| | |
| | | TaskID TaskGroup TaskType TaskConds NeedValue AwardItemList
|
| | | 1001 0 8 [42] 300 [[30,5,0]]
|
| | | 1002 0 2 [] 2 [[30,5,0]]
|
| | | 1003 0 5 [] 5 [[30,5,0]]
|
| | | 1004 0 6 [] 2 [[30,5,0]]
|
| | | 1005 0 8 [42] 500 [[30,5,0]]
|
| | | 1006 0 2 [] 3 [[30,5,0]]
|
| | | 1007 0 5 [] 10 [[30,5,0]]
|
| | | 1008 0 6 [] 3 [[30,5,0]]
|
| | | 1009 0 8 [42] 500 [[30,5,0]]
|
| | | 1010 0 2 [] 4 [[30,5,0]]
|
| | | 1011 0 5 [] 15 [[30,5,0]]
|
| | | 1012 0 6 [] 4 [[30,5,0]]
|
| | | 1013 0 8 [42] 1000 [[30,5,0]]
|
| | | 1014 0 2 [] 5 [[30,5,0]]
|
| | | 1015 0 5 [] 20 [[30,5,0]]
|
| | | 1016 0 6 [] 5 [[30,5,0]]
|
| | | 1001 0 4 [41] 2 [[3,5,0]]
|
| | | 1002 0 7 [] 3 [[3,5,0]]
|
| | | 1003 0 9 [1] 2 [[3,5,0]]
|
| | | 1004 0 5 [] 2 [[3,5,0]]
|
| | | 1005 0 1 [101] 1 [[3,5,0]]
|
| | | 1006 0 4 [41] 5 [[3,5,0]]
|
| | | 1007 0 7 [] 5 [[3,5,0]]
|
| | | 1008 0 8 [42] 100 [[3,5,0]]
|
| | | 1009 0 1 [102] 1 [[3,5,0]]
|
| | | 1010 0 5 [] 3 [[3,5,0]]
|
| | | 1011 0 4 [41] 5 [[3,5,0]]
|
| | | 1012 0 7 [] 5 [[3,5,0]]
|
| | | 1013 0 3 [] 5 [[3,5,0]]
|
| | | 1014 0 1 [103] 1 [[3,5,0]]
|
| | | 1015 0 5 [] 5 [[3,5,0]]
|
| | | 1016 0 6 [] 1 [[3,5,0]]
|
| | | 1017 0 1 [104] 1 [[3,5,0]]
|
| | | 1018 0 4 [41] 10 [[3,5,0]]
|
| | | 1019 0 7 [] 10 [[3,5,0]]
|
| | | 1020 0 3 [] 5 [[3,5,0]]
|
| | | 1021 0 1 [105] 1 [[3,5,0]]
|
| | | 1022 0 4 [41] 10 [[3,5,0]]
|
| | | 1023 0 7 [] 10 [[3,5,0]]
|
| | | 1024 0 3 [] 5 [[3,5,0]]
|
| | | 1025 0 1 [201] 1 [[3,5,0]]
|
| | | 1026 0 5 [] 10 [[3,5,0]]
|
| | | 1027 0 4 [41] 10 [[3,5,0]]
|
| | | 1028 0 7 [] 10 [[3,5,0]]
|
| | | 1029 0 9 [3] 2 [[3,5,0]]
|
| | | 1030 0 1 [202] 1 [[3,5,0]]
|
| | | 1031 0 5 [] 11 [[3,5,0]]
|
| | | 1032 0 4 [41] 15 [[3,5,0]]
|
| | | 1033 0 7 [] 10 [[3,5,0]]
|
| | | 1034 0 3 [] 10 [[3,5,0]]
|
| | | 1035 0 1 [203] 1 [[3,5,0]]
|
| | | 1036 0 5 [] 13 [[3,5,0]]
|
| | | 1037 0 4 [41] 20 [[3,5,0]]
|
| | | 1038 0 7 [] 10 [[3,5,0]]
|
| | | 1039 0 3 [] 10 [[3,5,0]]
|
| | | 1040 0 1 [204] 1 [[3,5,0]]
|
| | | 1041 0 5 [] 15 [[3,5,0]]
|
| | | 1042 0 4 [41] 20 [[3,5,0]]
|
| | | 1043 0 7 [] 10 [[3,5,0]]
|
| | | 1044 0 1 [205] 1 [[3,5,0]]
|
| | | 1045 0 7 [] 10 [[3,5,0]]
|
| | | 1046 0 3 [] 10 [[3,5,0]]
|
| | | 1047 0 1 [301] 1 [[3,10,0]]
|
| | | 1048 0 4 [41] 20 [[3,10,0]]
|
| | | 1049 0 3 [] 10 [[3,10,0]]
|
| | | 1050 0 7 [] 10 [[3,10,0]]
|
| | | 1051 0 3 [] 10 [[3,10,0]]
|
| | | 1052 0 1 [302] 1 [[3,10,0]]
|
| | | 1053 0 3 [] 10 [[3,10,0]]
|
| | | 1054 0 4 [41] 20 [[3,10,0]]
|
| | | 1055 0 7 [] 10 [[3,10,0]]
|
| | | 1056 0 3 [] 10 [[3,10,0]]
|
| | | 1057 0 1 [303] 1 [[3,10,0]]
|
| | | 1058 0 3 [] 10 [[3,10,0]]
|
| | | 1059 0 4 [41] 20 [[3,10,0]]
|
| | | 1060 0 7 [] 10 [[3,10,0]]
|
| | | 1061 0 3 [] 10 [[3,10,0]]
|
| | | 1062 0 1 [304] 1 [[3,10,0]]
|
| | | 1063 0 5 [] 21 [[3,10,0]]
|
| | | 1064 0 4 [41] 20 [[3,10,0]]
|
| | | 1065 0 7 [] 10 [[3,10,0]]
|
| | | 1066 0 3 [] 10 [[3,10,0]]
|
| | | 1067 0 1 [305] 1 [[3,10,0]]
|
| | | 1068 0 3 [] 10 [[3,10,0]]
|
| | | 1069 0 4 [41] 20 [[3,10,0]]
|
| | | 1070 0 7 [] 10 [[3,10,0]]
|
| | | 1071 0 3 [] 10 [[3,10,0]]
|
| | | 1072 0 1 [306] 1 [[3,10,0]]
|
| | | 1073 0 5 [] 22 [[3,10,0]]
|
| | | 1074 0 4 [41] 30 [[3,10,0]]
|
| | | 1075 0 7 [] 10 [[3,10,0]]
|
| | | 1076 0 1 [307] 1 [[3,10,0]]
|
| | | 1077 0 5 [] 23 [[3,10,0]]
|
| | | 1078 0 4 [41] 30 [[3,10,0]]
|
| | | 1079 0 7 [] 10 [[3,10,0]]
|
| | | 1080 0 3 [] 10 [[3,10,0]]
|
| | | 1081 0 1 [308] 1 [[3,10,0]]
|
| | | 1082 0 8 [42] 1000 [[3,10,0]]
|
| | | 1083 0 4 [41] 30 [[3,10,0]]
|
| | | 1084 0 7 [] 10 [[3,10,0]]
|
| | | 1085 0 3 [] 10 [[3,10,0]]
|
| | | 1086 0 1 [401] 1 [[3,10,0]]
|
| | | 1087 0 4 [41] 35 [[3,10,0]]
|
| | | 1088 0 7 [] 10 [[3,10,0]]
|
| | | 1089 0 3 [] 10 [[3,10,0]]
|
| | | 1090 0 8 [42] 1000 [[3,10,0]]
|
| | | 1091 0 1 [402] 1 [[3,10,0]]
|
| | | 1092 0 4 [41] 35 [[3,10,0]]
|
| | | 1093 0 7 [] 10 [[3,10,0]]
|
| | | 1094 0 3 [] 10 [[3,10,0]]
|
| | | 1095 0 8 [42] 1000 [[3,10,0]]
|
| | | 1096 0 1 [403] 1 [[3,10,0]]
|
| | | 1097 0 4 [41] 35 [[3,10,0]]
|
| | | 1098 0 7 [] 10 [[3,10,0]]
|
| | | 1099 0 3 [] 10 [[3,10,0]]
|
| | | 1100 0 8 [42] 1000 [[3,10,0]]
|
| | | 1101 0 1 [404] 1 [[3,10,0]]
|
| | | 1102 0 4 [41] 35 [[3,10,0]]
|
| | | 1103 0 7 [] 10 [[3,10,0]]
|
| | | 1104 0 3 [] 10 [[3,10,0]]
|
| | | 1105 0 8 [42] 1000 [[3,10,0]]
|
| | | 1106 0 1 [405] 1 [[3,10,0]]
|
| | | 1107 0 4 [41] 35 [[3,10,0]]
|
| | | 1108 0 7 [] 10 [[3,10,0]]
|
| | | 1109 0 3 [] 10 [[3,10,0]]
|
| | | 1110 0 8 [42] 1000 [[3,10,0]]
|
| | | 1111 0 1 [406] 1 [[3,10,0]]
|
| | | 1112 0 4 [41] 35 [[3,10,0]]
|
| | | 1113 0 7 [] 10 [[3,10,0]]
|
| | | 1114 0 3 [] 10 [[3,10,0]]
|
| | | 1115 0 8 [42] 1000 [[3,10,0]]
|
| | | 1116 0 1 [407] 1 [[3,10,0]]
|
| | | 1117 0 4 [41] 35 [[3,10,0]]
|
| | | 1118 0 7 [] 10 [[3,10,0]]
|
| | | 1119 0 3 [] 10 [[3,10,0]]
|
| | | 1120 0 8 [42] 1000 [[3,10,0]]
|
| | | 1121 0 1 [408] 1 [[3,10,0]]
|
| | | 1122 0 4 [41] 35 [[3,10,0]]
|
| | | 1123 0 7 [] 10 [[3,10,0]]
|
| | | 1124 0 3 [] 10 [[3,10,0]]
|
| | | 1125 0 8 [42] 1000 [[3,10,0]]
|
| | | 1126 0 1 [409] 1 [[3,10,0]]
|
| | | 1127 0 4 [41] 35 [[3,10,0]]
|
| | | 1128 0 7 [] 10 [[3,10,0]]
|
| | | 1129 0 3 [] 10 [[3,10,0]]
|
| | | 1130 0 8 [42] 1000 [[3,10,0]]
|
| | | 1131 0 1 [410] 1 [[3,10,0]]
|
| | | 1132 0 4 [41] 35 [[3,10,0]]
|
| | | 1133 0 8 [42] 1000 [[3,10,0]]
|
| | | 1134 0 7 [] 10 [[3,10,0]]
|
| | | 1135 0 3 [] 10 [[3,10,0]]
|
| | | 1136 0 1 [501] 1 [[3,10,0]]
|
| | | 1137 0 4 [41] 35 [[3,10,0]]
|
| | | 1138 0 7 [] 10 [[3,10,0]]
|
| | | 1139 0 3 [] 10 [[3,10,0]]
|
| | | 1140 0 8 [42] 1000 [[3,10,0]]
|
| | | 1141 0 1 [502] 1 [[3,10,0]]
|
| | | 1142 0 4 [41] 35 [[3,10,0]]
|
| | | 1143 0 7 [] 10 [[3,10,0]]
|
| | | 1144 0 3 [] 10 [[3,10,0]]
|
| | | 1145 0 8 [42] 1000 [[3,10,0]]
|
| | | 1146 0 1 [503] 1 [[3,10,0]]
|
| | | 1147 0 4 [41] 35 [[3,10,0]]
|
| | | 1148 0 7 [] 10 [[3,10,0]]
|
| | | 1149 0 3 [] 10 [[3,10,0]]
|
| | | 1150 0 8 [42] 1000 [[3,10,0]]
|
| | | 1151 0 1 [504] 1 [[3,10,0]]
|
| | | 1152 0 4 [41] 35 [[3,10,0]]
|
| | | 1153 0 7 [] 10 [[3,10,0]]
|
| | | 1154 0 3 [] 10 [[3,10,0]]
|
| | | 1155 0 8 [42] 1000 [[3,10,0]]
|
| | | 1156 0 1 [505] 1 [[3,10,0]]
|
| | | 1157 0 4 [41] 35 [[3,10,0]]
|
| | | 1158 0 7 [] 10 [[3,10,0]]
|
| | | 1159 0 3 [] 10 [[3,10,0]]
|
| | | 1160 0 8 [42] 1000 [[3,10,0]]
|
| | | 1161 0 1 [506] 1 [[3,10,0]]
|
| | | 1162 0 4 [41] 35 [[3,10,0]]
|
| | | 1163 0 7 [] 10 [[3,10,0]]
|
| | | 1164 0 3 [] 10 [[3,10,0]]
|
| | | 1165 0 8 [42] 1000 [[3,10,0]]
|
| | | 1166 0 1 [507] 1 [[3,10,0]]
|
| | | 1167 0 4 [41] 35 [[3,10,0]]
|
| | | 1168 0 7 [] 10 [[3,10,0]]
|
| | | 1169 0 3 [] 10 [[3,10,0]]
|
| | | 1170 0 8 [42] 1000 [[3,10,0]]
|
| | | 1171 0 1 [508] 1 [[3,10,0]]
|
| | | 1172 0 4 [41] 35 [[3,10,0]]
|
| | | 1173 0 7 [] 10 [[3,10,0]]
|
| | | 1174 0 3 [] 10 [[3,10,0]]
|
| | | 1175 0 8 [42] 1000 [[3,10,0]]
|
| | | 1176 0 1 [509] 1 [[3,10,0]]
|
| | | 1177 0 4 [41] 35 [[3,10,0]]
|
| | | 1178 0 7 [] 10 [[3,10,0]]
|
| | | 1179 0 3 [] 10 [[3,10,0]]
|
| | | 1180 0 8 [42] 1000 [[3,10,0]]
|
| | | 1181 0 1 [510] 1 [[3,10,0]]
|
| | | 1182 0 4 [41] 35 [[3,10,0]]
|
| | | 1183 0 8 [42] 1000 [[3,10,0]]
|
| | | 1184 0 7 [] 10 [[3,10,0]]
|
| | | 1185 0 3 [] 10 [[3,10,0]]
|
| | | 1186 0 1 [601] 1 [[3,10,0]]
|
| | | 1187 0 4 [41] 35 [[3,10,0]]
|
| | | 1188 0 7 [] 10 [[3,10,0]]
|
| | | 1189 0 3 [] 10 [[3,10,0]]
|
| | | 1190 0 8 [42] 1000 [[3,10,0]]
|
| | | 1191 0 1 [602] 1 [[3,10,0]]
|
| | | 1192 0 4 [41] 35 [[3,10,0]]
|
| | | 1193 0 7 [] 10 [[3,10,0]]
|
| | | 1194 0 3 [] 10 [[3,10,0]]
|
| | | 1195 0 8 [42] 1000 [[3,10,0]]
|
| | | 1196 0 1 [603] 1 [[3,10,0]]
|
| | | 1197 0 4 [41] 35 [[3,10,0]]
|
| | | 1198 0 7 [] 10 [[3,10,0]]
|
| | | 1199 0 3 [] 10 [[3,10,0]]
|
| | | 1200 0 8 [42] 1000 [[3,10,0]]
|
| | | 1201 0 1 [604] 1 [[3,10,0]]
|
| | | 1202 0 4 [41] 35 [[3,10,0]]
|
| | | 1203 0 7 [] 10 [[3,10,0]]
|
| | | 1204 0 3 [] 10 [[3,10,0]]
|
| | | 1205 0 8 [42] 1000 [[3,10,0]]
|
| | | 1206 0 1 [605] 1 [[3,10,0]]
|
| | | 1207 0 4 [41] 35 [[3,10,0]]
|
| | | 1208 0 7 [] 10 [[3,10,0]]
|
| | | 1209 0 3 [] 10 [[3,10,0]]
|
| | | 1210 0 8 [42] 1000 [[3,10,0]]
|
| | | 1211 0 1 [606] 1 [[3,10,0]]
|
| | | 1212 0 4 [41] 35 [[3,10,0]]
|
| | | 1213 0 7 [] 10 [[3,10,0]]
|
| | | 1214 0 3 [] 10 [[3,10,0]]
|
| | | 1215 0 8 [42] 1000 [[3,10,0]]
|
| | | 1216 0 1 [607] 1 [[3,10,0]]
|
| | | 1217 0 4 [41] 35 [[3,10,0]]
|
| | | 1218 0 7 [] 10 [[3,10,0]]
|
| | | 1219 0 3 [] 10 [[3,10,0]]
|
| | | 1220 0 8 [42] 1000 [[3,10,0]]
|
| | | 1221 0 1 [608] 1 [[3,10,0]]
|
| | | 1222 0 4 [41] 35 [[3,10,0]]
|
| | | 1223 0 7 [] 10 [[3,10,0]]
|
| | | 1224 0 3 [] 10 [[3,10,0]]
|
| | | 1225 0 8 [42] 1000 [[3,10,0]]
|
| | | 1226 0 1 [609] 1 [[3,10,0]]
|
| | | 1227 0 4 [41] 35 [[3,10,0]]
|
| | | 1228 0 7 [] 10 [[3,10,0]]
|
| | | 1229 0 3 [] 10 [[3,10,0]]
|
| | | 1230 0 8 [42] 1000 [[3,10,0]]
|
| | | 1231 0 1 [610] 1 [[3,10,0]]
|
| | | 1232 0 4 [41] 35 [[3,10,0]]
|
| | | 1233 0 8 [42] 1000 [[3,10,0]]
|
| | | 1234 0 7 [] 10 [[3,10,0]]
|
| | | 1235 0 3 [] 10 [[3,10,0]]
|
| | | 1236 0 1 [701] 1 [[3,10,0]]
|
| | | 1237 0 4 [41] 35 [[3,10,0]]
|
| | | 1238 0 7 [] 10 [[3,10,0]]
|
| | | 1239 0 3 [] 10 [[3,10,0]]
|
| | | 1240 0 8 [42] 1000 [[3,10,0]]
|
| | | 1241 0 1 [702] 1 [[3,10,0]]
|
| | | 1242 0 4 [41] 35 [[3,10,0]]
|
| | | 1243 0 7 [] 10 [[3,10,0]]
|
| | | 1244 0 3 [] 10 [[3,10,0]]
|
| | | 1245 0 8 [42] 1000 [[3,10,0]]
|
| | | 1246 0 1 [703] 1 [[3,10,0]]
|
| | | 1247 0 4 [41] 35 [[3,10,0]]
|
| | | 1248 0 7 [] 10 [[3,10,0]]
|
| | | 1249 0 3 [] 10 [[3,10,0]]
|
| | | 1250 0 8 [42] 1000 [[3,10,0]]
|
| | | 1251 0 1 [704] 1 [[3,10,0]]
|
| | | 1252 0 4 [41] 35 [[3,10,0]]
|
| | | 1253 0 7 [] 10 [[3,10,0]]
|
| | | 1254 0 3 [] 10 [[3,10,0]]
|
| | | 1255 0 8 [42] 1000 [[3,10,0]]
|
| | | 1256 0 1 [705] 1 [[3,10,0]]
|
