}
|
|
/* Some arrays can be ignored */
|
if (klass->rank == 1) {
|
MonoClass *elem_class = klass->element_class;
|
|
/* FIXME the bridge check can be quite expensive, cache it at the class level. */
|
/* An array of a sealed type that is not a bridge will never get to a bridge */
|
if ((mono_class_get_flags (elem_class) & TYPE_ATTRIBUTE_SEALED) && !elem_class->has_references && !bridge_callbacks.bridge_class_kind (elem_class)) {
|
SGEN_LOG (6, "class %s is opaque\n", klass->name);
|
return GC_BRIDGE_OPAQUE_CLASS;
|
}
|
}
|
|
return GC_BRIDGE_TRANSPARENT_CLASS;
|
}
|
|
static HashEntry*
|
get_hash_entry (MonoObject *obj, gboolean *existing)
|
{
|
HashEntry *entry = (HashEntry *)sgen_hash_table_lookup (&hash_table, obj);
|
HashEntry new_entry;
|
|
if (entry) {
|
if (existing)
|
*existing = TRUE;
|
return entry;
|
}
|
if (existing)
|
*existing = FALSE;
|
|
memset (&new_entry, 0, sizeof (HashEntry));
|
|
dyn_array_ptr_init (&new_entry.srcs);
|
new_entry.v.dfs1.finishing_time = 0;
|
|
sgen_hash_table_replace (&hash_table, obj, &new_entry, NULL);
|
|
return (HashEntry *)sgen_hash_table_lookup (&hash_table, obj);
|
}
|
|
static void
|
add_source (HashEntry *entry, HashEntry *src)
|
{
|
dyn_array_ptr_add (&entry->srcs, src);
|
}
|
|
static void
|
free_data (void)
|
{
|
MonoObject *obj G_GNUC_UNUSED;
|
HashEntry *entry;
|
int total_srcs = 0;
|
int max_srcs = 0;
|
|
SGEN_HASH_TABLE_FOREACH (&hash_table, MonoObject *, obj, HashEntry *, entry) {
|
int entry_size = dyn_array_ptr_size (&entry->srcs);
|
total_srcs += entry_size;
|
if (entry_size > max_srcs)
|
max_srcs = entry_size;
|
dyn_array_ptr_uninit (&entry->srcs);
|
} SGEN_HASH_TABLE_FOREACH_END;
|
|
sgen_hash_table_clean (&hash_table);
|
|
dyn_array_int_uninit (&merge_array);
|
//g_print ("total srcs %d - max %d\n", total_srcs, max_srcs);
|
}
|
|
static HashEntry*
|
register_bridge_object (MonoObject *obj)
|
{
|
HashEntry *entry = get_hash_entry (obj, NULL);
|
entry->is_bridge = TRUE;
|
return entry;
|
}
|
|
static void
|
register_finishing_time (HashEntry *entry, guint32 t)
|
{
|
g_assert (entry->v.dfs1.finishing_time == 0);
|
/* finishing_time has 31 bits, so it must be within signed int32 range. */
|
g_assert (t > 0 && t <= G_MAXINT32);
|
entry->v.dfs1.finishing_time = t;
|
}
|
|
static int ignored_objects;
|
|
static gboolean
|
is_opaque_object (MonoObject *obj)
|
{
|
if ((obj->vtable->gc_bits & SGEN_GC_BIT_BRIDGE_OPAQUE_OBJECT) == SGEN_GC_BIT_BRIDGE_OPAQUE_OBJECT) {
|
SGEN_LOG (6, "ignoring %s\n", obj->vtable->klass->name);
|
++ignored_objects;
|
return TRUE;
|
}
|
return FALSE;
|
}
|
|
static gboolean
|
object_needs_expansion (MonoObject **objp)
|
{
|
MonoObject *obj = *objp;
|
MonoObject *fwd = SGEN_OBJECT_IS_FORWARDED (obj);
|
if (fwd) {
|
*objp = fwd;
|
if (is_opaque_object (fwd))
|
return FALSE;
|
return sgen_hash_table_lookup (&hash_table, fwd) != NULL;
|
}
|
if (is_opaque_object (obj))
|
return FALSE;
|
if (!sgen_object_is_live (obj))
|
return TRUE;
|
return sgen_hash_table_lookup (&hash_table, obj) != NULL;
|
}
|
|
static HashEntry*
|
follow_forward (HashEntry *entry)
|
{
|
#ifdef OPTIMIZATION_FORWARD
|
while (entry->v.dfs1.forwarded_to) {
|
HashEntry *next = entry->v.dfs1.forwarded_to;
|
if (next->v.dfs1.forwarded_to)
|
entry->v.dfs1.forwarded_to = next->v.dfs1.forwarded_to;
|
entry = next;
|
}
|
#else
|
g_assert (!entry->v.dfs1.forwarded_to);
|
#endif
|
return entry;
|
}
|
|
static DynPtrArray registered_bridges;
|
static DynPtrArray dfs_stack;
|
|
static int dfs1_passes, dfs2_passes;
