| | |
| | | 0 2 2 101 [[1,50,0]]
|
| | | 0 3 4 3 [[1,50,0]]
|
| | | 1 1 1 10 [[1,50,0]]
|
| | | 1 2 2 102 [[1,50,0]]
|
| | | 1 2 2 103 [[1,50,0]]
|
| | | 1 3 4 4 [[1,50,0]]
|
| | | 2 1 1 15 [[1,50,0]]
|
| | | 2 2 2 103 [[1,50,0]]
|
| | | 2 2 2 105 [[1,50,0]]
|
| | | 2 3 4 5 [[1,50,0]]
|
| | | 3 1 1 22 [[1,50,0]]
|
| | | 3 2 2 203 [[1,50,0]]
|
| | |
| | | 8 2 2 505 [[1,100,0]]
|
| | | 8 3 4 7 [[1,100,0]]
|
| | | 9 1 1 69 [[1,200,0]]
|
| | | 9 2 2 803 [[1,200,0]]
|
| | | 9 2 2 706 [[1,200,0]]
|
| | | 9 3 3 250 [[1,200,0]]
|
| | | 10 1 1 83 [[1,200,0]]
|
| | | 10 2 2 1101 [[1,200,0]]
|
| | | 10 3 3 300 [[1,200,0]]
|
| | | 10 2 2 907 [[1,200,0]]
|
| | | 10 3 4 8 [[1,200,0]]
|
| | | 11 1 1 95 [[1,200,0]]
|
| | | 11 2 2 1305 [[1,200,0]]
|
| | | 11 3 4 8 [[1,200,0]]
|
| | | 11 2 2 1105 [[1,200,0]]
|
| | | 11 3 3 350 [[1,200,0]]
|
| | | 12 1 1 115 [[1,300,0]]
|
| | | 12 2 2 1705 [[1,300,0]]
|
| | | 12 3 3 350 [[1,300,0]]
|
| | | 12 2 2 1405 [[1,300,0]]
|
| | | 12 3 4 9 [[1,300,0]]
|
| | | 13 1 1 135 [[1,300,0]]
|
| | | 13 2 2 2105 [[1,300,0]]
|
| | | 13 3 4 9 [[1,300,0]]
|
| | | 13 2 2 1705 [[1,300,0]]
|
| | | 13 3 3 400 [[1,300,0]]
|
| | | 14 1 1 155 [[1,300,0]]
|
| | | 14 2 2 2505 [[1,300,0]]
|
| | | 14 3 3 400 [[1,200,0]]
|
| | | 14 2 2 2005 [[1,300,0]]
|
| | | 14 3 4 10 [[1,200,0]]
|
| | | 15 1 1 182 [[1,400,0]]
|
| | | 15 2 2 3009 [[1,400,0]]
|
| | | 15 3 4 10 [[1,400,0]]
|
| | | 15 2 2 2405 [[1,400,0]]
|
| | | 15 3 4 11 [[1,400,0]]
|
| | | 16 1 1 209 [[1,400,0]]
|
| | | 16 2 2 3603 [[1,400,0]]
|
| | | 16 3 4 11 [[1,400,0]]
|
| | | 16 2 2 2805 [[1,400,0]]
|
| | | 16 3 4 12 [[1,400,0]]
|
| | | 17 1 1 235 [[1,400,0]]
|
| | | 17 2 2 4105 [[1,400,0]]
|
| | | 17 3 4 12 [[1,400,0]]
|
| | | 17 2 2 3204 [[1,400,0]]
|
| | | 17 3 4 13 [[1,400,0]]
|
| | | 18 1 1 269 [[1,500,0]]
|
| | | 18 2 2 4803 [[1,500,0]]
|
| | | 18 3 4 13 [[1,500,0]]
|
| | | 18 2 2 3705 [[1,500,0]]
|
| | | 18 3 4 14 [[1,500,0]]
|
| | | 19 1 1 303 [[1,500,0]]
|
| | | 19 2 2 5501 [[1,500,0]]
|
| | | 19 3 4 14 [[1,500,0]]
|
| | | 19 2 2 4206 [[1,500,0]]
|
| | | 19 3 4 15 [[1,500,0]]
|
| | | 20 1 1 335 [[1,500,0]]
|
| | | 20 2 2 6105 [[1,500,0]]
|
| | | 20 3 4 15 [[1,500,0]]
|
| | | 20 2 2 4704 [[1,500,0]]
|
| | | 20 3 4 16 [[1,500,0]]
|
| | | 21 1 1 375 [[1,500,0]]
|
| | | 21 2 2 6905 [[1,500,0]]
|
| | | 21 3 4 16 [[1,500,0]]
|
| | | 21 2 2 5304 [[1,500,0]]
|
| | | 21 3 4 17 [[1,500,0]]
|
| | | 22 1 1 415 [[1,600,0]]
|
| | | 22 2 2 7705 [[1,600,0]]
|
| | | 22 3 4 17 [[1,600,0]]
|
| | | 22 2 2 5904 [[1,600,0]]
|
| | | 22 3 4 18 [[1,600,0]]
|
| | | 23 1 1 455 [[1,600,0]]
|
| | | 23 2 2 8505 [[1,600,0]]
|
| | | 23 3 4 18 [[1,600,0]]
|
| | | 23 2 2 6504 [[1,600,0]]
|
| | | 23 3 4 19 [[1,600,0]]
|
| | | 24 1 1 502 [[1,600,0]]
|
| | | 24 2 2 9409 [[1,600,0]]
|
| | | 24 3 4 19 [[1,600,0]]
|
| | | 24 2 2 7205 [[1,600,0]]
|
| | | 24 3 4 20 [[1,600,0]]
|
| | | 25 1 1 549 [[1,600,0]]
|
| | | 25 2 2 10403 [[1,600,0]]
|
| | | 25 3 4 20 [[1,600,0]]
|
| | | 25 2 2 7905 [[1,600,0]]
|
| | | 25 3 4 21 [[1,600,0]]
|
| | | 26 1 1 595 [[1,600,0]]
|
| | | 26 2 2 11305 [[1,600,0]]
|
| | | 26 3 4 21 [[1,600,0]]
|
| | | 26 2 2 8604 [[1,600,0]]
|
| | | 26 3 4 22 [[1,600,0]]
|
| | | 27 1 1 649 [[1,600,0]]
|
| | | 27 2 2 12403 [[1,600,0]]
|
| | | 27 2 2 9405 [[1,600,0]]
|
| | | 27 3 4 23 [[1,600,0]]
|
| | | 28 1 1 703 [[1,600,0]]
|
| | | 28 2 2 13501 [[1,600,0]]
|
| | | 28 2 2 10206 [[1,600,0]]
|
| | | 28 3 4 25 [[1,600,0]]
|
| | | 29 1 1 755 [[1,600,0]]
|
| | | 29 2 2 14505 [[1,600,0]]
|
| | | 29 2 2 11004 [[1,600,0]]
|
| | | 29 3 4 27 [[1,600,0]]
|