| | | 1257 0 4 [41] 35 [[3,10,0]]
|
| | | 1258 0 7 [] 10 [[3,10,0]]
|
| | | 1259 0 3 [] 10 [[3,10,0]]
|
| | | 1260 0 8 [42] 1000 [[3,10,0]]
|
| | | 1261 0 1 [706] 1 [[3,10,0]]
|
| | | 1262 0 4 [41] 35 [[3,10,0]]
|
| | | 1263 0 7 [] 10 [[3,10,0]]
|
| | | 1264 0 3 [] 10 [[3,10,0]]
|
| | | 1265 0 8 [42] 1000 [[3,10,0]]
|
| | | 1266 0 1 [707] 1 [[3,10,0]]
|
| | | 1267 0 4 [41] 35 [[3,10,0]]
|
| | | 1268 0 7 [] 10 [[3,10,0]]
|
| | | 1269 0 3 [] 10 [[3,10,0]]
|
| | | 1270 0 8 [42] 1000 [[3,10,0]]
|
| | | 1271 0 1 [708] 1 [[3,10,0]]
|
| | | 1272 0 4 [41] 35 [[3,10,0]]
|
| | | 1273 0 7 [] 10 [[3,10,0]]
|
| | | 1274 0 3 [] 10 [[3,10,0]]
|
| | | 1275 0 8 [42] 1000 [[3,10,0]]
|
| | | 1276 0 1 [709] 1 [[3,10,0]]
|
| | | 1277 0 4 [41] 35 [[3,10,0]]
|
| | | 1278 0 7 [] 10 [[3,10,0]]
|
| | | 1279 0 3 [] 10 [[3,10,0]]
|
| | | 1280 0 8 [42] 1000 [[3,10,0]]
|
| | | 1281 0 1 [710] 1 [[3,10,0]]
|
| | | 1282 0 4 [41] 35 [[3,10,0]]
|
| | | 1283 0 8 [42] 1000 [[3,10,0]]
|
| | | 1284 0 7 [] 10 [[3,10,0]]
|
| | | 1285 0 3 [] 10 [[3,10,0]]
|
| | | 1286 0 1 [801] 1 [[3,10,0]]
|
| | | 1287 0 4 [41] 35 [[3,10,0]]
|
| | | 1288 0 7 [] 10 [[3,10,0]]
|
| | | 1289 0 3 [] 10 [[3,10,0]]
|
| | | 1290 0 8 [42] 1000 [[3,10,0]]
|
| | | 1291 0 1 [802] 1 [[3,10,0]]
|
| | | 1292 0 4 [41] 35 [[3,10,0]]
|
| | | 1293 0 7 [] 10 [[3,10,0]]
|
| | | 1294 0 3 [] 10 [[3,10,0]]
|
| | | 1295 0 8 [42] 1000 [[3,10,0]]
|
| | | 1296 0 1 [803] 1 [[3,10,0]]
|
| | | 1297 0 4 [41] 35 [[3,10,0]]
|
| | | 1298 0 7 [] 10 [[3,10,0]]
|
| | | 1299 0 3 [] 10 [[3,10,0]]
|
| | | 1300 0 8 [42] 1000 [[3,10,0]]
|
| | | 1301 0 1 [804] 1 [[3,10,0]]
|
| | | 1302 0 4 [41] 35 [[3,10,0]]
|
| | | 1303 0 7 [] 10 [[3,10,0]]
|
| | | 1304 0 3 [] 10 [[3,10,0]]
|
| | | 1305 0 8 [42] 1000 [[3,10,0]]
|
| | | 1306 0 1 [805] 1 [[3,10,0]]
|
| | | 1307 0 4 [41] 35 [[3,10,0]]
|
| | | 1308 0 7 [] 10 [[3,10,0]]
|
| | | 1309 0 3 [] 10 [[3,10,0]]
|
| | | 1310 0 8 [42] 1000 [[3,10,0]]
|
| | | 1311 0 1 [806] 1 [[3,10,0]]
|
| | | 1312 0 4 [41] 35 [[3,10,0]]
|
| | | 1313 0 7 [] 10 [[3,10,0]]
|
| | | 1314 0 3 [] 10 [[3,10,0]]
|
| | | 1315 0 8 [42] 1000 [[3,10,0]]
|
| | | 1316 0 1 [807] 1 [[3,10,0]]
|
| | | 1317 0 4 [41] 35 [[3,10,0]]
|
| | | 1318 0 7 [] 10 [[3,10,0]]
|
| | | 1319 0 3 [] 10 [[3,10,0]]
|
| | | 1320 0 8 [42] 1000 [[3,10,0]]
|
| | | 1321 0 1 [808] 1 [[3,10,0]]
|
| | | 1322 0 4 [41] 35 [[3,10,0]]
|
| | | 1323 0 7 [] 10 [[3,10,0]]
|
| | | 1324 0 3 [] 10 [[3,10,0]]
|
| | | 1325 0 8 [42] 1000 [[3,10,0]]
|
| | | 1326 0 1 [809] 1 [[3,10,0]]
|
| | | 1327 0 4 [41] 35 [[3,10,0]]
|
| | | 1328 0 7 [] 10 [[3,10,0]]
|
| | | 1329 0 3 [] 10 [[3,10,0]]
|
| | | 1330 0 8 [42] 1000 [[3,10,0]]
|
| | | 1331 0 1 [810] 1 [[3,10,0]]
|
| | | 1332 0 4 [41] 35 [[3,10,0]]
|
| | | 1333 0 8 [42] 1000 [[3,10,0]]
|
| | | 1334 0 7 [] 10 [[3,10,0]]
|
| | | 1335 0 3 [] 10 [[3,10,0]]
|
| | | 1336 0 1 [901] 1 [[3,10,0]]
|
| | | 1337 0 4 [41] 35 [[3,10,0]]
|
| | | 1338 0 7 [] 10 [[3,10,0]]
|
| | | 1339 0 3 [] 10 [[3,10,0]]
|
| | | 1340 0 8 [42] 1000 [[3,10,0]]
|
| | | 1341 0 1 [902] 1 [[3,10,0]]
|
| | | 1342 0 4 [41] 35 [[3,10,0]]
|
| | | 1343 0 7 [] 10 [[3,10,0]]
|
| | | 1344 0 3 [] 10 [[3,10,0]]
|
| | | 1345 0 8 [42] 1000 [[3,10,0]]
|
| | | 1346 0 1 [903] 1 [[3,10,0]]
|
| | | 1347 0 4 [41] 35 [[3,10,0]]
|
| | | 1348 0 7 [] 10 [[3,10,0]]
|
| | | 1349 0 3 [] 10 [[3,10,0]]
|
| | | 1350 0 8 [42] 1000 [[3,10,0]]
|
| | | 1351 0 1 [904] 1 [[3,10,0]]
|
| | | 1352 0 4 [41] 35 [[3,10,0]]
|
| | | 1353 0 7 [] 10 [[3,10,0]]
|
| | | 1354 0 3 [] 10 [[3,10,0]]
|
| | | 1355 0 8 [42] 1000 [[3,10,0]]
|
| | | 1356 0 1 [905] 1 [[3,10,0]]
|
| | | 1357 0 4 [41] 35 [[3,10,0]]
|
| | | 1358 0 7 [] 10 [[3,10,0]]
|
| | | 1359 0 3 [] 10 [[3,10,0]]
|
| | | 1360 0 8 [42] 1000 [[3,10,0]]
|
| | | 1361 0 1 [906] 1 [[3,10,0]]
|
| | | 1362 0 4 [41] 35 [[3,10,0]]
|
| | | 1363 0 7 [] 10 [[3,10,0]]
|
| | | 1364 0 3 [] 10 [[3,10,0]]
|
| | | 1365 0 8 [42] 1000 [[3,10,0]]
|
| | | 1366 0 1 [907] 1 [[3,10,0]]
|
| | | 1367 0 4 [41] 35 [[3,10,0]]
|
| | | 1368 0 7 [] 10 [[3,10,0]]
|
| | | 1369 0 3 [] 10 [[3,10,0]]
|
| | | 1370 0 8 [42] 1000 [[3,10,0]]
|
| | | 1371 0 1 [908] 1 [[3,10,0]]
|
| | | 1372 0 4 [41] 35 [[3,10,0]]
|
| | | 1373 0 7 [] 10 [[3,10,0]]
|
| | | 1374 0 3 [] 10 [[3,10,0]]
|
| | | 1375 0 8 [42] 1000 [[3,10,0]]
|
| | | 1376 0 1 [909] 1 [[3,10,0]]
|
| | | 1377 0 4 [41] 35 [[3,10,0]]
|
| | | 1378 0 7 [] 10 [[3,10,0]]
|
| | | 1379 0 3 [] 10 [[3,10,0]]
|
| | | 1380 0 8 [42] 1000 [[3,10,0]]
|
| | | 1381 0 1 [910] 1 [[3,10,0]]
|
| | | 1382 0 4 [41] 35 [[3,10,0]]
|
| | | 1383 0 8 [42] 1000 [[3,10,0]]
|
| | | 1384 0 7 [] 10 [[3,10,0]]
|
| | | 1385 0 3 [] 10 [[3,10,0]]
|
| | | 1386 0 1 [1001] 1 [[3,10,0]]
|
| | | 1387 0 4 [41] 35 [[3,10,0]]
|
| | | 1388 0 7 [] 10 [[3,10,0]]
|
| | | 1389 0 3 [] 10 [[3,10,0]]
|
| | | 1390 0 8 [42] 1000 [[3,10,0]]
|
| | | 1391 0 1 [1002] 1 [[3,10,0]]
|
| | | 1392 0 4 [41] 35 [[3,10,0]]
|
| | | 1393 0 7 [] 10 [[3,10,0]]
|
| | | 1394 0 3 [] 10 [[3,10,0]]
|
| | | 1395 0 8 [42] 1000 [[3,10,0]]
|
| | | 1396 0 1 [1003] 1 [[3,10,0]]
|
| | | 1397 0 4 [41] 35 [[3,10,0]]
|
| | | 1398 0 7 [] 10 [[3,10,0]]
|
| | | 1399 0 3 [] 10 [[3,10,0]]
|
| | | 1400 0 8 [42] 1000 [[3,10,0]]
|
| | | 1401 0 1 [1004] 1 [[3,10,0]]
|
| | | 1402 0 4 [41] 35 [[3,10,0]]
|
| | | 1403 0 7 [] 10 [[3,10,0]]
|
| | | 1404 0 3 [] 10 [[3,10,0]]
|
| | | 1405 0 8 [42] 1000 [[3,10,0]]
|
| | | 1406 0 1 [1005] 1 [[3,10,0]]
|
| | | 1407 0 4 [41] 35 [[3,10,0]]
|
| | | 1408 0 7 [] 10 [[3,10,0]]
|
| | | 1409 0 3 [] 10 [[3,10,0]]
|
| | | 1410 0 8 [42] 1000 [[3,10,0]]
|
| | | 1411 0 1 [1006] 1 [[3,10,0]]
|
| | | 1412 0 4 [41] 35 [[3,10,0]]
|
| | | 1413 0 7 [] 10 [[3,10,0]]
|
| | | 1414 0 3 [] 10 [[3,10,0]]
|
| | | 1415 0 8 [42] 1000 [[3,10,0]]
|
| | | 1416 0 1 [1007] 1 [[3,10,0]]
|
| | | 1417 0 4 [41] 35 [[3,10,0]]
|
| | | 1418 0 7 [] 10 [[3,10,0]]
|
| | | 1419 0 3 [] 10 [[3,10,0]]
|
| | | 1420 0 8 [42] 1000 [[3,10,0]]
|
| | | 1421 0 1 [1008] 1 [[3,10,0]]
|
| | | 1422 0 4 [41] 35 [[3,10,0]]
|
| | | 1423 0 7 [] 10 [[3,10,0]]
|
| | | 1424 0 3 [] 10 [[3,10,0]]
|
| | | 1425 0 8 [42] 1000 [[3,10,0]]
|
| | | 1426 0 1 [1009] 1 [[3,10,0]]
|
| | | 1427 0 4 [41] 35 [[3,10,0]]
|
| | | 1428 0 7 [] 10 [[3,10,0]]
|
| | | 1429 0 3 [] 10 [[3,10,0]]
|
| | | 1430 0 8 [42] 1000 [[3,10,0]]
|
| | | 1431 0 1 [1010] 1 [[3,10,0]]
|
| | | 1432 0 4 [41] 35 [[3,10,0]]
|
| | | 1433 0 7 [] 10 [[3,10,0]]
|
| | | 1434 0 3 [] 10 [[3,10,0]]
|
| | | 1435 0 8 [42] 1000 [[3,10,0]]
|
| | | 1436 0 1 [1101] 1 [[3,10,0]]
|
| | | 1437 0 4 [41] 35 [[3,10,0]]
|
| | | 1438 0 7 [] 10 [[3,10,0]]
|
| | | 1439 0 3 [] 10 [[3,10,0]]
|
| | | 1440 0 8 [42] 1000 [[3,10,0]]
|
| | | 1441 0 1 [1102] 1 [[3,10,0]]
|
| | | 1442 0 4 [41] 35 [[3,10,0]]
|
| | | 1443 0 7 [] 10 [[3,10,0]]
|
| | | 1444 0 3 [] 10 [[3,10,0]]
|
| | | 1445 0 8 [42] 1000 [[3,10,0]]
|
| | | 1446 0 1 [1103] 1 [[3,10,0]]
|
| | | 1447 0 4 [41] 35 [[3,10,0]]
|
| | | 1448 0 7 [] 10 [[3,10,0]]
|
| | | 1449 0 3 [] 10 [[3,10,0]]
|
| | | 1450 0 8 [42] 1000 [[3,10,0]]
|
| | | 1451 0 1 [1104] 1 [[3,10,0]]
|
| | | 1452 0 4 [41] 35 [[3,10,0]]
|
| | | 1453 0 7 [] 10 [[3,10,0]]
|
| | | 1454 0 3 [] 10 [[3,10,0]]
|
| | | 1455 0 8 [42] 1000 [[3,10,0]]
|
| | | 1456 0 1 [1105] 1 [[3,10,0]]
|
| | | 1457 0 4 [41] 35 [[3,10,0]]
|
| | | 1458 0 7 [] 10 [[3,10,0]]
|
| | | 1459 0 3 [] 10 [[3,10,0]]
|
| | | 1460 0 8 [42] 1000 [[3,10,0]]
|
| | | 1461 0 1 [1106] 1 [[3,10,0]]
|
| | | 1462 0 4 [41] 35 [[3,10,0]]
|
| | | 1463 0 7 [] 10 [[3,10,0]]
|
| | | 1464 0 3 [] 10 [[3,10,0]]
|
| | | 1465 0 8 [42] 1000 [[3,10,0]]
|
| | | 1466 0 1 [1107] 1 [[3,10,0]]
|
| | | 1467 0 4 [41] 35 [[3,10,0]]
|
| | | 1468 0 7 [] 10 [[3,10,0]]
|
| | | 1469 0 3 [] 10 [[3,10,0]]
|
| | | 1470 0 8 [42] 1000 [[3,10,0]]
|
| | | 1471 0 1 [1108] 1 [[3,10,0]]
|
| | | 1472 0 4 [41] 35 [[3,10,0]]
|
| | | 1473 0 7 [] 10 [[3,10,0]]
|
| | | 1474 0 3 [] 10 [[3,10,0]]
|
| | | 1475 0 8 [42] 1000 [[3,10,0]]
|
| | | 1476 0 1 [1109] 1 [[3,10,0]]
|
| | | 1477 0 4 [41] 35 [[3,10,0]]
|
| | | 1478 0 7 [] 10 [[3,10,0]]
|
| | | 1479 0 3 [] 10 [[3,10,0]]
|
| | | 1480 0 8 [42] 1000 [[3,10,0]]
|
| | | 1481 0 1 [1110] 1 [[3,10,0]]
|
| | | 1482 0 4 [41] 35 [[3,10,0]]
|
| | | 1483 0 7 [] 10 [[3,10,0]]
|
| | | 1484 0 3 [] 10 [[3,10,0]]
|
| | | 1485 0 8 [42] 1000 [[3,10,0]]
|
| | | 1486 0 1 [1201] 1 [[3,10,0]]
|
| | | 1487 0 4 [41] 35 [[3,10,0]]
|
| | | 1488 0 7 [] 10 [[3,10,0]]
|
| | | 1489 0 3 [] 10 [[3,10,0]]
|
| | | 1490 0 8 [42] 1000 [[3,10,0]]
|
| | | 1491 0 1 [1202] 1 [[3,10,0]]
|
| | | 1492 0 4 [41] 35 [[3,10,0]]
|
| | | 1493 0 7 [] 10 [[3,10,0]]
|
| | | 1494 0 3 [] 10 [[3,10,0]]
|
| | | 1495 0 8 [42] 1000 [[3,10,0]]
|
| | | 1496 0 1 [1203] 1 [[3,10,0]]
|
| | | 1497 0 4 [41] 35 [[3,10,0]]
|
| | | 1498 0 7 [] 10 [[3,10,0]]
|
| | | 1499 0 3 [] 10 [[3,10,0]]
|
| | | 1500 0 8 [42] 1000 [[3,10,0]]
|
| | | 1501 0 1 [1204] 1 [[3,10,0]]
|
| | | 1502 0 4 [41] 35 [[3,10,0]]
|
| | | 1503 0 7 [] 10 [[3,10,0]]
|
| | | 1504 0 3 [] 10 [[3,10,0]]
|
| | | 1505 0 8 [42] 1000 [[3,10,0]]
|
| | | 1506 0 1 [1205] 1 [[3,10,0]]
|
| | | 1507 0 4 [41] 35 [[3,10,0]]
|
| | | 1508 0 7 [] 10 [[3,10,0]]
|
| | | 1509 0 3 [] 10 [[3,10,0]]
|
| | | 1510 0 8 [42] 1000 [[3,10,0]]
|
| | | 1511 0 1 [1206] 1 [[3,10,0]]
|
| | | 1512 0 4 [41] 35 [[3,10,0]]
|
| | | 1513 0 7 [] 10 [[3,10,0]]
|
| | | 1514 0 3 [] 10 [[3,10,0]]
|
| | | 1515 0 8 [42] 1000 [[3,10,0]]
|
| | | 1516 0 1 [1207] 1 [[3,10,0]]
|
| | | 1517 0 4 [41] 35 [[3,10,0]]
|
| | | 1518 0 7 [] 10 [[3,10,0]]
|
| | | 1519 0 3 [] 10 [[3,10,0]]
|
| | | 1520 0 8 [42] 1000 [[3,10,0]]
|
| | | 1521 0 1 [1208] 1 [[3,10,0]]
|
| | | 1522 0 4 [41] 35 [[3,10,0]]
|
| | | 1523 0 7 [] 10 [[3,10,0]]
|
| | | 1524 0 3 [] 10 [[3,10,0]]
|
| | | 1525 0 8 [42] 1000 [[3,10,0]]
|
| | | 1526 0 1 [1209] 1 [[3,10,0]]