|
|
/*
|
* DFS1 maintains a stack, where each two entries are effectively one entry. (FIXME:
|
* Optimize this via pointer tagging.) There are two different types of entries:
|
*
|
* entry, src: entry needs to be expanded via scanning, and linked to from src
|
* NULL, entry: entry has already been expanded and needs to be finished
|
*/
|
|
#undef HANDLE_PTR
|
#define HANDLE_PTR(ptr,obj) do { \
|
GCObject *dst = (GCObject*)*(ptr); \
|
if (dst && object_needs_expansion (&dst)) { \
|
++num_links; \
|
dyn_array_ptr_push (&dfs_stack, obj_entry); \
|
dyn_array_ptr_push (&dfs_stack, follow_forward (get_hash_entry (dst, NULL))); \
|
} \
|
} while (0)
|
|
static void
|
dfs1 (HashEntry *obj_entry)
|
{
|
HashEntry *src;
|
g_assert (dyn_array_ptr_size (&dfs_stack) == 0);
|
|
dyn_array_ptr_push (&dfs_stack, NULL);
|
dyn_array_ptr_push (&dfs_stack, obj_entry);
|
|
do {
|
MonoObject *obj;
|
char *start;
|
++dfs1_passes;
|
|
obj_entry = (HashEntry *)dyn_array_ptr_pop (&dfs_stack);
|
if (obj_entry) {
|
/* obj_entry needs to be expanded */
|
src = (HashEntry *)dyn_array_ptr_pop (&dfs_stack);
|
|
if (src)
|
g_assert (!src->v.dfs1.forwarded_to);
|
|
obj_entry = follow_forward (obj_entry);
|
|
again:
|
g_assert (!obj_entry->v.dfs1.forwarded_to);
|
obj = sgen_hash_table_key_for_value_pointer (obj_entry);
|
start = (char*)obj;
|
|
if (!obj_entry->v.dfs1.is_visited) {
|
int num_links = 0;
|
mword desc = sgen_obj_get_descriptor_safe (obj);
|
|
obj_entry->v.dfs1.is_visited = 1;
|
|
/* push the finishing entry on the stack */
|
dyn_array_ptr_push (&dfs_stack, obj_entry);
|
dyn_array_ptr_push (&dfs_stack, NULL);
|
|
#include "sgen/sgen-scan-object.h"
|
|
/*
|
* We can remove non-bridge objects with a single outgoing
|
* link by forwarding links going to it.
|
*
|
* This is the first time we've encountered this object, so
|
* no links to it have yet been added. We'll keep it that
|
* way by setting the forward pointer, and instead of
|
* continuing processing this object, we start over with the
|
* object it points to.
|
*/
|
#ifdef OPTIMIZATION_FORWARD
|
if (!obj_entry->is_bridge && num_links == 1) {
|
HashEntry *dst_entry = (HashEntry *)dyn_array_ptr_pop (&dfs_stack);
|
HashEntry *obj_entry_again = (HashEntry *)dyn_array_ptr_pop (&dfs_stack);
|
g_assert (obj_entry_again == obj_entry);
|
g_assert (!dst_entry->v.dfs1.forwarded_to);
|
if (obj_entry != dst_entry) {
|
obj_entry->v.dfs1.forwarded_to = dst_entry;
|
obj_entry = dst_entry;
|
}
|
goto again;
|
}
|
#endif
|
}
|
|
if (src) {
|
//g_print ("link %s -> %s\n", sgen_safe_name (src->obj), sgen_safe_name (obj));
|
g_assert (!obj_entry->v.dfs1.forwarded_to);
|
add_source (obj_entry, src);
|
} else {
|
//g_print ("starting with %s\n", sgen_safe_name (obj));
|
}
|
} else {
|
/* obj_entry needs to be finished */
|
|
obj_entry = (HashEntry *)dyn_array_ptr_pop (&dfs_stack);
|
|
//g_print ("finish %s\n", sgen_safe_name (obj_entry->obj));
|
register_finishing_time (obj_entry, ++current_time);
|
}
|
} while (dyn_array_ptr_size (&dfs_stack) > 0);
|
}
|
|
static DynSCCArray sccs;
|
static SCC *current_scc;
|
|
/*
|
* At the end of bridge processing we need to end up with an (acyclyc) graph of bridge
|
* object SCCs, where the links between the nodes (each one an SCC) in that graph represent
|
* the presence of a direct or indirect link between those SCCs. An example:
|
*
|
* D
|
* |
|
* v
|
* A -> B -> c -> e -> F
|
*
|
* A, B, D and F are SCCs that contain bridge objects, c and e don't contain bridge objects.