|
| | | 1527 0 4 [41] 35 [[3,10,0]]
|
| | | 1528 0 7 [] 10 [[3,10,0]]
|
| | | 1529 0 3 [] 10 [[3,10,0]]
|
| | | 1530 0 8 [42] 1000 [[3,10,0]]
|
| | | 1531 0 1 [1210] 1 [[3,10,0]]
|
| | | 1532 0 4 [41] 35 [[3,10,0]]
|
| | | 1533 0 7 [] 10 [[3,10,0]]
|
| | | 1534 0 3 [] 10 [[3,10,0]]
|
| | | 1535 0 8 [42] 1000 [[3,10,0]]
|
| | | 1536 0 1 [1301] 1 [[3,10,0]]
|
| | | 1537 0 4 [41] 35 [[3,10,0]]
|
| | | 1538 0 7 [] 10 [[3,10,0]]
|
| | | 1539 0 3 [] 10 [[3,10,0]]
|
| | | 1540 0 8 [42] 1000 [[3,10,0]]
|
| | | 1541 0 1 [1302] 1 [[3,10,0]]
|
| | | 1542 0 4 [41] 35 [[3,10,0]]
|
| | | 1543 0 7 [] 10 [[3,10,0]]
|
| | | 1544 0 3 [] 10 [[3,10,0]]
|
| | | 1545 0 8 [42] 1000 [[3,10,0]]
|
| | | 1546 0 1 [1303] 1 [[3,10,0]]
|
| | | 1547 0 4 [41] 35 [[3,10,0]]
|
| | | 1548 0 7 [] 10 [[3,10,0]]
|
| | | 1549 0 3 [] 10 [[3,10,0]]
|
| | | 1550 0 8 [42] 1000 [[3,10,0]]
|
| | | 1551 0 1 [1304] 1 [[3,10,0]]
|
| | | 1552 0 4 [41] 35 [[3,10,0]]
|
| | | 1553 0 7 [] 10 [[3,10,0]]
|
| | | 1554 0 3 [] 10 [[3,10,0]]
|
| | | 1555 0 8 [42] 1000 [[3,10,0]]
|
| | | 1556 0 1 [1305] 1 [[3,10,0]]
|
| | | 1557 0 4 [41] 35 [[3,10,0]]
|
| | | 1558 0 7 [] 10 [[3,10,0]]
|
| | | 1559 0 3 [] 10 [[3,10,0]]
|
| | | 1560 0 8 [42] 1000 [[3,10,0]]
|
| | | 1561 0 1 [1306] 1 [[3,10,0]]
|
| | | 1562 0 4 [41] 35 [[3,10,0]]
|
| | | 1563 0 7 [] 10 [[3,10,0]]
|
| | | 1564 0 3 [] 10 [[3,10,0]]
|
| | | 1565 0 8 [42] 1000 [[3,10,0]]
|
| | | 1566 0 1 [1307] 1 [[3,10,0]]
|
| | | 1567 0 4 [41] 35 [[3,10,0]]
|
| | | 1568 0 7 [] 10 [[3,10,0]]
|
| | | 1569 0 3 [] 10 [[3,10,0]]
|
| | | 1570 0 8 [42] 1000 [[3,10,0]]
|
| | | 1571 0 1 [1308] 1 [[3,10,0]]
|
| | | 1572 0 4 [41] 35 [[3,10,0]]
|
| | | 1573 0 7 [] 10 [[3,10,0]]
|
| | | 1574 0 3 [] 10 [[3,10,0]]
|
| | | 1575 0 8 [42] 1000 [[3,10,0]]
|
| | | 1576 0 1 [1309] 1 [[3,10,0]]
|
| | | 1577 0 4 [41] 35 [[3,10,0]]
|
| | | 1578 0 7 [] 10 [[3,10,0]]
|
| | | 1579 0 3 [] 10 [[3,10,0]]
|
| | | 1580 0 8 [42] 1000 [[3,10,0]]
|
| | | 1581 0 1 [1310] 1 [[3,10,0]]
|
| | | 1582 0 4 [41] 35 [[3,10,0]]
|
| | | 1583 0 7 [] 10 [[3,10,0]]
|
| | | 1584 0 3 [] 10 [[3,10,0]]
|
| | | 1585 0 8 [42] 1000 [[3,10,0]]
|
| | | 1586 0 1 [1401] 1 [[3,10,0]]
|
| | | 1587 0 4 [41] 35 [[3,10,0]]
|
| | | 1588 0 7 [] 10 [[3,10,0]]
|
| | | 1589 0 3 [] 10 [[3,10,0]]
|
| | | 1590 0 8 [42] 1000 [[3,10,0]]
|
| | | 1591 0 1 [1402] 1 [[3,10,0]]
|
| | | 1592 0 4 [41] 35 [[3,10,0]]
|
| | | 1593 0 7 [] 10 [[3,10,0]]
|
| | | 1594 0 3 [] 10 [[3,10,0]]
|
| | | 1595 0 8 [42] 1000 [[3,10,0]]
|
| | | 1596 0 1 [1403] 1 [[3,10,0]]
|
| | | 1597 0 4 [41] 35 [[3,10,0]]
|
| | | 1598 0 7 [] 10 [[3,10,0]]
|
| | | 1599 0 3 [] 10 [[3,10,0]]
|
| | | 1600 0 8 [42] 1000 [[3,10,0]]
|
| | | 1601 0 1 [1404] 1 [[3,10,0]]
|
| | | 1602 0 4 [41] 35 [[3,10,0]]
|
| | | 1603 0 7 [] 10 [[3,10,0]]
|
| | | 1604 0 3 [] 10 [[3,10,0]]
|
| | | 1605 0 8 [42] 1000 [[3,10,0]]
|
| | | 1606 0 1 [1405] 1 [[3,10,0]]
|
| | | 1607 0 4 [41] 35 [[3,10,0]]
|
| | | 1608 0 7 [] 10 [[3,10,0]]
|
| | | 1609 0 3 [] 10 [[3,10,0]]
|
| | | 1610 0 8 [42] 1000 [[3,10,0]]
|
| | | 1611 0 1 [1406] 1 [[3,10,0]]
|
| | | 1612 0 4 [41] 35 [[3,10,0]]
|
| | | 1613 0 7 [] 10 [[3,10,0]]
|
| | | 1614 0 3 [] 10 [[3,10,0]]
|
| | | 1615 0 8 [42] 1000 [[3,10,0]]
|
| | | 1616 0 1 [1407] 1 [[3,10,0]]
|
| | | 1617 0 4 [41] 35 [[3,10,0]]
|
| | | 1618 0 7 [] 10 [[3,10,0]]
|
| | | 1619 0 3 [] 10 [[3,10,0]]
|
| | | 1620 0 8 [42] 1000 [[3,10,0]]
|
| | | 1621 0 1 [1408] 1 [[3,10,0]]
|
| | | 1622 0 4 [41] 35 [[3,10,0]]
|
| | | 1623 0 7 [] 10 [[3,10,0]]
|
| | | 1624 0 3 [] 10 [[3,10,0]]
|
| | | 1625 0 8 [42] 1000 [[3,10,0]]
|
| | | 1626 0 1 [1409] 1 [[3,10,0]]
|
| | | 1627 0 4 [41] 35 [[3,10,0]]
|
| | | 1628 0 7 [] 10 [[3,10,0]]
|
| | | 1629 0 3 [] 10 [[3,10,0]]
|
| | | 1630 0 8 [42] 1000 [[3,10,0]]
|
| | | 1631 0 1 [1410] 1 [[3,10,0]]
|
| | | 1632 0 4 [41] 35 [[3,10,0]]
|
| | | 1633 0 7 [] 10 [[3,10,0]]
|
| | | 1634 0 3 [] 10 [[3,10,0]]
|
| | | 1635 0 8 [42] 1000 [[3,10,0]]
|
| | | 1636 0 1 [1501] 1 [[3,10,0]]
|
| | | 1637 0 4 [41] 35 [[3,10,0]]
|
| | | 1638 0 7 [] 10 [[3,10,0]]
|
| | | 1639 0 3 [] 10 [[3,10,0]]
|
| | | 1640 0 8 [42] 1000 [[3,10,0]]
|
| | | 1641 0 1 [1502] 1 [[3,10,0]]
|
| | | 1642 0 4 [41] 35 [[3,10,0]]
|
| | | 1643 0 7 [] 10 [[3,10,0]]
|
| | | 1644 0 3 [] 10 [[3,10,0]]
|
| | | 1645 0 8 [42] 1000 [[3,10,0]]
|
| | | 1646 0 1 [1503] 1 [[3,10,0]]
|
| | | 1647 0 4 [41] 35 [[3,10,0]]
|
| | | 1648 0 7 [] 10 [[3,10,0]]
|
| | | 1649 0 3 [] 10 [[3,10,0]]
|
| | | 1650 0 8 [42] 1000 [[3,10,0]]
|
| | | 1651 0 1 [1504] 1 [[3,10,0]]
|
| | | 1652 0 4 [41] 35 [[3,10,0]]
|
| | | 1653 0 7 [] 10 [[3,10,0]]
|
| | | 1654 0 3 [] 10 [[3,10,0]]
|
| | | 1655 0 8 [42] 1000 [[3,10,0]]
|
| | | 1656 0 1 [1505] 1 [[3,10,0]]
|
| | | 1657 0 4 [41] 35 [[3,10,0]]
|
| | | 1658 0 7 [] 10 [[3,10,0]]
|
| | | 1659 0 3 [] 10 [[3,10,0]]
|
| | | 1660 0 8 [42] 1000 [[3,10,0]]
|
| | | 1661 0 1 [1506] 1 [[3,10,0]]
|
| | | 1662 0 4 [41] 35 [[3,10,0]]
|
| | | 1663 0 7 [] 10 [[3,10,0]]
|
| | | 1664 0 3 [] 10 [[3,10,0]]
|
| | | 1665 0 8 [42] 1000 [[3,10,0]]
|
| | | 1666 0 1 [1507] 1 [[3,10,0]]
|
| | | 1667 0 4 [41] 35 [[3,10,0]]
|
| | | 1668 0 7 [] 10 [[3,10,0]]
|
| | | 1669 0 3 [] 10 [[3,10,0]]
|
| | | 1670 0 8 [42] 1000 [[3,10,0]]
|
| | | 1671 0 1 [1508] 1 [[3,10,0]]
|
| | | 1672 0 4 [41] 35 [[3,10,0]]
|
| | | 1673 0 7 [] 10 [[3,10,0]]
|
| | | 1674 0 3 [] 10 [[3,10,0]]
|
| | | 1675 0 8 [42] 1000 [[3,10,0]]
|
| | | 1676 0 1 [1509] 1 [[3,10,0]]
|
| | | 1677 0 4 [41] 35 [[3,10,0]]
|
| | | 1678 0 7 [] 10 [[3,10,0]]
|
| | | 1679 0 3 [] 10 [[3,10,0]]
|
| | | 1680 0 8 [42] 1000 [[3,10,0]]
|
| | | 1681 0 1 [1510] 1 [[3,10,0]]
|
| | | 1682 0 4 [41] 35 [[3,10,0]]
|
| | | 1683 0 7 [] 10 [[3,10,0]]
|
| | | 1684 0 3 [] 10 [[3,10,0]]
|
| | | 1685 0 8 [42] 1000 [[3,10,0]]
|
| | | 1686 0 1 [1601] 1 [[3,10,0]]
|
| | | 1687 0 4 [41] 35 [[3,10,0]]
|
| | | 1688 0 7 [] 10 [[3,10,0]]
|
| | | 1689 0 3 [] 10 [[3,10,0]]
|
| | | 1690 0 8 [42] 1000 [[3,10,0]]
|
| | | 1691 0 1 [1602] 1 [[3,10,0]]
|
| | | 1692 0 4 [41] 35 [[3,10,0]]
|
| | | 1693 0 7 [] 10 [[3,10,0]]
|
| | | 1694 0 3 [] 10 [[3,10,0]]
|
| | | 1695 0 8 [42] 1000 [[3,10,0]]
|
| | | 1696 0 1 [1603] 1 [[3,10,0]]
|
| | | 1697 0 4 [41] 35 [[3,10,0]]
|
| | | 1698 0 7 [] 10 [[3,10,0]]
|
| | | 1699 0 3 [] 10 [[3,10,0]]
|
| | | 1700 0 8 [42] 1000 [[3,10,0]]
|
| | | 1701 0 1 [1604] 1 [[3,10,0]]
|
| | | 1702 0 4 [41] 35 [[3,10,0]]
|
| | | 1703 0 7 [] 10 [[3,10,0]]
|
| | | 1704 0 3 [] 10 [[3,10,0]]
|
| | | 1705 0 8 [42] 1000 [[3,10,0]]
|
| | | 1706 0 1 [1605] 1 [[3,10,0]]
|
| | | 1707 0 4 [41] 35 [[3,10,0]]
|
| | | 1708 0 7 [] 10 [[3,10,0]]
|
| | | 1709 0 3 [] 10 [[3,10,0]]
|
| | | 1710 0 8 [42] 1000 [[3,10,0]]
|
| | | 1711 0 1 [1606] 1 [[3,10,0]]
|
| | | 1712 0 4 [41] 35 [[3,10,0]]
|
| | | 1713 0 7 [] 10 [[3,10,0]]
|
| | | 1714 0 3 [] 10 [[3,10,0]]
|
| | | 1715 0 8 [42] 1000 [[3,10,0]]
|
| | | 1716 0 1 [1607] 1 [[3,10,0]]
|
| | | 1717 0 4 [41] 35 [[3,10,0]]
|
| | | 1718 0 7 [] 10 [[3,10,0]]
|
| | | 1719 0 3 [] 10 [[3,10,0]]
|
| | | 1720 0 8 [42] 1000 [[3,10,0]]
|
| | | 1721 0 1 [1608] 1 [[3,10,0]]
|
| | | 1722 0 4 [41] 35 [[3,10,0]]
|
| | | 1723 0 7 [] 10 [[3,10,0]]
|
| | | 1724 0 3 [] 10 [[3,10,0]]
|
| | | 1725 0 8 [42] 1000 [[3,10,0]]
|
| | | 1726 0 1 [1609] 1 [[3,10,0]]
|
| | | 1727 0 4 [41] 35 [[3,10,0]]
|
| | | 1728 0 7 [] 10 [[3,10,0]]
|
| | | 1729 0 3 [] 10 [[3,10,0]]
|
| | | 1730 0 8 [42] 1000 [[3,10,0]]
|
| | | 1731 0 1 [1610] 1 [[3,10,0]]
|
| | | 1732 0 4 [41] 35 [[3,10,0]]
|
| | | 1733 0 7 [] 10 [[3,10,0]]
|
| | | 1734 0 3 [] 10 [[3,10,0]]
|
| | | 1735 0 8 [42] 1000 [[3,10,0]]
|
| | | 1736 0 1 [1701] 1 [[3,10,0]]
|
| | | 1737 0 4 [41] 35 [[3,10,0]]
|
| | | 1738 0 7 [] 10 [[3,10,0]]
|
| | | 1739 0 3 [] 10 [[3,10,0]]
|
| | | 1740 0 8 [42] 1000 [[3,10,0]]
|
| | | 1741 0 1 [1702] 1 [[3,10,0]]
|
| | | 1742 0 4 [41] 35 [[3,10,0]]
|
| | | 1743 0 7 [] 10 [[3,10,0]]
|
| | | 1744 0 3 [] 10 [[3,10,0]]
|
| | | 1745 0 8 [42] 1000 [[3,10,0]]
|
| | | 1746 0 1 [1703] 1 [[3,10,0]]
|
| | | 1747 0 4 [41] 35 [[3,10,0]]
|
| | | 1748 0 7 [] 10 [[3,10,0]]
|
| | | 1749 0 3 [] 10 [[3,10,0]]
|
| | | 1750 0 8 [42] 1000 [[3,10,0]]
|
| | | 1751 0 1 [1704] 1 [[3,10,0]]
|
| | | 1752 0 4 [41] 35 [[3,10,0]]
|
| | | 1753 0 7 [] 10 [[3,10,0]]
|
| | | 1754 0 3 [] 10 [[3,10,0]]
|
| | | 1755 0 8 [42] 1000 [[3,10,0]]
|
| | | 1756 0 1 [1705] 1 [[3,10,0]]
|
| | | 1757 0 4 [41] 35 [[3,10,0]]
|
| | | 1758 0 7 [] 10 [[3,10,0]]
|
| | | 1759 0 3 [] 10 [[3,10,0]]
|
| | | 1760 0 8 [42] 1000 [[3,10,0]]
|
| | | 1761 0 1 [1706] 1 [[3,10,0]]
|
| | | 1762 0 4 [41] 35 [[3,10,0]]
|
| | | 1763 0 7 [] 10 [[3,10,0]]
|
| | | 1764 0 3 [] 10 [[3,10,0]]
|
| | | 1765 0 8 [42] 1000 [[3,10,0]]
|
| | | 1766 0 1 [1707] 1 [[3,10,0]]
|
| | | 1767 0 4 [41] 35 [[3,10,0]]
|
| | | 1768 0 7 [] 10 [[3,10,0]]
|
| | | 1769 0 3 [] 10 [[3,10,0]]
|
| | | 1770 0 8 [42] 1000 [[3,10,0]]
|
| | | 1771 0 1 [1708] 1 [[3,10,0]]
|
| | | 1772 0 4 [41] 35 [[3,10,0]]
|
| | | 1773 0 7 [] 10 [[3,10,0]]
|
| | | 1774 0 3 [] 10 [[3,10,0]]
|
| | | 1775 0 8 [42] 1000 [[3,10,0]]
|
| | | 1776 0 1 [1709] 1 [[3,10,0]]
|
| | | 1777 0 4 [41] 35 [[3,10,0]]
|
| | | 1778 0 7 [] 10 [[3,10,0]]
|
| | | 1779 0 3 [] 10 [[3,10,0]]
|
| | | 1780 0 8 [42] 1000 [[3,10,0]]
|
| | | 1781 0 1 [1710] 1 [[3,10,0]]
|
| | | 1782 0 4 [41] 35 [[3,10,0]]
|
| | | 1783 0 7 [] 10 [[3,10,0]]
|
| | | 1784 0 3 [] 10 [[3,10,0]]
|
| | | 1785 0 8 [42] 1000 [[3,10,0]]
|
| | | 1786 0 1 [1801] 1 [[3,10,0]]
|
| | | 1787 0 4 [41] 35 [[3,10,0]]
|
| | | 1788 0 7 [] 10 [[3,10,0]]
|
| | | 1789 0 3 [] 10 [[3,10,0]]
|
| | | 1790 0 8 [42] 1000 [[3,10,0]]
|
| | | 1791 0 1 [1802] 1 [[3,10,0]]
|
| | | 1792 0 4 [41] 35 [[3,10,0]]
|
| | | 1793 0 7 [] 10 [[3,10,0]]
|
| | | 1794 0 3 [] 10 [[3,10,0]]
|
| | | 1795 0 8 [42] 1000 [[3,10,0]]
|
| | | 1796 0 1 [1803] 1 [[3,10,0]]
|
| | | 1797 0 4 [41] 35 [[3,10,0]]
|
| | | 1798 0 7 [] 10 [[3,10,0]]
|
| | | 1799 0 3 [] 10 [[3,10,0]]
|
| | | 1800 0 8 [42] 1000 [[3,10,0]]
|
| | | 1801 0 1 [1804] 1 [[3,10,0]]
|
| | | 1802 0 4 [41] 35 [[3,10,0]]
|
| | | 1803 0 7 [] 10 [[3,10,0]]
|
| | | 1804 0 3 [] 10 [[3,10,0]]
|
| | | 1805 0 8 [42] 1000 [[3,10,0]]
|
| | | 1806 0 1 [1805] 1 [[3,10,0]]
|
| | | 1807 0 4 [41] 35 [[3,10,0]]
|
| | | 1808 0 7 [] 10 [[3,10,0]]
|
| | | 1809 0 3 [] 10 [[3,10,0]]
|
| | | 1810 0 8 [42] 1000 [[3,10,0]]
|
| | | 1811 0 1 [1806] 1 [[3,10,0]]
|
| | | 1812 0 4 [41] 35 [[3,10,0]]
|
| | | 1813 0 7 [] 10 [[3,10,0]]
|
| | | 1814 0 3 [] 10 [[3,10,0]]
|
| | | 1815 0 8 [42] 1000 [[3,10,0]]
|
| | | 1816 0 1 [1807] 1 [[3,10,0]]
|
| | | 1817 0 4 [41] 35 [[3,10,0]]
|
| | | 1818 0 7 [] 10 [[3,10,0]]
|
| | | 1819 0 3 [] 10 [[3,10,0]]
|
| | | 1820 0 8 [42] 1000 [[3,10,0]]
|
| | | 1821 0 1 [1808] 1 [[3,10,0]]
|
| | | 1822 0 4 [41] 35 [[3,10,0]]
|
| | | 1823 0 7 [] 10 [[3,10,0]]
|
| | | 1824 0 3 [] 10 [[3,10,0]]
|
| | | 1825 0 8 [42] 1000 [[3,10,0]]
|
| | | 1826 0 1 [1809] 1 [[3,10,0]]
|
| | | 1827 0 4 [41] 35 [[3,10,0]]
|
| | | 1828 0 7 [] 10 [[3,10,0]]
|
| | | 1829 0 3 [] 10 [[3,10,0]]
|
| | | 1830 0 8 [42] 1000 [[3,10,0]]
|
| | | 1831 0 1 [1810] 1 [[3,10,0]]
|
| | | 1832 0 4 [41] 35 [[3,10,0]]
|
| | | 1833 0 7 [] 10 [[3,10,0]]
|
| | | 1834 0 3 [] 10 [[3,10,0]]
|
| | | 1835 0 8 [42] 1000 [[3,10,0]]
|
| | | 1836 0 1 [1901] 1 [[3,10,0]]
|
| | | 1837 0 4 [41] 35 [[3,10,0]]
|
| | | 1838 0 7 [] 10 [[3,10,0]]
|
| | | 1839 0 3 [] 10 [[3,10,0]]
|
| | | 1840 0 8 [42] 1000 [[3,10,0]]
|
| | | 1841 0 1 [1902] 1 [[3,10,0]]
|
| | | 1842 0 4 [41] 35 [[3,10,0]]
|
| | | 1843 0 7 [] 10 [[3,10,0]]
|
| | | 1844 0 3 [] 10 [[3,10,0]]
|
| | | 1845 0 8 [42] 1000 [[3,10,0]]
|
| | | 1846 0 1 [1903] 1 [[3,10,0]]
|
| | | 1847 0 4 [41] 35 [[3,10,0]]
|
| | | 1848 0 7 [] 10 [[3,10,0]]
|
| | | 1849 0 3 [] 10 [[3,10,0]]
|
| | | 1850 0 8 [42] 1000 [[3,10,0]]
|
| | | 1851 0 1 [1904] 1 [[3,10,0]]
|
| | | 1852 0 4 [41] 35 [[3,10,0]]
|
| | | 1853 0 7 [] 10 [[3,10,0]]
|
| | | 1854 0 3 [] 10 [[3,10,0]]
|
| | | 1855 0 8 [42] 1000 [[3,10,0]]
|
| | | 1856 0 1 [1905] 1 [[3,10,0]]
|
| | | 1857 0 4 [41] 35 [[3,10,0]]
|
| | | 1858 0 7 [] 10 [[3,10,0]]
|
| | | 1859 0 3 [] 10 [[3,10,0]]
|
| | | 1860 0 8 [42] 1000 [[3,10,0]]
|
| | | 1861 0 1 [1906] 1 [[3,10,0]]
|
| | | 1862 0 4 [41] 35 [[3,10,0]]
|
| | | 1863 0 7 [] 10 [[3,10,0]]
|
| | | 1864 0 3 [] 10 [[3,10,0]]
|
| | | 1865 0 8 [42] 1000 [[3,10,0]]
|
| | | 1866 0 1 [1907] 1 [[3,10,0]]
|
| | | 1867 0 4 [41] 35 [[3,10,0]]
|
| | | 1868 0 7 [] 10 [[3,10,0]]
|
| | | 1869 0 3 [] 10 [[3,10,0]]
|
| | | 1870 0 8 [42] 1000 [[3,10,0]]
|
| | | 1871 0 1 [1908] 1 [[3,10,0]]
|
| | | 1872 0 4 [41] 35 [[3,10,0]]
|
| | | 1873 0 7 [] 10 [[3,10,0]]
|
| | | 1874 0 3 [] 10 [[3,10,0]]
|
| | | 1875 0 8 [42] 1000 [[3,10,0]]
|
| | | 1876 0 1 [1909] 1 [[3,10,0]]
|
| | | 1877 0 4 [41] 35 [[3,10,0]]
|
| | | 1878 0 7 [] 10 [[3,10,0]]
|
| | | 1879 0 3 [] 10 [[3,10,0]]
|
| | | 1880 0 8 [42] 1000 [[3,10,0]]
|
| | | 1881 0 1 [1910] 1 [[3,10,0]]
|
| | | 1882 0 4 [41] 35 [[3,10,0]]
|
| | | 1883 0 7 [] 10 [[3,10,0]]
|
| | | 1884 0 3 [] 10 [[3,10,0]]
|
| | | 1885 0 8 [42] 1000 [[3,10,0]]
|
| | | 1886 0 1 [2001] 1 [[3,10,0]]
|
| | | 1887 0 4 [41] 35 [[3,10,0]]
|
| | | 1888 0 7 [] 10 [[3,10,0]]
|
| | | 1889 0 3 [] 10 [[3,10,0]]
|
| | | 1890 0 8 [42] 1000 [[3,10,0]]
|
| | | 1891 0 1 [2002] 1 [[3,10,0]]
|
| | | 1892 0 4 [41] 35 [[3,10,0]]
|
| | | 1893 0 7 [] 10 [[3,10,0]]
|
| | | 1894 0 3 [] 10 [[3,10,0]]
|
| | | 1895 0 8 [42] 1000 [[3,10,0]]
|
| | | 1896 0 1 [2003] 1 [[3,10,0]]
|
| | | 1897 0 4 [41] 35 [[3,10,0]]
|
| | | 1898 0 7 [] 10 [[3,10,0]]
|
| | | 1899 0 3 [] 10 [[3,10,0]]
|
| | | 1900 0 8 [42] 1000 [[3,10,0]]
|
| | | 1901 0 1 [2004] 1 [[3,10,0]]
|
| | | 1902 0 4 [41] 35 [[3,10,0]]
|
| | | 1903 0 7 [] 10 [[3,10,0]]
|
| | | 1904 0 3 [] 10 [[3,10,0]]
|
| | | 1905 0 8 [42] 1000 [[3,10,0]]
|
| | | 1906 0 1 [2005] 1 [[3,10,0]]
|
| | | 1907 0 4 [41] 35 [[3,10,0]]
|
| | | 1908 0 7 [] 10 [[3,10,0]]
|
| | | 1909 0 3 [] 10 [[3,10,0]]
|
| | | 1910 0 8 [42] 1000 [[3,10,0]]
|
| | | 1911 0 1 [2006] 1 [[3,10,0]]
|
| | | 1912 0 4 [41] 35 [[3,10,0]]
|
| | | 1913 0 7 [] 10 [[3,10,0]]
|
| | | 1914 0 3 [] 10 [[3,10,0]]
|
| | | 1915 0 8 [42] 1000 [[3,10,0]]
|
| | | 1916 0 1 [2007] 1 [[3,10,0]]
|
| | | 1917 0 4 [41] 35 [[3,10,0]]
|
| | | 1918 0 7 [] 10 [[3,10,0]]
|
| | | 1919 0 3 [] 10 [[3,10,0]]
|
| | | 1920 0 8 [42] 1000 [[3,10,0]]
|
| | | 1921 0 1 [2008] 1 [[3,10,0]]
|
| | | 1922 0 4 [41] 35 [[3,10,0]]
|
| | | 1923 0 7 [] 10 [[3,10,0]]
|
| | | 1924 0 3 [] 10 [[3,10,0]]
|
| | | 1925 0 8 [42] 1000 [[3,10,0]]
|
| | | 1926 0 1 [2009] 1 [[3,10,0]]
|
| | | 1927 0 4 [41] 35 [[3,10,0]]
|
| | | 1928 0 7 [] 10 [[3,10,0]]
|
| | | 1929 0 3 [] 10 [[3,10,0]]
|
| | | 1930 0 8 [42] 1000 [[3,10,0]]
|
| | | 1931 0 1 [2010] 1 [[3,10,0]]
|
| | | 1932 0 4 [41] 35 [[3,10,0]]
|
| | | 1933 0 7 [] 10 [[3,10,0]]
|
| | | 1934 0 3 [] 10 [[3,10,0]]
|
| | | 1935 0 8 [42] 1000 [[3,10,0]]
|
| | | 1936 0 1 [2101] 1 [[3,10,0]]
|
| | | 1937 0 4 [41] 35 [[3,10,0]]
|
| | | 1938 0 7 [] 10 [[3,10,0]]
|
| | | 1939 0 3 [] 10 [[3,10,0]]
|
| | | 1940 0 8 [42] 1000 [[3,10,0]]
|
| | | 1941 0 1 [2102] 1 [[3,10,0]]
|
| | | 1942 0 4 [41] 35 [[3,10,0]]
|
| | | 1943 0 7 [] 10 [[3,10,0]]
|
| | | 1944 0 3 [] 10 [[3,10,0]]
|
| | | 1945 0 8 [42] 1000 [[3,10,0]]
|
| | | 1946 0 1 [2103] 1 [[3,10,0]]
|
| | | 1947 0 4 [41] 35 [[3,10,0]]
|
| | | 1948 0 7 [] 10 [[3,10,0]]
|
| | | 1949 0 3 [] 10 [[3,10,0]]
|
| | | 1950 0 8 [42] 1000 [[3,10,0]]
|
| | | 1951 0 1 [2104] 1 [[3,10,0]]
|
| | | 1952 0 4 [41] 35 [[3,10,0]]
|
| | | 1953 0 7 [] 10 [[3,10,0]]
|
| | | 1954 0 3 [] 10 [[3,10,0]]
|
| | | 1955 0 8 [42] 1000 [[3,10,0]]
|
| | | 1956 0 1 [2105] 1 [[3,10,0]]
|
| | | 1957 0 4 [41] 35 [[3,10,0]]
|
| | | 1958 0 7 [] 10 [[3,10,0]]
|
| | | 1959 0 3 [] 10 [[3,10,0]]
|
| | | 1960 0 8 [42] 1000 [[3,10,0]]
|
| | | 1961 0 1 [2106] 1 [[3,10,0]]
|
| | | 1962 0 4 [41] 35 [[3,10,0]]
|
| | | 1963 0 7 [] 10 [[3,10,0]]
|
| | | 1964 0 3 [] 10 [[3,10,0]]
|
| | | 1965 0 8 [42] 1000 [[3,10,0]]
|
| | | 1966 0 1 [2107] 1 [[3,10,0]]
|
| | | 1967 0 4 [41] 35 [[3,10,0]]
|
| | | 1968 0 7 [] 10 [[3,10,0]]
|
| | | 1969 0 3 [] 10 [[3,10,0]]
|
| | | 1970 0 8 [42] 1000 [[3,10,0]]
|
| | | 1971 0 1 [2108] 1 [[3,10,0]]
|
| | | 1972 0 4 [41] 35 [[3,10,0]]
|
| | | 1973 0 7 [] 10 [[3,10,0]]
|
| | | 1974 0 3 [] 10 [[3,10,0]]
|
| | | 1975 0 8 [42] 1000 [[3,10,0]]
|
| | | 1976 0 1 [2109] 1 [[3,10,0]]
|
| | | 1977 0 4 [41] 35 [[3,10,0]]
|
| | | 1978 0 7 [] 10 [[3,10,0]]
|
| | | 1979 0 3 [] 10 [[3,10,0]]
|
| | | 1980 0 8 [42] 1000 [[3,10,0]]
|
| | | 1981 0 1 [2110] 1 [[3,10,0]]
|
| | | 1982 0 4 [41] 35 [[3,10,0]]
|
| | | 1983 0 7 [] 10 [[3,10,0]]
|
| | | 1984 0 3 [] 10 [[3,10,0]]
|
| | | 1985 0 8 [42] 1000 [[3,10,0]]
|
| | | 1986 0 1 [2201] 1 [[3,10,0]]
|
| | | 1987 0 4 [41] 35 [[3,10,0]]
|
| | | 1988 0 7 [] 10 [[3,10,0]]
|
| | | 1989 0 3 [] 10 [[3,10,0]]
|
| | | 1990 0 8 [42] 1000 [[3,10,0]]
|
| | | 1991 0 1 [2202] 1 [[3,10,0]]
|
| | | 1992 0 4 [41] 35 [[3,10,0]]
|
| | | 1993 0 7 [] 10 [[3,10,0]]
|
| | | 1994 0 3 [] 10 [[3,10,0]]
|
| | | 1995 0 8 [42] 1000 [[3,10,0]]
|
| | | 1996 0 1 [2203] 1 [[3,10,0]]
|
| | | 1997 0 4 [41] 35 [[3,10,0]]
|
| | | 1998 0 7 [] 10 [[3,10,0]]
|
| | | 1999 0 3 [] 10 [[3,10,0]]
|
| | | 2000 0 8 [42] 1000 [[3,10,0]]
|
| | | 2001 0 1 [2204] 1 [[3,10,0]]
|
| | | 2002 0 4 [41] 35 [[3,10,0]]
|
| | | 2003 0 7 [] 10 [[3,10,0]]
|
| | | 2004 0 3 [] 10 [[3,10,0]]
|
| | | 2005 0 8 [42] 1000 [[3,10,0]]
|
| | | 2006 0 1 [2205] 1 [[3,10,0]]
|
| | | 2007 0 4 [41] 35 [[3,10,0]]
|
| | | 2008 0 7 [] 10 [[3,10,0]]
|
| | | 2009 0 3 [] 10 [[3,10,0]]
|
| | | 2010 0 8 [42] 1000 [[3,10,0]]
|
| | | 2011 0 1 [2206] 1 [[3,10,0]]
|
| | | 2012 0 4 [41] 35 [[3,10,0]]
|
| | | 2013 0 7 [] 10 [[3,10,0]]
|
| | | 2014 0 3 [] 10 [[3,10,0]]
|
| | | 2015 0 8 [42] 1000 [[3,10,0]]
|
| | | 2016 0 1 [2207] 1 [[3,10,0]]
|
| | | 2017 0 4 [41] 35 [[3,10,0]]
|
| | | 2018 0 7 [] 10 [[3,10,0]]
|
| | | 2019 0 3 [] 10 [[3,10,0]]
|
| | | 2020 0 8 [42] 1000 [[3,10,0]]
|
| | | 2021 0 1 [2208] 1 [[3,10,0]]
|
| | | 2022 0 4 [41] 35 [[3,10,0]]
|
| | | 2023 0 7 [] 10 [[3,10,0]]
|
| | | 2024 0 3 [] 10 [[3,10,0]]
|
| | | 2025 0 8 [42] 1000 [[3,10,0]]
|
| | | 2026 0 1 [2209] 1 [[3,10,0]]
|
| | | 2027 0 4 [41] 35 [[3,10,0]]
|
| | | 2028 0 7 [] 10 [[3,10,0]]
|
| | | 2029 0 3 [] 10 [[3,10,0]]
|
| | | 2030 0 8 [42] 1000 [[3,10,0]]
|
| | | 2031 0 1 [2210] 1 [[3,10,0]]
|
| | | 2032 0 4 [41] 35 [[3,10,0]]
|
| | | 2033 0 7 [] 10 [[3,10,0]]
|
| | | 2034 0 3 [] 10 [[3,10,0]]
|
| | | 2035 0 8 [42] 1000 [[3,10,0]]
|
| | | 2036 0 1 [2301] 1 [[3,10,0]]
|
| | | 2037 0 4 [41] 35 [[3,10,0]]
|
| | | 2038 0 7 [] 10 [[3,10,0]]
|
| | | 2039 0 3 [] 10 [[3,10,0]]
|
| | | 2040 0 8 [42] 1000 [[3,10,0]]
|
| | | 2041 0 1 [2302] 1 [[3,10,0]]
|
| | | 2042 0 4 [41] 35 [[3,10,0]]
|
| | | 2043 0 7 [] 10 [[3,10,0]]
|
| | | 2044 0 3 [] 10 [[3,10,0]]
|
| | | 2045 0 8 [42] 1000 [[3,10,0]]
|
| | | 2046 0 1 [2303] 1 [[3,10,0]]
|
| | | 2047 0 4 [41] 35 [[3,10,0]]
|
| | | 2048 0 7 [] 10 [[3,10,0]]
|
| | | 2049 0 3 [] 10 [[3,10,0]]
|
| | | 2050 0 8 [42] 1000 [[3,10,0]]
|
| | | 2051 0 1 [2304] 1 [[3,10,0]]
|
| | | 2052 0 4 [41] 35 [[3,10,0]]
|
| | | 2053 0 7 [] 10 [[3,10,0]]
|
| | | 2054 0 3 [] 10 [[3,10,0]]
|
| | | 2055 0 8 [42] 1000 [[3,10,0]]
|
| | | 2056 0 1 [2305] 1 [[3,10,0]]
|
| | | 2057 0 4 [41] 35 [[3,10,0]]
|
| | | 2058 0 7 [] 10 [[3,10,0]]
|
| | | 2059 0 3 [] 10 [[3,10,0]]
|
| | | 2060 0 8 [42] 1000 [[3,10,0]]
|
| | | 2061 0 1 [2306] 1 [[3,10,0]]
|
| | | 2062 0 4 [41] 35 [[3,10,0]]
|
| | | 2063 0 7 [] 10 [[3,10,0]]