|
* The graph we need to produce from this is:
|
*
|
* D
|
* |
|
* v
|
* A -> B -> F
|
*
|
* Note that we don't need to produce an edge from A to F. It's sufficient that F is
|
* indirectly reachable from A.
|
*
|
* The old algorithm would create a set, for each SCC, of bridge SCCs that can reach it,
|
* directly or indirectly, by merging the ones sets for those that reach it directly. The
|
* sets it would build up are these:
|
*
|
* A: {}
|
* B: {A}
|
* c: {B}
|
* D: {}
|
* e: {B,D}
|
* F: {B,D}
|
*
|
* The merge operations on these sets turned out to be huge time sinks.
|
*
|
* The new algorithm proceeds in two passes: During DFS2, it only builds up the sets of SCCs
|
* that directly point to each SCC:
|
*
|
* A: {}
|
* B: {A}
|
* c: {B}
|
* D: {}
|
* e: {c,D}
|
* F: {e}
|
*
|
* This is the adjacency list for the SCC graph, in other words. In a separate step
|
* afterwards, it does a depth-first traversal of that graph, for each bridge node, to get
|
* to the final list. It uses a flag to avoid traversing any node twice.
|
*/
|
static void
|
scc_add_xref (SCC *src, SCC *dst)
|
{
|
g_assert (src != dst);
|
g_assert (src->index != dst->index);
|
|
#ifdef NEW_XREFS
|
/*
|
* FIXME: Right now we don't even unique the direct ancestors, but just add to the
|
* list. Doing a containment check slows this algorithm down to almost the speed of
|
* the old one. Use the flag instead!
|
*/
|
dyn_array_int_add (&dst->new_xrefs, src->index);
|
#endif
|
|
#ifdef OLD_XREFS
|
if (dyn_array_int_is_copy (&dst->old_xrefs)) {
|
int i;
|
dyn_array_int_ensure_independent (&dst->old_xrefs);
|
for (i = 0; i < dyn_array_int_size (&dst->old_xrefs); ++i) {
|
int j = dyn_array_int_get (&dst->old_xrefs, i);
|
SCC *bridge_scc = dyn_array_scc_get_ptr (&sccs, j);
|
g_assert (!bridge_scc->flag);
|
bridge_scc->flag = TRUE;
|
}
|
}
|
|
if (src->num_bridge_entries) {
|
if (src->flag)
|
return;
|
src->flag = TRUE;
|
dyn_array_int_add (&dst->old_xrefs, src->index);
|
#ifdef OPTIMIZATION_COPY
|
} else if (dyn_array_int_size (&dst->old_xrefs) == 0) {
|
dyn_array_int_copy (&dst->old_xrefs, &src->old_xrefs);
|
#endif
|
} else {
|
int i;
|
for (i = 0; i < dyn_array_int_size (&src->old_xrefs); ++i) {
|
int j = dyn_array_int_get (&src->old_xrefs, i);
|
SCC *bridge_scc = dyn_array_scc_get_ptr (&sccs, j);
|
g_assert (bridge_scc->num_bridge_entries);
|
if (!bridge_scc->flag) {
|
bridge_scc->flag = TRUE;
|
dyn_array_int_add (&dst->old_xrefs, j);
|
}
|
}
|
}
|
#endif
|
}
|
|
static void
|
scc_add_entry (SCC *scc, HashEntry *entry)
|
{
|
g_assert (entry->v.dfs2.scc_index < 0);
|
entry->v.dfs2.scc_index = scc->index;
|
if (entry->is_bridge)
|
++scc->num_bridge_entries;
|
}
|
|
static void
|
dfs2 (HashEntry *entry)
|
{
|
int i;
|
|
g_assert (dyn_array_ptr_size (&dfs_stack) == 0);
|
|
dyn_array_ptr_push (&dfs_stack, entry);
|
|
do {
|
entry = (HashEntry *)dyn_array_ptr_pop (&dfs_stack);
|
++dfs2_passes;
|
|
if (entry->v.dfs2.scc_index >= 0) {
|
if (entry->v.dfs2.scc_index != current_scc->index)
|
scc_add_xref (dyn_array_scc_get_ptr (&sccs, entry->v.dfs2.scc_index), current_scc);
|
continue;
|
}
|
|
scc_add_entry (current_scc, entry);
|
|
for (i = 0; i < dyn_array_ptr_size (&entry->srcs); ++i)
|
dyn_array_ptr_push (&dfs_stack, dyn_array_ptr_get (&entry->srcs, i));
|
} while (dyn_array_ptr_size (&dfs_stack) > 0);
|
|
#ifdef OLD_XREFS
|
/* If xrefs is a copy then we haven't set a single flag. */
|
if (dyn_array_int_is_copy (¤t_scc->old_xrefs))
|
return;
|
for (i = 0; i < dyn_array_int_size (¤t_scc->old_xrefs); ++i) {
|
int j = dyn_array_int_get (¤t_scc->old_xrefs, i);
|
SCC *bridge_scc = dyn_array_scc_get_ptr (&sccs, j);
|
g_assert (bridge_scc->flag);
|
bridge_scc->flag = FALSE;
|
}
|
#endif
|
}
|
|
#ifdef NEW_XREFS
|
static void
|
gather_xrefs (SCC *scc)
|
{
|
int i;
|
for (i = 0; i < dyn_array_int_size (&scc->new_xrefs); ++i) {
|
int index = dyn_array_int_get (&scc->new_xrefs, i);
|
SCC *src = dyn_array_scc_get_ptr (&sccs, index);
|
if (src->flag)
|
continue;
|
src->flag = TRUE;
|
if (src->num_bridge_entries)
|
dyn_array_int_add (&merge_array, index);
|
else
|
gather_xrefs (src);
|
}
|
}
|
|
static void
|
reset_flags (SCC *scc)
|
{
|
int i;
|
for (i = 0; i < dyn_array_int_size (&scc->new_xrefs); ++i) {
|
int index = dyn_array_int_get (&scc->new_xrefs, i);
|
SCC *src = dyn_array_scc_get_ptr (&sccs, index);
|
if (!src->flag)
|
continue;
|
src->flag = FALSE;
|
if (!src->num_bridge_entries)
|
reset_flags (src);
|
}
|
}
|
#endif
|
|
static void
|
dump_graph (void)
|
{
|
static int counter = 0;
|
|
MonoObject *obj;
|
HashEntry *entry;
|
size_t prefix_len = strlen (dump_prefix);
|
char *filename = (char *)alloca (prefix_len + 64);
|
FILE *file;
|
int edge_id = 0;
|
|
sprintf (filename, "%s.%d.gexf", dump_prefix, counter++);
|
file = fopen (filename, "w");
|
|
if (file == NULL) {
|
fprintf (stderr, "Warning: Could not open bridge dump file `%s` for writing: %s\n", filename, strerror (errno));
|
return;
|
}
|
|
fprintf (file, "<gexf xmlns=\"http://www.gexf.net/1.2draft\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:schemaLocation=\"http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd\" version=\"1.2\">\n");
|
|
fprintf (file, "<graph defaultedgetype=\"directed\">\n"
|
"<attributes class=\"node\">\n"
|
"<attribute id=\"0\" title=\"class\" type=\"string\"/>\n"
|
"<attribute id=\"1\" title=\"bridge\" type=\"boolean\"/>\n"
|
"</attributes>\n");
|
|
fprintf (file, "<nodes>\n");
|
SGEN_HASH_TABLE_FOREACH (&hash_table, MonoObject *, obj, HashEntry *, entry) {
|
MonoVTable *vt = SGEN_LOAD_VTABLE (obj);
|
fprintf (file, "<node id=\"%p\"><attvalues><attvalue for=\"0\" value=\"%s.%s\"/><attvalue for=\"1\" value=\"%s\"/></attvalues></node>\n",
|
obj, vt->klass->name_space, vt->klass->name, entry->is_bridge ? "true" : "false");
|
} SGEN_HASH_TABLE_FOREACH_END;
|
fprintf (file, "</nodes>\n");
|
|
fprintf (file, "<edges>\n");
|
SGEN_HASH_TABLE_FOREACH (&hash_table, MonoObject *, obj, HashEntry *, entry) {
|
int i;
|
for (i = 0; i < dyn_array_ptr_size (&entry->srcs); ++i) {
|
HashEntry *src = (HashEntry *)dyn_array_ptr_get (&entry->srcs, i);
|
fprintf (file, "<edge id=\"%d\" source=\"%p\" target=\"%p\"/>\n", edge_id++, sgen_hash_table_key_for_value_pointer (src), obj);
|
}
|
} SGEN_HASH_TABLE_FOREACH_END;
|
fprintf (file, "</edges>\n");
|
|
fprintf (file, "</graph></gexf>\n");
|
|
fclose (file);
|
}
|
|
static int
|
compare_hash_entries (const HashEntry *e1, const HashEntry *e2)
|
{
|
/* We can cast to signed int here because finishing_time has only 31 bits. */
|
return (gint32)e2->v.dfs1.finishing_time - (gint32)e1->v.dfs1.finishing_time;
|
}
|
|
DEF_QSORT_INLINE(hash_entries, HashEntry*, compare_hash_entries)
|
|
static gint64 step_1, step_2, step_3, step_4, step_5, step_6;
|
static int fist_pass_links, second_pass_links, sccs_links;
|
static int max_sccs_links = 0;
|
|
static void
|
register_finalized_object (GCObject *obj)
|
{
|
g_assert (sgen_need_bridge_processing ());
|
dyn_array_ptr_push (®istered_bridges, obj);
|
}
|
|
static void
|
reset_data (void)
|
{
|
dyn_array_ptr_empty (®istered_bridges);
|
}
|
|
static void
|
processing_stw_step (void)
|
{
|
int i;
|
int bridge_count;
|
MonoObject *obj G_GNUC_UNUSED;
|
HashEntry *entry;
|