|
| | | 2064 0 3 [] 10 [[3,10,0]]
|
| | | 2065 0 8 [42] 1000 [[3,10,0]]
|
| | | 2066 0 1 [2307] 1 [[3,10,0]]
|
| | | 2067 0 4 [41] 35 [[3,10,0]]
|
| | | 2068 0 7 [] 10 [[3,10,0]]
|
| | | 2069 0 3 [] 10 [[3,10,0]]
|
| | | 2070 0 8 [42] 1000 [[3,10,0]]
|
| | | 2071 0 1 [2308] 1 [[3,10,0]]
|
| | | 2072 0 4 [41] 35 [[3,10,0]]
|
| | | 2073 0 7 [] 10 [[3,10,0]]
|
| | | 2074 0 3 [] 10 [[3,10,0]]
|
| | | 2075 0 8 [42] 1000 [[3,10,0]]
|
| | | 2076 0 1 [2309] 1 [[3,10,0]]
|
| | | 2077 0 4 [41] 35 [[3,10,0]]
|
| | | 2078 0 7 [] 10 [[3,10,0]]
|
| | | 2079 0 3 [] 10 [[3,10,0]]
|
| | | 2080 0 8 [42] 1000 [[3,10,0]]
|
| | | 2081 0 1 [2310] 1 [[3,10,0]]
|
| | | 2082 0 4 [41] 35 [[3,10,0]]
|
| | | 2083 0 7 [] 10 [[3,10,0]]
|
| | | 2084 0 3 [] 10 [[3,10,0]]
|
| | | 2085 0 8 [42] 1000 [[3,10,0]]
|
| | | 2086 0 1 [2401] 1 [[3,10,0]]
|
| | | 2087 0 4 [41] 35 [[3,10,0]]
|
| | | 2088 0 7 [] 10 [[3,10,0]]
|
| | | 2089 0 3 [] 10 [[3,10,0]]
|
| | | 2090 0 8 [42] 1000 [[3,10,0]]
|
| | | 2091 0 1 [2402] 1 [[3,10,0]]
|
| | | 2092 0 4 [41] 35 [[3,10,0]]
|
| | | 2093 0 7 [] 10 [[3,10,0]]
|
| | | 2094 0 3 [] 10 [[3,10,0]]
|
| | | 2095 0 8 [42] 1000 [[3,10,0]]
|
| | | 2096 0 1 [2403] 1 [[3,10,0]]
|
| | | 2097 0 4 [41] 35 [[3,10,0]]
|
| | | 2098 0 7 [] 10 [[3,10,0]]
|
| | | 2099 0 3 [] 10 [[3,10,0]]
|
| | | 2100 0 8 [42] 1000 [[3,10,0]]
|
| | | 2101 0 1 [2404] 1 [[3,10,0]]
|
| | | 2102 0 4 [41] 35 [[3,10,0]]
|
| | | 2103 0 7 [] 10 [[3,10,0]]
|
| | | 2104 0 3 [] 10 [[3,10,0]]
|
| | | 2105 0 8 [42] 1000 [[3,10,0]]
|
| | | 2106 0 1 [2405] 1 [[3,10,0]]
|
| | | 2107 0 4 [41] 35 [[3,10,0]]
|
| | | 2108 0 7 [] 10 [[3,10,0]]
|
| | | 2109 0 3 [] 10 [[3,10,0]]
|
| | | 2110 0 8 [42] 1000 [[3,10,0]]
|
| | | 2111 0 1 [2406] 1 [[3,10,0]]
|
| | | 2112 0 4 [41] 35 [[3,10,0]]
|
| | | 2113 0 7 [] 10 [[3,10,0]]
|
| | | 2114 0 3 [] 10 [[3,10,0]]
|
| | | 2115 0 8 [42] 1000 [[3,10,0]]
|
| | | 2116 0 1 [2407] 1 [[3,10,0]]
|
| | | 2117 0 4 [41] 35 [[3,10,0]]
|
| | | 2118 0 7 [] 10 [[3,10,0]]
|
| | | 2119 0 3 [] 10 [[3,10,0]]
|
| | | 2120 0 8 [42] 1000 [[3,10,0]]
|
| | | 2121 0 1 [2408] 1 [[3,10,0]]
|
| | | 2122 0 4 [41] 35 [[3,10,0]]
|
| | | 2123 0 7 [] 10 [[3,10,0]]
|
| | | 2124 0 3 [] 10 [[3,10,0]]
|
| | | 2125 0 8 [42] 1000 [[3,10,0]]
|
| | | 2126 0 1 [2409] 1 [[3,10,0]]
|
| | | 2127 0 4 [41] 35 [[3,10,0]]
|
| | | 2128 0 7 [] 10 [[3,10,0]]
|
| | | 2129 0 3 [] 10 [[3,10,0]]
|
| | | 2130 0 8 [42] 1000 [[3,10,0]]
|
| | | 2131 0 1 [2410] 1 [[3,10,0]]
|
| | | 2132 0 4 [41] 35 [[3,10,0]]
|
| | | 2133 0 7 [] 10 [[3,10,0]]
|
| | | 2134 0 3 [] 10 [[3,10,0]]
|
| | | 2135 0 8 [42] 1000 [[3,10,0]]
|
| | | 2136 0 1 [2501] 1 [[3,10,0]]
|
| | | 2137 0 4 [41] 35 [[3,10,0]]
|
| | | 2138 0 7 [] 10 [[3,10,0]]
|
| | | 2139 0 3 [] 10 [[3,10,0]]
|
| | | 2140 0 8 [42] 1000 [[3,10,0]]
|
| | | 2141 0 1 [2502] 1 [[3,10,0]]
|
| | | 2142 0 4 [41] 35 [[3,10,0]]
|
| | | 2143 0 7 [] 10 [[3,10,0]]
|
| | | 2144 0 3 [] 10 [[3,10,0]]
|
| | | 2145 0 8 [42] 1000 [[3,10,0]]
|
| | | 2146 0 1 [2503] 1 [[3,10,0]]
|
| | | 2147 0 4 [41] 35 [[3,10,0]]
|
| | | 2148 0 7 [] 10 [[3,10,0]]
|
| | | 2149 0 3 [] 10 [[3,10,0]]
|
| | | 2150 0 8 [42] 1000 [[3,10,0]]
|
| | | 2151 0 1 [2504] 1 [[3,10,0]]
|
| | | 2152 0 4 [41] 35 [[3,10,0]]
|
| | | 2153 0 7 [] 10 [[3,10,0]]
|
| | | 2154 0 3 [] 10 [[3,10,0]]
|
| | | 2155 0 8 [42] 1000 [[3,10,0]]
|
| | | 2156 0 1 [2505] 1 [[3,10,0]]
|
| | | 2157 0 4 [41] 35 [[3,10,0]]
|
| | | 2158 0 7 [] 10 [[3,10,0]]
|
| | | 2159 0 3 [] 10 [[3,10,0]]
|
| | | 2160 0 8 [42] 1000 [[3,10,0]]
|
| | | 2161 0 1 [2506] 1 [[3,10,0]]
|
| | | 2162 0 4 [41] 35 [[3,10,0]]
|
| | | 2163 0 7 [] 10 [[3,10,0]]
|
| | | 2164 0 3 [] 10 [[3,10,0]]
|
| | | 2165 0 8 [42] 1000 [[3,10,0]]
|
| | | 2166 0 1 [2507] 1 [[3,10,0]]
|
| | | 2167 0 4 [41] 35 [[3,10,0]]
|
| | | 2168 0 7 [] 10 [[3,10,0]]
|
| | | 2169 0 3 [] 10 [[3,10,0]]
|
| | | 2170 0 8 [42] 1000 [[3,10,0]]
|
| | | 2171 0 1 [2508] 1 [[3,10,0]]
|
| | | 2172 0 4 [41] 35 [[3,10,0]]
|
| | | 2173 0 7 [] 10 [[3,10,0]]
|
| | | 2174 0 3 [] 10 [[3,10,0]]
|
| | | 2175 0 8 [42] 1000 [[3,10,0]]
|
| | | 2176 0 1 [2509] 1 [[3,10,0]]
|
| | | 2177 0 4 [41] 35 [[3,10,0]]
|
| | | 2178 0 7 [] 10 [[3,10,0]]
|
| | | 2179 0 3 [] 10 [[3,10,0]]
|
| | | 2180 0 8 [42] 1000 [[3,10,0]]
|
| | | 2181 0 1 [2510] 1 [[3,10,0]]
|
| | | 2182 0 4 [41] 35 [[3,10,0]]
|
| | | 2183 0 7 [] 10 [[3,10,0]]
|
| | | 2184 0 3 [] 10 [[3,10,0]]
|
| | | 2185 0 8 [42] 1000 [[3,10,0]]
|
| | | 2186 0 1 [2601] 1 [[3,10,0]]
|
| | | 2187 0 4 [41] 35 [[3,10,0]]
|
| | | 2188 0 7 [] 10 [[3,10,0]]
|
| | | 2189 0 3 [] 10 [[3,10,0]]
|
| | | 2190 0 8 [42] 1000 [[3,10,0]]
|
| | | 2191 0 1 [2602] 1 [[3,10,0]]
|
| | | 2192 0 4 [41] 35 [[3,10,0]]
|
| | | 2193 0 7 [] 10 [[3,10,0]]
|
| | | 2194 0 3 [] 10 [[3,10,0]]
|
| | | 2195 0 8 [42] 1000 [[3,10,0]]
|
| | | 2196 0 1 [2603] 1 [[3,10,0]]
|
| | | 2197 0 4 [41] 35 [[3,10,0]]
|
| | | 2198 0 7 [] 10 [[3,10,0]]
|
| | | 2199 0 3 [] 10 [[3,10,0]]
|
| | | 2200 0 8 [42] 1000 [[3,10,0]]
|
| | | 2201 0 1 [2604] 1 [[3,10,0]]
|
| | | 2202 0 4 [41] 35 [[3,10,0]]
|
| | | 2203 0 7 [] 10 [[3,10,0]]
|
| | | 2204 0 3 [] 10 [[3,10,0]]
|
| | | 2205 0 8 [42] 1000 [[3,10,0]]
|
| | | 2206 0 1 [2605] 1 [[3,10,0]]
|
| | | 2207 0 4 [41] 35 [[3,10,0]]
|
| | | 2208 0 7 [] 10 [[3,10,0]]
|
| | | 2209 0 3 [] 10 [[3,10,0]]
|
| | | 2210 0 8 [42] 1000 [[3,10,0]]
|
| | | 2211 0 1 [2606] 1 [[3,10,0]]
|
| | | 2212 0 4 [41] 35 [[3,10,0]]
|
| | | 2213 0 7 [] 10 [[3,10,0]]
|
| | | 2214 0 3 [] 10 [[3,10,0]]
|
| | | 2215 0 8 [42] 1000 [[3,10,0]]
|
| | | 2216 0 1 [2607] 1 [[3,10,0]]
|
| | | 2217 0 4 [41] 35 [[3,10,0]]
|
| | | 2218 0 7 [] 10 [[3,10,0]]
|
| | | 2219 0 3 [] 10 [[3,10,0]]
|
| | | 2220 0 8 [42] 1000 [[3,10,0]]
|
| | | 2221 0 1 [2608] 1 [[3,10,0]]
|
| | | 2222 0 4 [41] 35 [[3,10,0]]
|
| | | 2223 0 7 [] 10 [[3,10,0]]
|
| | | 2224 0 3 [] 10 [[3,10,0]]
|
| | | 2225 0 8 [42] 1000 [[3,10,0]]
|
| | | 2226 0 1 [2609] 1 [[3,10,0]]
|
| | | 2227 0 4 [41] 35 [[3,10,0]]
|
| | | 2228 0 7 [] 10 [[3,10,0]]
|
| | | 2229 0 3 [] 10 [[3,10,0]]
|
| | | 2230 0 8 [42] 1000 [[3,10,0]]
|
| | | 2231 0 1 [2610] 1 [[3,10,0]]
|
| | | 2232 0 4 [41] 35 [[3,10,0]]
|
| | | 2233 0 7 [] 10 [[3,10,0]]
|
| | | 2234 0 3 [] 10 [[3,10,0]]
|
| | | 2235 0 8 [42] 1000 [[3,10,0]]
|
| | | 2236 0 1 [2701] 1 [[3,10,0]]
|
| | | 2237 0 4 [41] 35 [[3,10,0]]
|
| | | 2238 0 7 [] 10 [[3,10,0]]
|
| | | 2239 0 3 [] 10 [[3,10,0]]
|
| | | 2240 0 8 [42] 1000 [[3,10,0]]
|
| | | 2241 0 1 [2702] 1 [[3,10,0]]
|
| | | 2242 0 4 [41] 35 [[3,10,0]]
|
| | | 2243 0 7 [] 10 [[3,10,0]]
|
| | | 2244 0 3 [] 10 [[3,10,0]]
|
| | | 2245 0 8 [42] 1000 [[3,10,0]]
|
| | | 2246 0 1 [2703] 1 [[3,10,0]]
|
| | | 2247 0 4 [41] 35 [[3,10,0]]
|
| | | 2248 0 7 [] 10 [[3,10,0]]
|
| | | 2249 0 3 [] 10 [[3,10,0]]
|
| | | 2250 0 8 [42] 1000 [[3,10,0]]
|
| | | 2251 0 1 [2704] 1 [[3,10,0]]
|
| | | 2252 0 4 [41] 35 [[3,10,0]]
|
| | | 2253 0 7 [] 10 [[3,10,0]]
|
| | | 2254 0 3 [] 10 [[3,10,0]]
|
| | | 2255 0 8 [42] 1000 [[3,10,0]]
|
| | | 2256 0 1 [2705] 1 [[3,10,0]]
|
| | | 2257 0 4 [41] 35 [[3,10,0]]
|
| | | 2258 0 7 [] 10 [[3,10,0]]
|
| | | 2259 0 3 [] 10 [[3,10,0]]
|
| | | 2260 0 8 [42] 1000 [[3,10,0]]
|
| | | 2261 0 1 [2706] 1 [[3,10,0]]
|
| | | 2262 0 4 [41] 35 [[3,10,0]]
|
| | | 2263 0 7 [] 10 [[3,10,0]]
|
| | | 2264 0 3 [] 10 [[3,10,0]]
|
| | | 2265 0 8 [42] 1000 [[3,10,0]]
|
| | | 2266 0 1 [2707] 1 [[3,10,0]]
|
| | | 2267 0 4 [41] 35 [[3,10,0]]
|
| | | 2268 0 7 [] 10 [[3,10,0]]
|
| | | 2269 0 3 [] 10 [[3,10,0]]
|
| | | 2270 0 8 [42] 1000 [[3,10,0]]
|
| | | 2271 0 1 [2708] 1 [[3,10,0]]
|
| | | 2272 0 4 [41] 35 [[3,10,0]]
|
| | | 2273 0 7 [] 10 [[3,10,0]]
|
| | | 2274 0 3 [] 10 [[3,10,0]]
|
| | | 2275 0 8 [42] 1000 [[3,10,0]]
|
| | | 2276 0 1 [2709] 1 [[3,10,0]]
|
| | | 2277 0 4 [41] 35 [[3,10,0]]
|
| | | 2278 0 7 [] 10 [[3,10,0]]
|
| | | 2279 0 3 [] 10 [[3,10,0]]
|
| | | 2280 0 8 [42] 1000 [[3,10,0]]
|
| | | 2281 0 1 [2710] 1 [[3,10,0]]
|
| | | 2282 0 4 [41] 35 [[3,10,0]]
|
| | | 2283 0 7 [] 10 [[3,10,0]]
|
| | | 2284 0 3 [] 10 [[3,10,0]]
|
| | | 2285 0 8 [42] 1000 [[3,10,0]]
|
| | | 2286 0 1 [2801] 1 [[3,10,0]]
|
| | | 2287 0 4 [41] 35 [[3,10,0]]
|
| | | 2288 0 7 [] 10 [[3,10,0]]
|
| | | 2289 0 3 [] 10 [[3,10,0]]
|
| | | 2290 0 8 [42] 1000 [[3,10,0]]
|
| | | 2291 0 1 [2802] 1 [[3,10,0]]
|
| | | 2292 0 4 [41] 35 [[3,10,0]]
|
| | | 2293 0 7 [] 10 [[3,10,0]]
|
| | | 2294 0 3 [] 10 [[3,10,0]]
|
| | | 2295 0 8 [42] 1000 [[3,10,0]]
|
| | | 2296 0 1 [2803] 1 [[3,10,0]]
|
| | | 2297 0 4 [41] 35 [[3,10,0]]
|
| | | 2298 0 7 [] 10 [[3,10,0]]
|
| | | 2299 0 3 [] 10 [[3,10,0]]
|
| | | 2300 0 8 [42] 1000 [[3,10,0]]
|
| | | 2301 0 1 [2804] 1 [[3,10,0]]
|
| | | 2302 0 4 [41] 35 [[3,10,0]]
|
| | | 2303 0 7 [] 10 [[3,10,0]]
|
| | | 2304 0 3 [] 10 [[3,10,0]]
|
| | | 2305 0 8 [42] 1000 [[3,10,0]]
|
| | | 2306 0 1 [2805] 1 [[3,10,0]]
|
| | | 2307 0 4 [41] 35 [[3,10,0]]
|
| | | 2308 0 7 [] 10 [[3,10,0]]
|
| | | 2309 0 3 [] 10 [[3,10,0]]
|
| | | 2310 0 8 [42] 1000 [[3,10,0]]
|
| | | 2311 0 1 [2806] 1 [[3,10,0]]
|
| | | 2312 0 4 [41] 35 [[3,10,0]]
|
| | | 2313 0 7 [] 10 [[3,10,0]]
|
| | | 2314 0 3 [] 10 [[3,10,0]]
|
| | | 2315 0 8 [42] 1000 [[3,10,0]]
|
| | | 2316 0 1 [2807] 1 [[3,10,0]]
|
| | | 2317 0 4 [41] 35 [[3,10,0]]
|
| | | 2318 0 7 [] 10 [[3,10,0]]
|
| | | 2319 0 3 [] 10 [[3,10,0]]
|
| | | 2320 0 8 [42] 1000 [[3,10,0]]
|
| | | 2321 0 1 [2808] 1 [[3,10,0]]
|
| | | 2322 0 4 [41] 35 [[3,10,0]]
|
| | | 2323 0 7 [] 10 [[3,10,0]]
|
| | | 2324 0 3 [] 10 [[3,10,0]]
|
| | | 2325 0 8 [42] 1000 [[3,10,0]]
|
| | | 2326 0 1 [2809] 1 [[3,10,0]]
|
| | | 2327 0 4 [41] 35 [[3,10,0]]
|
| | | 2328 0 7 [] 10 [[3,10,0]]
|
| | | 2329 0 3 [] 10 [[3,10,0]]
|
| | | 2330 0 8 [42] 1000 [[3,10,0]]
|
| | | 2331 0 1 [2810] 1 [[3,10,0]]
|
| | | 2332 0 4 [41] 35 [[3,10,0]]