SGEN_TV_DECLARE (atv);
|
SGEN_TV_DECLARE (btv);
|
|
if (!dyn_array_ptr_size (®istered_bridges))
|
return;
|
|
SGEN_TV_GETTIME (btv);
|
|
/* first DFS pass */
|
|
dyn_array_ptr_init (&dfs_stack);
|
dyn_array_int_init (&merge_array);
|
|
current_time = 0;
|
/*
|
First we insert all bridges into the hash table and then we do dfs1.
|
|
It must be done in 2 steps since the bridge arrays doesn't come in reverse topological order,
|
which means that we can have entry N pointing to entry N + 1.
|
|
If we dfs1 entry N before N + 1 is registered we'll not consider N + 1 for this bridge
|
pass and not create the required xref between the two.
|
*/
|
bridge_count = dyn_array_ptr_size (®istered_bridges);
|
for (i = 0; i < bridge_count ; ++i)
|
register_bridge_object ((MonoObject *)dyn_array_ptr_get (®istered_bridges, i));
|
|
for (i = 0; i < bridge_count; ++i)
|
dfs1 (get_hash_entry ((MonoObject *)dyn_array_ptr_get (®istered_bridges, i), NULL));
|
|
/* Remove all forwarded objects. */
|
SGEN_HASH_TABLE_FOREACH (&hash_table, MonoObject *, obj, HashEntry *, entry) {
|
if (entry->v.dfs1.forwarded_to) {
|
g_assert (dyn_array_ptr_size (&entry->srcs) == 0);
|
SGEN_HASH_TABLE_FOREACH_REMOVE (TRUE);
|
continue;
|
}
|
} SGEN_HASH_TABLE_FOREACH_END;
|
|
SGEN_TV_GETTIME (atv);
|
step_2 = SGEN_TV_ELAPSED (btv, atv);
|
|
if (dump_prefix)
|
dump_graph ();
|
}
|
|
static int num_registered_bridges, hash_table_size;
|
|
static void
|
processing_build_callback_data (int generation)
|
{
|
int i, j;
|
int num_sccs, num_xrefs;
|
int max_entries, max_xrefs;
|
MonoObject *obj G_GNUC_UNUSED;
|
HashEntry *entry;
|
HashEntry **all_entries;
|
MonoGCBridgeSCC **api_sccs;
|
MonoGCBridgeXRef *api_xrefs;
|
SGEN_TV_DECLARE (atv);
|
SGEN_TV_DECLARE (btv);
|
|
g_assert (bridge_processor->num_sccs == 0 && bridge_processor->num_xrefs == 0);
|
g_assert (!bridge_processor->api_sccs && !bridge_processor->api_xrefs);
|
|
if (!dyn_array_ptr_size (®istered_bridges))
|
return;
|
|
g_assert (bridge_processing_in_progress);
|
|
SGEN_TV_GETTIME (atv);
|
|
/* alloc and fill array of all entries */
|
|
all_entries = (HashEntry **)sgen_alloc_internal_dynamic (sizeof (HashEntry*) * hash_table.num_entries, INTERNAL_MEM_BRIDGE_DATA, TRUE);
|
|
j = 0;
|
SGEN_HASH_TABLE_FOREACH (&hash_table, MonoObject *, obj, HashEntry *, entry) {
|
g_assert (entry->v.dfs1.finishing_time > 0);
|
all_entries [j++] = entry;
|
fist_pass_links += dyn_array_ptr_size (&entry->srcs);
|
} SGEN_HASH_TABLE_FOREACH_END;
|
g_assert (j == hash_table.num_entries);
|
hash_table_size = hash_table.num_entries;
|
|
/* sort array according to decreasing finishing time */
|
qsort_hash_entries (all_entries, hash_table.num_entries);
|
|
SGEN_HASH_TABLE_FOREACH (&hash_table, MonoObject *, obj, HashEntry *, entry) {
|
entry->v.dfs2.scc_index = -1;
|
} SGEN_HASH_TABLE_FOREACH_END;
|
|
SGEN_TV_GETTIME (btv);
|
step_3 = SGEN_TV_ELAPSED (atv, btv);
|
|
/* second DFS pass */
|
|
dyn_array_scc_init (&sccs);
|
for (i = 0; i < hash_table.num_entries; ++i) {
|
HashEntry *entry = all_entries [i];
|
if (entry->v.dfs2.scc_index < 0) {
|
int index = dyn_array_scc_size (&sccs);
|
current_scc = dyn_array_scc_add (&sccs);
|
current_scc->index = index;
|
current_scc->num_bridge_entries = 0;
|
#ifdef NEW_XREFS
|
current_scc->flag = FALSE;
|
dyn_array_int_init (¤t_scc->new_xrefs);
|
#endif
|
#ifdef OLD_XREFS
|
dyn_array_int_init (¤t_scc->old_xrefs);
|
#endif
|
current_scc->api_index = -1;
|
|
dfs2 (entry);
|
|
#ifdef NEW_XREFS
|
/*
|
* If a node has only one incoming edge, we just copy the source's
|
* xrefs array, effectively removing the source from the graph.
|
* This takes care of long linked lists.
|
*/
|
if (!current_scc->num_bridge_entries && dyn_array_int_size (¤t_scc->new_xrefs) == 1) {
|
SCC *src;
|
j = dyn_array_int_get (¤t_scc->new_xrefs, 0);
|
src = dyn_array_scc_get_ptr (&sccs, j);
|
if (src->num_bridge_entries)
|
dyn_array_int_set (¤t_scc->new_xrefs, 0, j);
|
else
|
dyn_array_int_copy (¤t_scc->new_xrefs, &src->new_xrefs);
|
}
|
#endif
|
}
|
}
|
|
#ifdef NEW_XREFS
|
#ifdef TEST_NEW_XREFS
|
for (j = 0; j < dyn_array_scc_size (&sccs); ++j) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, j);
|
g_assert (!scc->flag);
|
}
|
#endif
|
|
for (i = 0; i < dyn_array_scc_size (&sccs); ++i) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, i);
|
g_assert (scc->index == i);
|
if (!scc->num_bridge_entries)
|
continue;
|
|
dyn_array_int_empty (&merge_array);
|
gather_xrefs (scc);
|
reset_flags (scc);
|
dyn_array_int_copy (&scc->new_xrefs, &merge_array);
|
dyn_array_int_ensure_independent (&scc->new_xrefs);
|
|
#ifdef TEST_NEW_XREFS
|
for (j = 0; j < dyn_array_scc_size (&sccs); ++j) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, j);
|
g_assert (!scc->flag);
|
}
|
#endif
|
}
|
|
#ifdef TEST_NEW_XREFS
|
for (i = 0; i < dyn_array_scc_size (&sccs); ++i) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, i);
|
g_assert (scc->index == i);
|
if (!scc->num_bridge_entries)
|
continue;
|
|
g_assert (dyn_array_int_size (&scc->new_xrefs) == dyn_array_int_size (&scc->old_xrefs));
|
for (j = 0; j < dyn_array_int_size (&scc->new_xrefs); ++j)
|
g_assert (dyn_array_int_contains (&scc->old_xrefs, dyn_array_int_get (&scc->new_xrefs, j)));
|
}
|
#endif
|
#endif
|
|
/*
|
* Compute the weight of each object. The weight of an object is its size plus the size of all
|
* objects it points do. When the an object is pointed by multiple objects we distribute it's weight
|
* equally among them. This distribution gives a rough estimate of the real impact of making the object
|
* go away.
|
*
|
* The reasoning for this model is that complex graphs with single roots will have a bridge with very high
|
* value in comparison to others.
|
*
|
* The all_entries array has all objects topologically sorted. To correctly propagate the weights it must be
|
* done in reverse topological order - so we calculate the weight of the pointed-to objects before processing
|
* pointer-from objects.
|
*
|
* We log those objects in the opposite order for no particular reason. The other constrain is that it should use the same
|
* direction as the other logging loop that records live/dead information.