|
| | | 2333 0 7 [] 10 [[3,10,0]]
|
| | | 2334 0 3 [] 10 [[3,10,0]]
|
| | | 2335 0 8 [42] 1000 [[3,10,0]]
|
| | | 2336 0 1 [2901] 1 [[3,10,0]]
|
| | | 2337 0 4 [41] 35 [[3,10,0]]
|
| | | 2338 0 7 [] 10 [[3,10,0]]
|
| | | 2339 0 3 [] 10 [[3,10,0]]
|
| | | 2340 0 8 [42] 1000 [[3,10,0]]
|
| | | 2341 0 1 [2902] 1 [[3,10,0]]
|
| | | 2342 0 4 [41] 35 [[3,10,0]]
|
| | | 2343 0 7 [] 10 [[3,10,0]]
|
| | | 2344 0 3 [] 10 [[3,10,0]]
|
| | | 2345 0 8 [42] 1000 [[3,10,0]]
|
| | | 2346 0 1 [2903] 1 [[3,10,0]]
|
| | | 2347 0 4 [41] 35 [[3,10,0]]
|
| | | 2348 0 7 [] 10 [[3,10,0]]
|
| | | 2349 0 3 [] 10 [[3,10,0]]
|
| | | 2350 0 8 [42] 1000 [[3,10,0]]
|
| | | 2351 0 1 [2904] 1 [[3,10,0]]
|
| | | 2352 0 4 [41] 35 [[3,10,0]]
|
| | | 2353 0 7 [] 10 [[3,10,0]]
|
| | | 2354 0 3 [] 10 [[3,10,0]]
|
| | | 2355 0 8 [42] 1000 [[3,10,0]]
|
| | | 2356 0 1 [2905] 1 [[3,10,0]]
|
| | | 2357 0 4 [41] 35 [[3,10,0]]
|
| | | 2358 0 7 [] 10 [[3,10,0]]
|
| | | 2359 0 3 [] 10 [[3,10,0]]
|
| | | 2360 0 8 [42] 1000 [[3,10,0]]
|
| | | 2361 0 1 [2906] 1 [[3,10,0]]
|
| | | 2362 0 4 [41] 35 [[3,10,0]]
|
| | | 2363 0 7 [] 10 [[3,10,0]]
|
| | | 2364 0 3 [] 10 [[3,10,0]]
|
| | | 2365 0 8 [42] 1000 [[3,10,0]]
|
| | | 2366 0 1 [2907] 1 [[3,10,0]]
|
| | | 2367 0 4 [41] 35 [[3,10,0]]
|
| | | 2368 0 7 [] 10 [[3,10,0]]
|
| | | 2369 0 3 [] 10 [[3,10,0]]
|
| | | 2370 0 8 [42] 1000 [[3,10,0]]
|
| | | 2371 0 1 [2908] 1 [[3,10,0]]
|
| | | 2372 0 4 [41] 35 [[3,10,0]]
|
| | | 2373 0 7 [] 10 [[3,10,0]]
|
| | | 2374 0 3 [] 10 [[3,10,0]]
|
| | | 2375 0 8 [42] 1000 [[3,10,0]]
|
| | | 2376 0 1 [2909] 1 [[3,10,0]]
|
| | | 2377 0 4 [41] 35 [[3,10,0]]
|
| | | 2378 0 7 [] 10 [[3,10,0]]
|
| | | 2379 0 3 [] 10 [[3,10,0]]
|
| | | 2380 0 8 [42] 1000 [[3,10,0]]
|
| | | 2381 0 1 [2910] 1 [[3,10,0]]
|
| | | 2382 0 4 [41] 35 [[3,10,0]]
|
| | | 2383 0 7 [] 10 [[3,10,0]]
|
| | | 2384 0 3 [] 10 [[3,10,0]]
|
| | | 2385 0 8 [42] 1000 [[3,10,0]]
|
| | | 2386 0 1 [3001] 1 [[3,10,0]]
|
| | | 2387 0 4 [41] 35 [[3,10,0]]
|
| | | 2388 0 7 [] 10 [[3,10,0]]
|
| | | 2389 0 3 [] 10 [[3,10,0]]
|
| | | 2390 0 8 [42] 1000 [[3,10,0]]
|
| | | 2391 0 1 [3002] 1 [[3,10,0]]
|
| | | 2392 0 4 [41] 35 [[3,10,0]]
|
| | | 2393 0 7 [] 10 [[3,10,0]]
|
| | | 2394 0 3 [] 10 [[3,10,0]]
|
| | | 2395 0 8 [42] 1000 [[3,10,0]]
|
| | | 2396 0 1 [3003] 1 [[3,10,0]]
|
| | | 2397 0 4 [41] 35 [[3,10,0]]
|
| | | 2398 0 7 [] 10 [[3,10,0]]
|
| | | 2399 0 3 [] 10 [[3,10,0]]
|
| | | 2400 0 8 [42] 1000 [[3,10,0]]
|
| | | 2401 0 1 [3004] 1 [[3,10,0]]
|
| | | 2402 0 4 [41] 35 [[3,10,0]]
|
| | | 2403 0 7 [] 10 [[3,10,0]]
|
| | | 2404 0 3 [] 10 [[3,10,0]]
|
| | | 2405 0 8 [42] 1000 [[3,10,0]]
|
| | | 2406 0 1 [3005] 1 [[3,10,0]]
|
| | | 2407 0 4 [41] 35 [[3,10,0]]
|
| | | 2408 0 7 [] 10 [[3,10,0]]
|
| | | 2409 0 3 [] 10 [[3,10,0]]
|
| | | 2410 0 8 [42] 1000 [[3,10,0]]
|
| | | 2411 0 1 [3006] 1 [[3,10,0]]
|
| | | 2412 0 4 [41] 35 [[3,10,0]]
|
| | | 2413 0 7 [] 10 [[3,10,0]]
|
| | | 2414 0 3 [] 10 [[3,10,0]]
|
| | | 2415 0 8 [42] 1000 [[3,10,0]]
|
| | | 2416 0 1 [3007] 1 [[3,10,0]]
|
| | | 2417 0 4 [41] 35 [[3,10,0]]
|
| | | 2418 0 7 [] 10 [[3,10,0]]
|
| | | 2419 0 3 [] 10 [[3,10,0]]
|
| | | 2420 0 8 [42] 1000 [[3,10,0]]
|
| | | 2421 0 1 [3008] 1 [[3,10,0]]
|
| | | 2422 0 4 [41] 35 [[3,10,0]]
|
| | | 2423 0 7 [] 10 [[3,10,0]]
|
| | | 2424 0 3 [] 10 [[3,10,0]]
|
| | | 2425 0 8 [42] 1000 [[3,10,0]]
|
| | | 2426 0 1 [3009] 1 [[3,10,0]]
|
| | | 2427 0 4 [41] 35 [[3,10,0]]
|
| | | 2428 0 7 [] 10 [[3,10,0]]
|
| | | 2429 0 3 [] 10 [[3,10,0]]
|
| | | 2430 0 8 [42] 1000 [[3,10,0]]
|
| | | 2431 0 1 [3010] 1 [[3,10,0]]
|
| | | 2432 0 4 [41] 35 [[3,10,0]]
|
| | | 2433 0 7 [] 10 [[3,10,0]]
|
| | | 2434 0 3 [] 10 [[3,10,0]]
|
| | | 2435 0 8 [42] 1000 [[3,10,0]]
|
| | | 2436 0 1 [3101] 1 [[3,10,0]]
|
| | | 2437 0 4 [41] 35 [[3,10,0]]
|
| | | 2438 0 7 [] 10 [[3,10,0]]
|
| | | 2439 0 3 [] 10 [[3,10,0]]
|
| | | 2440 0 8 [42] 1000 [[3,10,0]]
|
| | | 2441 0 1 [3102] 1 [[3,10,0]]
|
| | | 2442 0 4 [41] 35 [[3,10,0]]
|
| | | 2443 0 7 [] 10 [[3,10,0]]
|
| | | 2444 0 3 [] 10 [[3,10,0]]
|
| | | 2445 0 8 [42] 1000 [[3,10,0]]
|
| | | 2446 0 1 [3103] 1 [[3,10,0]]
|
| | | 2447 0 4 [41] 35 [[3,10,0]]
|
| | | 2448 0 7 [] 10 [[3,10,0]]
|
| | | 2449 0 3 [] 10 [[3,10,0]]
|
| | | 2450 0 8 [42] 1000 [[3,10,0]]
|
| | | 2451 0 1 [3104] 1 [[3,10,0]]
|
| | | 2452 0 4 [41] 35 [[3,10,0]]
|
| | | 2453 0 7 [] 10 [[3,10,0]]
|
| | | 2454 0 3 [] 10 [[3,10,0]]
|
| | | 2455 0 8 [42] 1000 [[3,10,0]]
|
| | | 2456 0 1 [3105] 1 [[3,10,0]]
|
| | | 2457 0 4 [41] 35 [[3,10,0]]
|
| | | 2458 0 7 [] 10 [[3,10,0]]
|
| | | 2459 0 3 [] 10 [[3,10,0]]
|
| | | 2460 0 8 [42] 1000 [[3,10,0]]
|
| | | 2461 0 1 [3106] 1 [[3,10,0]]
|
| | | 2462 0 4 [41] 35 [[3,10,0]]
|
| | | 2463 0 7 [] 10 [[3,10,0]]
|
| | | 2464 0 3 [] 10 [[3,10,0]]
|
| | | 2465 0 8 [42] 1000 [[3,10,0]]
|
| | | 2466 0 1 [3107] 1 [[3,10,0]]
|
| | | 2467 0 4 [41] 35 [[3,10,0]]
|
| | | 2468 0 7 [] 10 [[3,10,0]]
|
| | | 2469 0 3 [] 10 [[3,10,0]]
|
| | | 2470 0 8 [42] 1000 [[3,10,0]]
|
| | | 2471 0 1 [3108] 1 [[3,10,0]]
|
| | | 2472 0 4 [41] 35 [[3,10,0]]
|
| | | 2473 0 7 [] 10 [[3,10,0]]
|
| | | 2474 0 3 [] 10 [[3,10,0]]
|
| | | 2475 0 8 [42] 1000 [[3,10,0]]
|
| | | 2476 0 1 [3109] 1 [[3,10,0]]
|
| | | 2477 0 4 [41] 35 [[3,10,0]]
|
| | | 2478 0 7 [] 10 [[3,10,0]]
|
| | | 2479 0 3 [] 10 [[3,10,0]]
|
| | | 2480 0 8 [42] 1000 [[3,10,0]]
|
| | | 2481 0 1 [3110] 1 [[3,10,0]]
|
| | | 2482 0 4 [41] 35 [[3,10,0]]
|
| | | 2483 0 7 [] 10 [[3,10,0]]
|
| | | 2484 0 3 [] 10 [[3,10,0]]
|
| | | 2485 0 8 [42] 1000 [[3,10,0]]
|
| | | 2486 0 1 [3201] 1 [[3,10,0]]
|
| | | 2487 0 4 [41] 35 [[3,10,0]]
|
| | | 2488 0 7 [] 10 [[3,10,0]]
|
| | | 2489 0 3 [] 10 [[3,10,0]]
|
| | | 2490 0 8 [42] 1000 [[3,10,0]]
|
| | | 2491 0 1 [3202] 1 [[3,10,0]]
|
| | | 2492 0 4 [41] 35 [[3,10,0]]
|
| | | 2493 0 7 [] 10 [[3,10,0]]
|
| | | 2494 0 3 [] 10 [[3,10,0]]
|
| | | 2495 0 8 [42] 1000 [[3,10,0]]
|
| | | 2496 0 1 [3203] 1 [[3,10,0]]
|
| | | 2497 0 4 [41] 35 [[3,10,0]]
|
| | | 2498 0 7 [] 10 [[3,10,0]]
|
| | | 2499 0 3 [] 10 [[3,10,0]]
|
| | | 2500 0 8 [42] 1000 [[3,10,0]]
|
| | | 2501 0 1 [3204] 1 [[3,10,0]]
|
| | | 2502 0 4 [41] 35 [[3,10,0]]
|
| | | 2503 0 7 [] 10 [[3,10,0]]
|
| | | 2504 0 3 [] 10 [[3,10,0]]
|
| | | 2505 0 8 [42] 1000 [[3,10,0]]
|
| | | 2506 0 1 [3205] 1 [[3,10,0]]
|
| | | 2507 0 4 [41] 35 [[3,10,0]]
|
| | | 2508 0 7 [] 10 [[3,10,0]]
|
| | | 2509 0 3 [] 10 [[3,10,0]]
|
| | | 2510 0 8 [42] 1000 [[3,10,0]]
|
| | | 2511 0 1 [3206] 1 [[3,10,0]]
|
| | | 2512 0 4 [41] 35 [[3,10,0]]
|
| | | 2513 0 7 [] 10 [[3,10,0]]
|
| | | 2514 0 3 [] 10 [[3,10,0]]
|
| | | 2515 0 8 [42] 1000 [[3,10,0]]
|
| | | 2516 0 1 [3207] 1 [[3,10,0]]
|
| | | 2517 0 4 [41] 35 [[3,10,0]]
|
| | | 2518 0 7 [] 10 [[3,10,0]]
|
| | | 2519 0 3 [] 10 [[3,10,0]]
|
| | | 2520 0 8 [42] 1000 [[3,10,0]]
|
| | | 2521 0 1 [3208] 1 [[3,10,0]]
|
| | | 2522 0 4 [41] 35 [[3,10,0]]
|
| | | 2523 0 7 [] 10 [[3,10,0]]
|
| | | 2524 0 3 [] 10 [[3,10,0]]
|
| | | 2525 0 8 [42] 1000 [[3,10,0]]
|
| | | 2526 0 1 [3209] 1 [[3,10,0]]
|
| | | 2527 0 4 [41] 35 [[3,10,0]]
|
| | | 2528 0 7 [] 10 [[3,10,0]]
|
| | | 2529 0 3 [] 10 [[3,10,0]]
|
| | | 2530 0 8 [42] 1000 [[3,10,0]]
|
| | | 2531 0 1 [3210] 1 [[3,10,0]]
|
| | | 2532 0 4 [41] 35 [[3,10,0]]
|
| | | 2533 0 7 [] 10 [[3,10,0]]
|
| | | 2534 0 3 [] 10 [[3,10,0]]
|
| | | 2535 0 8 [42] 1000 [[3,10,0]]
|
| | | 2536 0 1 [3301] 1 [[3,10,0]]
|
| | | 2537 0 4 [41] 35 [[3,10,0]]
|
| | | 2538 0 7 [] 10 [[3,10,0]]
|
| | | 2539 0 3 [] 10 [[3,10,0]]
|
| | | 2540 0 8 [42] 1000 [[3,10,0]]
|
| | | 2541 0 1 [3302] 1 [[3,10,0]]
|
| | | 2542 0 4 [41] 35 [[3,10,0]]
|
| | | 2543 0 7 [] 10 [[3,10,0]]
|
| | | 2544 0 3 [] 10 [[3,10,0]]
|
| | | 2545 0 8 [42] 1000 [[3,10,0]]
|
| | | 2546 0 1 [3303] 1 [[3,10,0]]
|
| | | 2547 0 4 [41] 35 [[3,10,0]]
|
| | | 2548 0 7 [] 10 [[3,10,0]]
|
| | | 2549 0 3 [] 10 [[3,10,0]]
|
| | | 2550 0 8 [42] 1000 [[3,10,0]]
|
| | | 2551 0 1 [3304] 1 [[3,10,0]]
|
| | | 2552 0 4 [41] 35 [[3,10,0]]
|
| | | 2553 0 7 [] 10 [[3,10,0]]
|
| | | 2554 0 3 [] 10 [[3,10,0]]
|
| | | 2555 0 8 [42] 1000 [[3,10,0]]
|
| | | 2556 0 1 [3305] 1 [[3,10,0]]
|
| | | 2557 0 4 [41] 35 [[3,10,0]]
|
| | | 2558 0 7 [] 10 [[3,10,0]]
|
| | | 2559 0 3 [] 10 [[3,10,0]]
|
| | | 2560 0 8 [42] 1000 [[3,10,0]]
|
| | | 2561 0 1 [3306] 1 [[3,10,0]]
|
| | | 2562 0 4 [41] 35 [[3,10,0]]
|
| | | 2563 0 7 [] 10 [[3,10,0]]
|
| | | 2564 0 3 [] 10 [[3,10,0]]
|
| | | 2565 0 8 [42] 1000 [[3,10,0]]
|
| | | 2566 0 1 [3307] 1 [[3,10,0]]
|
| | | 2567 0 4 [41] 35 [[3,10,0]]
|
| | | 2568 0 7 [] 10 [[3,10,0]]
|
| | | 2569 0 3 [] 10 [[3,10,0]]
|
| | | 2570 0 8 [42] 1000 [[3,10,0]]
|
| | | 2571 0 1 [3308] 1 [[3,10,0]]
|
| | | 2572 0 4 [41] 35 [[3,10,0]]
|
| | | 2573 0 7 [] 10 [[3,10,0]]
|
| | | 2574 0 3 [] 10 [[3,10,0]]
|
| | | 2575 0 8 [42] 1000 [[3,10,0]]
|
| | | 2576 0 1 [3309] 1 [[3,10,0]]
|
| | | 2577 0 4 [41] 35 [[3,10,0]]
|
| | | 2578 0 7 [] 10 [[3,10,0]]
|
| | | 2579 0 3 [] 10 [[3,10,0]]
|
| | | 2580 0 8 [42] 1000 [[3,10,0]]
|
| | | 2581 0 1 [3310] 1 [[3,10,0]]
|
| | | 2582 0 4 [41] 35 [[3,10,0]]
|
| | | 2583 0 7 [] 10 [[3,10,0]]
|
| | | 2584 0 3 [] 10 [[3,10,0]]
|
| | | 2585 0 8 [42] 1000 [[3,10,0]]
|
| | | 2586 0 1 [3401] 1 [[3,10,0]]
|
| | | 2587 0 4 [41] 35 [[3,10,0]]
|
| | | 2588 0 7 [] 10 [[3,10,0]]
|
| | | 2589 0 3 [] 10 [[3,10,0]]
|
| | | 2590 0 8 [42] 1000 [[3,10,0]]
|
| | | 2591 0 1 [3402] 1 [[3,10,0]]
|
| | | 2592 0 4 [41] 35 [[3,10,0]]
|
| | | 2593 0 7 [] 10 [[3,10,0]]
|
| | | 2594 0 3 [] 10 [[3,10,0]]
|
| | | 2595 0 8 [42] 1000 [[3,10,0]]
|
| | | 2596 0 1 [3403] 1 [[3,10,0]]
|
| | | 2597 0 4 [41] 35 [[3,10,0]]
|
| | | 2598 0 7 [] 10 [[3,10,0]]
|
| | | 2599 0 3 [] 10 [[3,10,0]]
|
| | | 2600 0 8 [42] 1000 [[3,10,0]]
|