|
*/
|
if (bridge_accounting_enabled) {
|
for (i = hash_table.num_entries - 1; i >= 0; --i) {
|
double w;
|
HashEntryWithAccounting *entry = (HashEntryWithAccounting*)all_entries [i];
|
|
entry->weight += (double)sgen_safe_object_get_size (sgen_hash_table_key_for_value_pointer (entry));
|
w = entry->weight / dyn_array_ptr_size (&entry->entry.srcs);
|
for (j = 0; j < dyn_array_ptr_size (&entry->entry.srcs); ++j) {
|
HashEntryWithAccounting *other = (HashEntryWithAccounting *)dyn_array_ptr_get (&entry->entry.srcs, j);
|
other->weight += w;
|
}
|
}
|
for (i = 0; i < hash_table.num_entries; ++i) {
|
HashEntryWithAccounting *entry = (HashEntryWithAccounting*)all_entries [i];
|
if (entry->entry.is_bridge) {
|
MonoObject *obj = sgen_hash_table_key_for_value_pointer (entry);
|
MonoClass *klass = SGEN_LOAD_VTABLE (obj)->klass;
|
mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_GC, "OBJECT %s::%s (%p) weight %f", klass->name_space, klass->name, obj, entry->weight);
|
}
|
}
|
}
|
|
for (i = 0; i < hash_table.num_entries; ++i) {
|
HashEntry *entry = all_entries [i];
|
second_pass_links += dyn_array_ptr_size (&entry->srcs);
|
}
|
|
SGEN_TV_GETTIME (atv);
|
step_4 = SGEN_TV_ELAPSED (btv, atv);
|
|
//g_print ("%d sccs\n", sccs.size);
|
|
dyn_array_ptr_uninit (&dfs_stack);
|
|
/* init data for callback */
|
|
num_sccs = 0;
|
for (i = 0; i < dyn_array_scc_size (&sccs); ++i) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, i);
|
g_assert (scc->index == i);
|
if (scc->num_bridge_entries)
|
++num_sccs;
|
sccs_links += dyn_array_int_size (&scc->XREFS);
|
max_sccs_links = MAX (max_sccs_links, dyn_array_int_size (&scc->XREFS));
|
}
|
|
api_sccs = (MonoGCBridgeSCC **)sgen_alloc_internal_dynamic (sizeof (MonoGCBridgeSCC*) * num_sccs, INTERNAL_MEM_BRIDGE_DATA, TRUE);
|
num_xrefs = 0;
|
j = 0;
|
for (i = 0; i < dyn_array_scc_size (&sccs); ++i) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, i);
|
if (!scc->num_bridge_entries)
|
continue;
|
|
api_sccs [j] = (MonoGCBridgeSCC *)sgen_alloc_internal_dynamic (sizeof (MonoGCBridgeSCC) + sizeof (MonoObject*) * scc->num_bridge_entries, INTERNAL_MEM_BRIDGE_DATA, TRUE);
|
api_sccs [j]->is_alive = FALSE;
|
api_sccs [j]->num_objs = scc->num_bridge_entries;
|
scc->num_bridge_entries = 0;
|
scc->api_index = j++;
|
|
num_xrefs += dyn_array_int_size (&scc->XREFS);
|
}
|
|
SGEN_HASH_TABLE_FOREACH (&hash_table, MonoObject *, obj, HashEntry *, entry) {
|
if (entry->is_bridge) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, entry->v.dfs2.scc_index);
|
api_sccs [scc->api_index]->objs [scc->num_bridge_entries++] = sgen_hash_table_key_for_value_pointer (entry);
|
}
|
} SGEN_HASH_TABLE_FOREACH_END;
|
|
api_xrefs = (MonoGCBridgeXRef *)sgen_alloc_internal_dynamic (sizeof (MonoGCBridgeXRef) * num_xrefs, INTERNAL_MEM_BRIDGE_DATA, TRUE);
|
j = 0;
|
for (i = 0; i < dyn_array_scc_size (&sccs); ++i) {
|
int k;
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, i);
|
if (!scc->num_bridge_entries)
|
continue;
|
for (k = 0; k < dyn_array_int_size (&scc->XREFS); ++k) {
|
SCC *src_scc = dyn_array_scc_get_ptr (&sccs, dyn_array_int_get (&scc->XREFS, k));
|
if (!src_scc->num_bridge_entries)
|
continue;
|
api_xrefs [j].src_scc_index = src_scc->api_index;
|
api_xrefs [j].dst_scc_index = scc->api_index;
|
++j;
|
}
|
}
|
|
SGEN_TV_GETTIME (btv);
|
step_5 = SGEN_TV_ELAPSED (atv, btv);
|
|
/* free data */
|
|
j = 0;
|
max_entries = max_xrefs = 0;
|
for (i = 0; i < dyn_array_scc_size (&sccs); ++i) {
|
SCC *scc = dyn_array_scc_get_ptr (&sccs, i);
|