| | | 2601 0 1 [3404] 1 [[3,10,0]]
|
| | | 2602 0 4 [41] 35 [[3,10,0]]
|
| | | 2603 0 7 [] 10 [[3,10,0]]
|
| | | 2604 0 3 [] 10 [[3,10,0]]
|
| | | 2605 0 8 [42] 1000 [[3,10,0]]
|
| | | 2606 0 1 [3405] 1 [[3,10,0]]
|
| | | 2607 0 4 [41] 35 [[3,10,0]]
|
| | | 2608 0 7 [] 10 [[3,10,0]]
|
| | | 2609 0 3 [] 10 [[3,10,0]]
|
| | | 2610 0 8 [42] 1000 [[3,10,0]]
|
| | | 2611 0 1 [3406] 1 [[3,10,0]]
|
| | | 2612 0 4 [41] 35 [[3,10,0]]
|
| | | 2613 0 7 [] 10 [[3,10,0]]
|
| | | 2614 0 3 [] 10 [[3,10,0]]
|
| | | 2615 0 8 [42] 1000 [[3,10,0]]
|
| | | 2616 0 1 [3407] 1 [[3,10,0]]
|
| | | 2617 0 4 [41] 35 [[3,10,0]]
|
| | | 2618 0 7 [] 10 [[3,10,0]]
|
| | | 2619 0 3 [] 10 [[3,10,0]]
|
| | | 2620 0 8 [42] 1000 [[3,10,0]]
|
| | | 2621 0 1 [3408] 1 [[3,10,0]]
|
| | | 2622 0 4 [41] 35 [[3,10,0]]
|
| | | 2623 0 7 [] 10 [[3,10,0]]
|
| | | 2624 0 3 [] 10 [[3,10,0]]
|
| | | 2625 0 8 [42] 1000 [[3,10,0]]
|
| | | 2626 0 1 [3409] 1 [[3,10,0]]
|
| | | 2627 0 4 [41] 35 [[3,10,0]]
|
| | | 2628 0 7 [] 10 [[3,10,0]]
|
| | | 2629 0 3 [] 10 [[3,10,0]]
|
| | | 2630 0 8 [42] 1000 [[3,10,0]]
|
| | | 2631 0 1 [3410] 1 [[3,10,0]]
|
| | | 2632 0 4 [41] 35 [[3,10,0]]
|
| | | 2633 0 7 [] 10 [[3,10,0]]
|
| | | 2634 0 3 [] 10 [[3,10,0]]
|
| | | 2635 0 8 [42] 1000 [[3,10,0]]
|
| | | 2636 0 1 [3501] 1 [[3,10,0]]
|
| | | 2637 0 4 [41] 35 [[3,10,0]]
|
| | | 2638 0 7 [] 10 [[3,10,0]]
|
| | | 2639 0 3 [] 10 [[3,10,0]]
|
| | | 2640 0 8 [42] 1000 [[3,10,0]]
|
| | | 2641 0 1 [3502] 1 [[3,10,0]]
|
| | | 2642 0 4 [41] 35 [[3,10,0]]
|
| | | 2643 0 7 [] 10 [[3,10,0]]
|
| | | 2644 0 3 [] 10 [[3,10,0]]
|
| | | 2645 0 8 [42] 1000 [[3,10,0]]
|
| | | 2646 0 1 [3503] 1 [[3,10,0]]
|
| | | 2647 0 4 [41] 35 [[3,10,0]]
|
| | | 2648 0 7 [] 10 [[3,10,0]]
|
| | | 2649 0 3 [] 10 [[3,10,0]]
|
| | | 2650 0 8 [42] 1000 [[3,10,0]]
|
| | | 2651 0 1 [3504] 1 [[3,10,0]]
|
| | | 2652 0 4 [41] 35 [[3,10,0]]
|
| | | 2653 0 7 [] 10 [[3,10,0]]
|
| | | 2654 0 3 [] 10 [[3,10,0]]
|
| | | 2655 0 8 [42] 1000 [[3,10,0]]
|
| | | 2656 0 1 [3505] 1 [[3,10,0]]
|
| | | 2657 0 4 [41] 35 [[3,10,0]]
|
| | | 2658 0 7 [] 10 [[3,10,0]]
|
| | | 2659 0 3 [] 10 [[3,10,0]]
|
| | | 2660 0 8 [42] 1000 [[3,10,0]]
|
| | | 2661 0 1 [3506] 1 [[3,10,0]]
|
| | | 2662 0 4 [41] 35 [[3,10,0]]
|
| | | 2663 0 7 [] 10 [[3,10,0]]
|
| | | 2664 0 3 [] 10 [[3,10,0]]
|
| | | 2665 0 8 [42] 1000 [[3,10,0]]
|
| | | 2666 0 1 [3507] 1 [[3,10,0]]
|
| | | 2667 0 4 [41] 35 [[3,10,0]]
|
| | | 2668 0 7 [] 10 [[3,10,0]]
|
| | | 2669 0 3 [] 10 [[3,10,0]]
|
| | | 2670 0 8 [42] 1000 [[3,10,0]]
|
| | | 2671 0 1 [3508] 1 [[3,10,0]]
|
| | | 2672 0 4 [41] 35 [[3,10,0]]
|
| | | 2673 0 7 [] 10 [[3,10,0]]
|
| | | 2674 0 3 [] 10 [[3,10,0]]
|
| | | 2675 0 8 [42] 1000 [[3,10,0]]
|
| | | 2676 0 1 [3509] 1 [[3,10,0]]
|
| | | 2677 0 4 [41] 35 [[3,10,0]]
|
| | | 2678 0 7 [] 10 [[3,10,0]]
|
| | | 2679 0 3 [] 10 [[3,10,0]]
|
| | | 2680 0 8 [42] 1000 [[3,10,0]]
|
| | | 2681 0 1 [3510] 1 [[3,10,0]]
|
| | | 2682 0 4 [41] 35 [[3,10,0]]
|
| | | 2683 0 7 [] 10 [[3,10,0]]
|
| | | 2684 0 3 [] 10 [[3,10,0]]
|
| | | 2685 0 8 [42] 1000 [[3,10,0]]
|
| | | 2686 0 1 [3601] 1 [[3,10,0]]
|
| | | 2687 0 4 [41] 35 [[3,10,0]]
|
| | | 2688 0 7 [] 10 [[3,10,0]]
|
| | | 2689 0 3 [] 10 [[3,10,0]]
|
| | | 2690 0 8 [42] 1000 [[3,10,0]]
|
| | | 2691 0 1 [3602] 1 [[3,10,0]]
|
| | | 2692 0 4 [41] 35 [[3,10,0]]
|
| | | 2693 0 7 [] 10 [[3,10,0]]
|
| | | 2694 0 3 [] 10 [[3,10,0]]
|
| | | 2695 0 8 [42] 1000 [[3,10,0]]
|
| | | 2696 0 1 [3603] 1 [[3,10,0]]
|
| | | 2697 0 4 [41] 35 [[3,10,0]]
|
| | | 2698 0 7 [] 10 [[3,10,0]]
|
| | | 2699 0 3 [] 10 [[3,10,0]]
|
| | | 2700 0 8 [42] 1000 [[3,10,0]]
|
| | | 2701 0 1 [3604] 1 [[3,10,0]]
|
| | | 2702 0 4 [41] 35 [[3,10,0]]
|
| | | 2703 0 7 [] 10 [[3,10,0]]
|
| | | 2704 0 3 [] 10 [[3,10,0]]
|
| | | 2705 0 8 [42] 1000 [[3,10,0]]
|
| | | 2706 0 1 [3605] 1 [[3,10,0]]
|
| | | 2707 0 4 [41] 35 [[3,10,0]]
|
| | | 2708 0 7 [] 10 [[3,10,0]]
|
| | | 2709 0 3 [] 10 [[3,10,0]]
|
| | | 2710 0 8 [42] 1000 [[3,10,0]]
|
| | | 2711 0 1 [3606] 1 [[3,10,0]]
|
| | | 2712 0 4 [41] 35 [[3,10,0]]
|
| | | 2713 0 7 [] 10 [[3,10,0]]
|
| | | 2714 0 3 [] 10 [[3,10,0]]
|
| | | 2715 0 8 [42] 1000 [[3,10,0]]
|
| | | 2716 0 1 [3607] 1 [[3,10,0]]
|
| | | 2717 0 4 [41] 35 [[3,10,0]]
|
| | | 2718 0 7 [] 10 [[3,10,0]]
|
| | | 2719 0 3 [] 10 [[3,10,0]]
|
| | | 2720 0 8 [42] 1000 [[3,10,0]]
|
| | | 2721 0 1 [3608] 1 [[3,10,0]]
|
| | | 2722 0 4 [41] 35 [[3,10,0]]
|
| | | 2723 0 7 [] 10 [[3,10,0]]
|
| | | 2724 0 3 [] 10 [[3,10,0]]
|
| | | 2725 0 8 [42] 1000 [[3,10,0]]
|
| | | 2726 0 1 [3609] 1 [[3,10,0]]
|
| | | 2727 0 4 [41] 35 [[3,10,0]]
|
| | | 2728 0 7 [] 10 [[3,10,0]]
|
| | | 2729 0 3 [] 10 [[3,10,0]]
|
| | | 2730 0 8 [42] 1000 [[3,10,0]]
|
| | | 2731 0 1 [3610] 1 [[3,10,0]]
|
| | | 2732 0 4 [41] 35 [[3,10,0]]
|
| | | 2733 0 7 [] 10 [[3,10,0]]
|
| | | 2734 0 3 [] 10 [[3,10,0]]
|
| | | 2735 0 8 [42] 1000 [[3,10,0]]
|
| | | 2736 0 1 [3701] 1 [[3,10,0]]
|
| | | 2737 0 4 [41] 35 [[3,10,0]]
|
| | | 2738 0 7 [] 10 [[3,10,0]]
|
| | | 2739 0 3 [] 10 [[3,10,0]]
|
| | | 2740 0 8 [42] 1000 [[3,10,0]]
|
| | | 2741 0 1 [3702] 1 [[3,10,0]]
|
| | | 2742 0 4 [41] 35 [[3,10,0]]
|
| | | 2743 0 7 [] 10 [[3,10,0]]
|
| | | 2744 0 3 [] 10 [[3,10,0]]
|
| | | 2745 0 8 [42] 1000 [[3,10,0]]
|
| | | 2746 0 1 [3703] 1 [[3,10,0]]
|
| | | 2747 0 4 [41] 35 [[3,10,0]]
|
| | | 2748 0 7 [] 10 [[3,10,0]]
|
| | | 2749 0 3 [] 10 [[3,10,0]]
|
| | | 2750 0 8 [42] 1000 [[3,10,0]]
|
| | | 2751 0 1 [3704] 1 [[3,10,0]]
|
| | | 2752 0 4 [41] 35 [[3,10,0]]
|
| | | 2753 0 7 [] 10 [[3,10,0]]
|
| | | 2754 0 3 [] 10 [[3,10,0]]
|
| | | 2755 0 8 [42] 1000 [[3,10,0]]
|
| | | 2756 0 1 [3705] 1 [[3,10,0]]
|
| | | 2757 0 4 [41] 35 [[3,10,0]]
|
| | | 2758 0 7 [] 10 [[3,10,0]]
|
| | | 2759 0 3 [] 10 [[3,10,0]]
|
| | | 2760 0 8 [42] 1000 [[3,10,0]]
|
| | | 2761 0 1 [3706] 1 [[3,10,0]]
|
| | | 2762 0 4 [41] 35 [[3,10,0]]
|
| | | 2763 0 7 [] 10 [[3,10,0]]
|
| | | 2764 0 3 [] 10 [[3,10,0]]
|
| | | 2765 0 8 [42] 1000 [[3,10,0]]
|
| | | 2766 0 1 [3707] 1 [[3,10,0]]
|
| | | 2767 0 4 [41] 35 [[3,10,0]]
|
| | | 2768 0 7 [] 10 [[3,10,0]]
|
| | | 2769 0 3 [] 10 [[3,10,0]]
|
| | | 2770 0 8 [42] 1000 [[3,10,0]]
|
| | | 2771 0 1 [3708] 1 [[3,10,0]]
|
| | | 2772 0 4 [41] 35 [[3,10,0]]
|
| | | 2773 0 7 [] 10 [[3,10,0]]
|
| | | 2774 0 3 [] 10 [[3,10,0]]
|
| | | 2775 0 8 [42] 1000 [[3,10,0]]
|
| | | 2776 0 1 [3709] 1 [[3,10,0]]
|
| | | 2777 0 4 [41] 35 [[3,10,0]]
|
| | | 2778 0 7 [] 10 [[3,10,0]]
|
| | | 2779 0 3 [] 10 [[3,10,0]]
|
| | | 2780 0 8 [42] 1000 [[3,10,0]]
|
| | | 2781 0 1 [3710] 1 [[3,10,0]]
|
| | | 2782 0 4 [41] 35 [[3,10,0]]
|
| | | 2783 0 7 [] 10 [[3,10,0]]
|
| | | 2784 0 3 [] 10 [[3,10,0]]
|
| | | 2785 0 8 [42] 1000 [[3,10,0]]
|
| | | 2786 0 1 [3801] 1 [[3,10,0]]
|
| | | 2787 0 4 [41] 35 [[3,10,0]]
|
| | | 2788 0 7 [] 10 [[3,10,0]]
|
| | | 2789 0 3 [] 10 [[3,10,0]]
|
| | | 2790 0 8 [42] 1000 [[3,10,0]]
|
| | | 2791 0 1 [3802] 1 [[3,10,0]]
|
| | | 2792 0 4 [41] 35 [[3,10,0]]
|
| | | 2793 0 7 [] 10 [[3,10,0]]
|
| | | 2794 0 3 [] 10 [[3,10,0]]
|
| | | 2795 0 8 [42] 1000 [[3,10,0]]
|
| | | 2796 0 1 [3803] 1 [[3,10,0]]
|
| | | 2797 0 4 [41] 35 [[3,10,0]]
|
| | | 2798 0 7 [] 10 [[3,10,0]]
|
| | | 2799 0 3 [] 10 [[3,10,0]]
|
| | | 2800 0 8 [42] 1000 [[3,10,0]]
|
| | | 2801 0 1 [3804] 1 [[3,10,0]]
|
| | | 2802 0 4 [41] 35 [[3,10,0]]
|
| | | 2803 0 7 [] 10 [[3,10,0]]
|
| | | 2804 0 3 [] 10 [[3,10,0]]
|
| | | 2805 0 8 [42] 1000 [[3,10,0]]
|
| | | 2806 0 1 [3805] 1 [[3,10,0]]
|
| | | 2807 0 4 [41] 35 [[3,10,0]]
|
| | | 2808 0 7 [] 10 [[3,10,0]]
|
| | | 2809 0 3 [] 10 [[3,10,0]]
|
| | | 2810 0 8 [42] 1000 [[3,10,0]]
|
| | | 2811 0 1 [3806] 1 [[3,10,0]]
|
| | | 2812 0 4 [41] 35 [[3,10,0]]
|
| | | 2813 0 7 [] 10 [[3,10,0]]
|
| | | 2814 0 3 [] 10 [[3,10,0]]
|
| | | 2815 0 8 [42] 1000 [[3,10,0]]
|
| | | 2816 0 1 [3807] 1 [[3,10,0]]
|
| | | 2817 0 4 [41] 35 [[3,10,0]]
|
| | | 2818 0 7 [] 10 [[3,10,0]]
|
| | | 2819 0 3 [] 10 [[3,10,0]]
|
| | | 2820 0 8 [42] 1000 [[3,10,0]]
|
| | | 2821 0 1 [3808] 1 [[3,10,0]]
|
| | | 2822 0 4 [41] 35 [[3,10,0]]
|
| | | 2823 0 7 [] 10 [[3,10,0]]
|
| | | 2824 0 3 [] 10 [[3,10,0]]
|
| | | 2825 0 8 [42] 1000 [[3,10,0]]
|
| | | 2826 0 1 [3809] 1 [[3,10,0]]
|
| | | 2827 0 4 [41] 35 [[3,10,0]]
|
| | | 2828 0 7 [] 10 [[3,10,0]]
|
| | | 2829 0 3 [] 10 [[3,10,0]]
|
| | | 2830 0 8 [42] 1000 [[3,10,0]]
|
| | | 2831 0 1 [3810] 1 [[3,10,0]]
|
| | | 2832 0 4 [41] 35 [[3,10,0]]
|
| | | 2833 0 7 [] 10 [[3,10,0]]
|
| | | 2834 0 3 [] 10 [[3,10,0]]
|
| | | 2835 0 8 [42] 1000 [[3,10,0]]
|
| | | 2836 0 1 [3901] 1 [[3,10,0]]
|
| | | 2837 0 4 [41] 35 [[3,10,0]]
|
| | | 2838 0 7 [] 10 [[3,10,0]]
|
| | | 2839 0 3 [] 10 [[3,10,0]]
|
| | | 2840 0 8 [42] 1000 [[3,10,0]]
|
| | | 2841 0 1 [3902] 1 [[3,10,0]]
|
| | | 2842 0 4 [41] 35 [[3,10,0]]
|
| | | 2843 0 7 [] 10 [[3,10,0]]
|
| | | 2844 0 3 [] 10 [[3,10,0]]
|
| | | 2845 0 8 [42] 1000 [[3,10,0]]
|
| | | 2846 0 1 [3903] 1 [[3,10,0]]
|
| | | 2847 0 4 [41] 35 [[3,10,0]]
|
| | | 2848 0 7 [] 10 [[3,10,0]]
|
| | | 2849 0 3 [] 10 [[3,10,0]]
|
| | | 2850 0 8 [42] 1000 [[3,10,0]]
|
| | | 2851 0 1 [3904] 1 [[3,10,0]]
|
| | | 2852 0 4 [41] 35 [[3,10,0]]
|
| | | 2853 0 7 [] 10 [[3,10,0]]
|
| | | 2854 0 3 [] 10 [[3,10,0]]
|
| | | 2855 0 8 [42] 1000 [[3,10,0]]
|
| | | 2856 0 1 [3905] 1 [[3,10,0]]
|
| | | 2857 0 4 [41] 35 [[3,10,0]]
|
| | | 2858 0 7 [] 10 [[3,10,0]]
|
| | | 2859 0 3 [] 10 [[3,10,0]]
|
| | | 2860 0 8 [42] 1000 [[3,10,0]]
|
| | | 2861 0 1 [3906] 1 [[3,10,0]]
|
| | | 2862 0 4 [41] 35 [[3,10,0]]
|
| | | 2863 0 7 [] 10 [[3,10,0]]
|
| | | 2864 0 3 [] 10 [[3,10,0]]
|
| | | 2865 0 8 [42] 1000 [[3,10,0]]
|
| | | 2866 0 1 [3907] 1 [[3,10,0]]
|
| | | 2867 0 4 [41] 35 [[3,10,0]]
|
| | | 2868 0 7 [] 10 [[3,10,0]]
|
| | | 2869 0 3 [] 10 [[3,10,0]]
|