if (scc->num_bridge_entries)
|
++j;
|
if (scc->num_bridge_entries > max_entries)
|
max_entries = scc->num_bridge_entries;
|
if (dyn_array_int_size (&scc->XREFS) > max_xrefs)
|
max_xrefs = dyn_array_int_size (&scc->XREFS);
|
#ifdef NEW_XREFS
|
dyn_array_int_uninit (&scc->new_xrefs);
|
#endif
|
#ifdef OLD_XREFS
|
dyn_array_int_uninit (&scc->old_xrefs);
|
#endif
|
|
}
|
dyn_array_scc_uninit (&sccs);
|
|
sgen_free_internal_dynamic (all_entries, sizeof (HashEntry*) * hash_table.num_entries, INTERNAL_MEM_BRIDGE_DATA);
|
|
free_data ();
|
/* Empty the registered bridges array */
|
num_registered_bridges = dyn_array_ptr_size (®istered_bridges);
|
dyn_array_ptr_empty (®istered_bridges);
|
|
SGEN_TV_GETTIME (atv);
|
step_6 = SGEN_TV_ELAPSED (btv, atv);
|
|
//g_print ("%d sccs containing bridges - %d max bridge objects - %d max xrefs\n", j, max_entries, max_xrefs);
|
|
bridge_processor->num_sccs = num_sccs;
|
bridge_processor->api_sccs = api_sccs;
|
bridge_processor->num_xrefs = num_xrefs;
|
bridge_processor->api_xrefs = api_xrefs;
|
}
|
|
static void
|
processing_after_callback (int generation)
|
{
|
int i, j;
|
int num_sccs = bridge_processor->num_sccs;
|
MonoGCBridgeSCC **api_sccs = bridge_processor->api_sccs;
|
|
if (bridge_accounting_enabled) {
|
for (i = 0; i < num_sccs; ++i) {
|
for (j = 0; j < api_sccs [i]->num_objs; ++j) {
|
GCVTable vtable = SGEN_LOAD_VTABLE (api_sccs [i]->objs [j]);
|
mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_GC,
|
"OBJECT %s.%s (%p) SCC [%d] %s",
|
sgen_client_vtable_get_namespace (vtable), sgen_client_vtable_get_name (vtable), api_sccs [i]->objs [j],
|
i,
|
api_sccs [i]->is_alive ? "ALIVE" : "DEAD");
|
}
|
}
|
}
|
|
mono_trace (G_LOG_LEVEL_INFO, MONO_TRACE_GC, "GC_NEW_BRIDGE num-objects %d num_hash_entries %d sccs size %d init %.2fms df1 %.2fms sort %.2fms dfs2 %.2fms setup-cb %.2fms free-data %.2fms links %d/%d/%d/%d dfs passes %d/%d ignored %d",
|
num_registered_bridges, hash_table_size, dyn_array_scc_size (&sccs),
|
step_1 / 10000.0f,
|
step_2 / 10000.0f,
|
step_3 / 10000.0f,
|
step_4 / 10000.0f,
|
step_5 / 10000.0f,
|
step_6 / 10000.0f,
|
fist_pass_links, second_pass_links, sccs_links, max_sccs_links,
|
dfs1_passes, dfs2_passes, ignored_objects);
|
|
step_1 = 0; /* We must cleanup since this value is used as an accumulator. */
|
fist_pass_links = second_pass_links = sccs_links = max_sccs_links = 0;
|
dfs1_passes = dfs2_passes = ignored_objects = 0;
|
}
|
|
static void
|
describe_pointer (GCObject *obj)
|
{
|
HashEntry *entry;
|
int i;
|
|
for (i = 0; i < dyn_array_ptr_size (®istered_bridges); ++i) {
|
if (obj == dyn_array_ptr_get (®istered_bridges, i)) {
|
printf ("Pointer is a registered bridge object.\n");
|
break;
|
}
|
}
|
|
entry = (HashEntry *)sgen_hash_table_lookup (&hash_table, obj);
|
if (!entry)
|
return;
|
|
printf ("Bridge hash table entry %p:\n", entry);
|
printf (" is bridge: %d\n", (int)entry->is_bridge);
|
printf (" is visited: %d\n", (int)entry->v.dfs1.is_visited);
|
}
|
|
void
|
sgen_new_bridge_init (SgenBridgeProcessor *collector)
|
{
|
collector->reset_data = reset_data;
|
collector->processing_stw_step = processing_stw_step;
|
collector->processing_build_callback_data = processing_build_callback_data;
|
collector->processing_after_callback = processing_after_callback;
|
collector->class_kind = class_kind;
|
collector->register_finalized_object = register_finalized_object;
|
collector->describe_pointer = describe_pointer;
|
collector->set_config = set_config;
|
|
bridge_processor = collector;
|
}
|
|
#endif
|