| | | 2870 0 8 [42] 1000 [[3,10,0]]
|
| | | 2871 0 1 [3908] 1 [[3,10,0]]
|
| | | 2872 0 4 [41] 35 [[3,10,0]]
|
| | | 2873 0 7 [] 10 [[3,10,0]]
|
| | | 2874 0 3 [] 10 [[3,10,0]]
|
| | | 2875 0 8 [42] 1000 [[3,10,0]]
|
| | | 2876 0 1 [3909] 1 [[3,10,0]]
|
| | | 2877 0 4 [41] 35 [[3,10,0]]
|
| | | 2878 0 7 [] 10 [[3,10,0]]
|
| | | 2879 0 3 [] 10 [[3,10,0]]
|
| | | 2880 0 8 [42] 1000 [[3,10,0]]
|
| | | 2881 0 1 [3910] 1 [[3,10,0]]
|
| | | 2882 0 4 [41] 35 [[3,10,0]]
|
| | | 2883 0 7 [] 10 [[3,10,0]]
|
| | | 2884 0 3 [] 10 [[3,10,0]]
|
| | | 2885 0 8 [42] 1000 [[3,10,0]]
|
| | | 2886 0 1 [4001] 1 [[3,10,0]]
|
| | | 2887 0 4 [41] 35 [[3,10,0]]
|
| | | 2888 0 7 [] 10 [[3,10,0]]
|
| | | 2889 0 3 [] 10 [[3,10,0]]
|
| | | 2890 0 8 [42] 1000 [[3,10,0]]
|
| | | 2891 0 1 [4002] 1 [[3,10,0]]
|
| | | 2892 0 4 [41] 35 [[3,10,0]]
|
| | | 2893 0 7 [] 10 [[3,10,0]]
|
| | | 2894 0 3 [] 10 [[3,10,0]]
|
| | | 2895 0 8 [42] 1000 [[3,10,0]]
|
| | | 2896 0 1 [4003] 1 [[3,10,0]]
|
| | | 2897 0 4 [41] 35 [[3,10,0]]
|
| | | 2898 0 7 [] 10 [[3,10,0]]
|
| | | 2899 0 3 [] 10 [[3,10,0]]
|
| | | 2900 0 8 [42] 1000 [[3,10,0]]
|
| | | 2901 0 1 [4004] 1 [[3,10,0]]
|
| | | 2902 0 4 [41] 35 [[3,10,0]]
|
| | | 2903 0 7 [] 10 [[3,10,0]]
|
| | | 2904 0 3 [] 10 [[3,10,0]]
|
| | | 2905 0 8 [42] 1000 [[3,10,0]]
|
| | | 2906 0 1 [4005] 1 [[3,10,0]]
|
| | | 2907 0 4 [41] 35 [[3,10,0]]
|
| | | 2908 0 7 [] 10 [[3,10,0]]
|
| | | 2909 0 3 [] 10 [[3,10,0]]
|
| | | 2910 0 8 [42] 1000 [[3,10,0]]
|
| | | 2911 0 1 [4006] 1 [[3,10,0]]
|
| | | 2912 0 4 [41] 35 [[3,10,0]]
|
| | | 2913 0 7 [] 10 [[3,10,0]]
|
| | | 2914 0 3 [] 10 [[3,10,0]]
|
| | | 2915 0 8 [42] 1000 [[3,10,0]]
|
| | | 2916 0 1 [4007] 1 [[3,10,0]]
|
| | | 2917 0 4 [41] 35 [[3,10,0]]
|
| | | 2918 0 7 [] 10 [[3,10,0]]
|
| | | 2919 0 3 [] 10 [[3,10,0]]
|
| | | 2920 0 8 [42] 1000 [[3,10,0]]
|
| | | 2921 0 1 [4008] 1 [[3,10,0]]
|
| | | 2922 0 4 [41] 35 [[3,10,0]]
|
| | | 2923 0 7 [] 10 [[3,10,0]]
|
| | | 2924 0 3 [] 10 [[3,10,0]]
|
| | | 2925 0 8 [42] 1000 [[3,10,0]]
|
| | | 2926 0 1 [4009] 1 [[3,10,0]]
|
| | | 2927 0 4 [41] 35 [[3,10,0]]
|
| | | 2928 0 7 [] 10 [[3,10,0]]
|
| | | 2929 0 3 [] 10 [[3,10,0]]
|
| | | 2930 0 8 [42] 1000 [[3,10,0]]
|
| | | 2931 0 1 [4010] 1 [[3,10,0]]
|
| | | 2932 0 4 [41] 35 [[3,10,0]]
|
| | | 2933 0 7 [] 10 [[3,10,0]]
|
| | | 2934 0 3 [] 10 [[3,10,0]]
|
| | | 2935 0 8 [42] 1000 [[3,10,0]]
|
| | | 2936 0 1 [4101] 1 [[3,10,0]]
|
| | | 2937 0 4 [41] 35 [[3,10,0]]
|
| | | 2938 0 7 [] 10 [[3,10,0]]
|
| | | 2939 0 3 [] 10 [[3,10,0]]
|
| | | 2940 0 8 [42] 1000 [[3,10,0]]
|
| | | 2941 0 1 [4102] 1 [[3,10,0]]
|
| | | 2942 0 4 [41] 35 [[3,10,0]]
|
| | | 2943 0 7 [] 10 [[3,10,0]]
|
| | | 2944 0 3 [] 10 [[3,10,0]]
|
| | | 2945 0 8 [42] 1000 [[3,10,0]]
|
| | | 2946 0 1 [4103] 1 [[3,10,0]]
|
| | | 2947 0 4 [41] 35 [[3,10,0]]
|
| | | 2948 0 7 [] 10 [[3,10,0]]
|
| | | 2949 0 3 [] 10 [[3,10,0]]
|
| | | 2950 0 8 [42] 1000 [[3,10,0]]
|
| | | 2951 0 1 [4104] 1 [[3,10,0]]
|
| | | 2952 0 4 [41] 35 [[3,10,0]]
|
| | | 2953 0 7 [] 10 [[3,10,0]]
|
| | | 2954 0 3 [] 10 [[3,10,0]]
|
| | | 2955 0 8 [42] 1000 [[3,10,0]]
|
| | | 2956 0 1 [4105] 1 [[3,10,0]]
|
| | | 2957 0 4 [41] 35 [[3,10,0]]
|
| | | 2958 0 7 [] 10 [[3,10,0]]
|
| | | 2959 0 3 [] 10 [[3,10,0]]
|
| | | 2960 0 8 [42] 1000 [[3,10,0]]
|
| | | 2961 0 1 [4106] 1 [[3,10,0]]
|
| | | 2962 0 4 [41] 35 [[3,10,0]]
|
| | | 2963 0 7 [] 10 [[3,10,0]]
|
| | | 2964 0 3 [] 10 [[3,10,0]]
|
| | | 2965 0 8 [42] 1000 [[3,10,0]]
|
| | | 2966 0 1 [4107] 1 [[3,10,0]]
|
| | | 2967 0 4 [41] 35 [[3,10,0]]
|
| | | 2968 0 7 [] 10 [[3,10,0]]
|
| | | 2969 0 3 [] 10 [[3,10,0]]
|
| | | 2970 0 8 [42] 1000 [[3,10,0]]
|
| | | 2971 0 1 [4108] 1 [[3,10,0]]
|
| | | 2972 0 4 [41] 35 [[3,10,0]]
|
| | | 2973 0 7 [] 10 [[3,10,0]]
|
| | | 2974 0 3 [] 10 [[3,10,0]]
|
| | | 2975 0 8 [42] 1000 [[3,10,0]]
|
| | | 2976 0 1 [4109] 1 [[3,10,0]]
|
| | | 2977 0 4 [41] 35 [[3,10,0]]
|
| | | 2978 0 7 [] 10 [[3,10,0]]
|
| | | 2979 0 3 [] 10 [[3,10,0]]
|
| | | 2980 0 8 [42] 1000 [[3,10,0]]
|
| | | 2981 0 1 [4110] 1 [[3,10,0]]
|
| | | 2982 0 4 [41] 35 [[3,10,0]]
|
| | | 2983 0 7 [] 10 [[3,10,0]]
|
| | | 2984 0 3 [] 10 [[3,10,0]]
|
| | | 2985 0 8 [42] 1000 [[3,10,0]]
|
| | | 2986 0 1 [4201] 1 [[3,10,0]]
|
| | | 2987 0 4 [41] 35 [[3,10,0]]
|
| | | 2988 0 7 [] 10 [[3,10,0]]
|
| | | 2989 0 3 [] 10 [[3,10,0]]
|
| | | 2990 0 8 [42] 1000 [[3,10,0]]
|
| | | 2991 0 1 [4202] 1 [[3,10,0]]
|
| | | 2992 0 4 [41] 35 [[3,10,0]]
|
| | | 2993 0 7 [] 10 [[3,10,0]]
|
| | | 2994 0 3 [] 10 [[3,10,0]]
|
| | | 2995 0 8 [42] 1000 [[3,10,0]]
|
| | | 2996 0 1 [4203] 1 [[3,10,0]]
|
| | | 2997 0 4 [41] 35 [[3,10,0]]
|
| | | 2998 0 7 [] 10 [[3,10,0]]
|
| | | 2999 0 3 [] 10 [[3,10,0]]
|
| | | 3000 0 8 [42] 1000 [[3,10,0]]
|
| | | 3001 0 1 [4204] 1 [[3,10,0]]
|
| | | 3002 0 4 [41] 35 [[3,10,0]]
|
| | | 3003 0 7 [] 10 [[3,10,0]]
|
| | | 3004 0 3 [] 10 [[3,10,0]]
|
| | | 3005 0 8 [42] 1000 [[3,10,0]]
|
| | | 3006 0 1 [4205] 1 [[3,10,0]]
|
| | | 3007 0 4 [41] 35 [[3,10,0]]
|
| | | 3008 0 7 [] 10 [[3,10,0]]
|
| | | 3009 0 3 [] 10 [[3,10,0]]
|
| | | 3010 0 8 [42] 1000 [[3,10,0]]
|
| | | 3011 0 1 [4206] 1 [[3,10,0]]
|
| | | 3012 0 4 [41] 35 [[3,10,0]]
|
| | | 3013 0 7 [] 10 [[3,10,0]]
|
| | | 3014 0 3 [] 10 [[3,10,0]]
|
| | | 3015 0 8 [42] 1000 [[3,10,0]]
|
| | | 3016 0 1 [4207] 1 [[3,10,0]]
|
| | | 3017 0 4 [41] 35 [[3,10,0]]
|
| | | 3018 0 7 [] 10 [[3,10,0]]
|
| | | 3019 0 3 [] 10 [[3,10,0]]
|
| | | 3020 0 8 [42] 1000 [[3,10,0]]
|
| | | 3021 0 1 [4208] 1 [[3,10,0]]
|
| | | 3022 0 4 [41] 35 [[3,10,0]]
|
| | | 3023 0 7 [] 10 [[3,10,0]]
|
| | | 3024 0 3 [] 10 [[3,10,0]]
|
| | | 3025 0 8 [42] 1000 [[3,10,0]]
|
| | | 3026 0 1 [4209] 1 [[3,10,0]]
|
| | | 3027 0 4 [41] 35 [[3,10,0]]
|
| | | 3028 0 7 [] 10 [[3,10,0]]
|
| | | 3029 0 3 [] 10 [[3,10,0]]
|
| | | 3030 0 8 [42] 1000 [[3,10,0]]
|
| | | 3031 0 1 [4210] 1 [[3,10,0]]
|
| | | 3032 0 4 [41] 35 [[3,10,0]]
|
| | | 3033 0 7 [] 10 [[3,10,0]]
|
| | | 3034 0 3 [] 10 [[3,10,0]]
|
| | | 3035 0 8 [42] 1000 [[3,10,0]]
|
| | | 3036 0 1 [4301] 1 [[3,10,0]]
|
| | | 3037 0 4 [41] 35 [[3,10,0]]
|
| | | 3038 0 7 [] 10 [[3,10,0]]
|
| | | 3039 0 3 [] 10 [[3,10,0]]
|
| | | 3040 0 8 [42] 1000 [[3,10,0]]
|
| | | 3041 0 1 [4302] 1 [[3,10,0]]
|
| | | 3042 0 4 [41] 35 [[3,10,0]]
|
| | | 3043 0 7 [] 10 [[3,10,0]]
|
| | | 3044 0 3 [] 10 [[3,10,0]]
|
| | | 3045 0 8 [42] 1000 [[3,10,0]]
|
| | | 3046 0 1 [4303] 1 [[3,10,0]]
|
| | | 3047 0 4 [41] 35 [[3,10,0]]
|
| | | 3048 0 7 [] 10 [[3,10,0]]
|
| | | 3049 0 3 [] 10 [[3,10,0]]
|
| | | 3050 0 8 [42] 1000 [[3,10,0]]
|
| | | 3051 0 1 [4304] 1 [[3,10,0]]
|
| | | 3052 0 4 [41] 35 [[3,10,0]]
|
| | | 3053 0 7 [] 10 [[3,10,0]]
|
| | | 3054 0 3 [] 10 [[3,10,0]]
|
| | | 3055 0 8 [42] 1000 [[3,10,0]]
|
| | | 3056 0 1 [4305] 1 [[3,10,0]]
|
| | | 3057 0 4 [41] 35 [[3,10,0]]
|
| | | 3058 0 7 [] 10 [[3,10,0]]
|
| | | 3059 0 3 [] 10 [[3,10,0]]
|
| | | 3060 0 8 [42] 1000 [[3,10,0]]
|
| | | 3061 0 1 [4306] 1 [[3,10,0]]
|
| | | 3062 0 4 [41] 35 [[3,10,0]]
|
| | | 3063 0 7 [] 10 [[3,10,0]]
|
| | | 3064 0 3 [] 10 [[3,10,0]]
|
| | | 3065 0 8 [42] 1000 [[3,10,0]]
|
| | | 3066 0 1 [4307] 1 [[3,10,0]]
|
| | | 3067 0 4 [41] 35 [[3,10,0]]
|
| | | 3068 0 7 [] 10 [[3,10,0]]
|
| | | 3069 0 3 [] 10 [[3,10,0]]
|
| | | 3070 0 8 [42] 1000 [[3,10,0]]
|
| | | 3071 0 1 [4308] 1 [[3,10,0]]
|
| | | 3072 0 4 [41] 35 [[3,10,0]]
|
| | | 3073 0 7 [] 10 [[3,10,0]]
|
| | | 3074 0 3 [] 10 [[3,10,0]]
|
| | | 3075 0 8 [42] 1000 [[3,10,0]]
|
| | | 3076 0 1 [4309] 1 [[3,10,0]]
|
| | | 3077 0 4 [41] 35 [[3,10,0]]
|
| | | 3078 0 7 [] 10 [[3,10,0]]
|
| | | 3079 0 3 [] 10 [[3,10,0]]
|
| | | 3080 0 8 [42] 1000 [[3,10,0]]
|
| | | 3081 0 1 [4310] 1 [[3,10,0]]
|
| | | 3082 0 4 [41] 35 [[3,10,0]]
|
| | | 3083 0 7 [] 10 [[3,10,0]]
|
| | | 3084 0 3 [] 10 [[3,10,0]]
|
| | | 3085 0 8 [42] 1000 [[3,10,0]]
|
| | | 3086 0 1 [4401] 1 [[3,10,0]]
|
| | | 3087 0 4 [41] 35 [[3,10,0]]
|
| | | 3088 0 7 [] 10 [[3,10,0]]
|
| | | 3089 0 3 [] 10 [[3,10,0]]
|
| | | 3090 0 8 [42] 1000 [[3,10,0]]
|
| | | 3091 0 1 [4402] 1 [[3,10,0]]
|
| | | 3092 0 4 [41] 35 [[3,10,0]]
|
| | | 3093 0 7 [] 10 [[3,10,0]]
|
| | | 3094 0 3 [] 10 [[3,10,0]]
|
| | | 3095 0 8 [42] 1000 [[3,10,0]]
|
| | | 3096 0 1 [4403] 1 [[3,10,0]]
|
| | | 3097 0 4 [41] 35 [[3,10,0]]
|
| | | 3098 0 7 [] 10 [[3,10,0]]
|
| | | 3099 0 3 [] 10 [[3,10,0]]
|
| | | 3100 0 8 [42] 1000 [[3,10,0]]
|
| | | 3101 0 1 [4404] 1 [[3,10,0]]
|
| | | 3102 0 4 [41] 35 [[3,10,0]]
|
| | | 3103 0 7 [] 10 [[3,10,0]]
|
| | | 3104 0 3 [] 10 [[3,10,0]]
|
| | | 3105 0 8 [42] 1000 [[3,10,0]]
|
| | | 3106 0 1 [4405] 1 [[3,10,0]]
|
| | | 3107 0 4 [41] 35 [[3,10,0]]
|
| | | 3108 0 7 [] 10 [[3,10,0]]
|
| | | 3109 0 3 [] 10 [[3,10,0]]
|
| | | 3110 0 8 [42] 1000 [[3,10,0]]
|
| | | 3111 0 1 [4406] 1 [[3,10,0]]
|
| | | 3112 0 4 [41] 35 [[3,10,0]]
|
| | | 3113 0 7 [] 10 [[3,10,0]]
|
| | | 3114 0 3 [] 10 [[3,10,0]]
|
| | | 3115 0 8 [42] 1000 [[3,10,0]]
|
| | | 3116 0 1 [4407] 1 [[3,10,0]]
|
| | | 3117 0 4 [41] 35 [[3,10,0]]
|
| | | 3118 0 7 [] 10 [[3,10,0]]
|
| | | 3119 0 3 [] 10 [[3,10,0]]
|
| | | 3120 0 8 [42] 1000 [[3,10,0]]
|
| | | 3121 0 1 [4408] 1 [[3,10,0]]
|
| | | 3122 0 4 [41] 35 [[3,10,0]]
|
| | | 3123 0 7 [] 10 [[3,10,0]]
|
| | | 3124 0 3 [] 10 [[3,10,0]]
|
| | | 3125 0 8 [42] 1000 [[3,10,0]]
|
| | | 3126 0 1 [4409] 1 [[3,10,0]]
|
| | | 3127 0 4 [41] 35 [[3,10,0]]
|
| | | 3128 0 7 [] 10 [[3,10,0]]
|
| | | 3129 0 3 [] 10 [[3,10,0]]
|
| | | 3130 0 8 [42] 1000 [[3,10,0]]
|
| | | 3131 0 1 [4410] 1 [[3,10,0]]
|
| | | 3132 0 4 [41] 35 [[3,10,0]]
|
| | | 3133 0 7 [] 10 [[3,10,0]]
|
| | | 3134 0 3 [] 10 [[3,10,0]]
|
| | | 3135 0 8 [42] 1000 [[3,10,0]]
|
| | | 3136 0 1 [4501] 1 [[3,10,0]]
|
| | | 3137 0 4 [41] 35 [[3,10,0]]
|
| | | 3138 0 7 [] 10 [[3,10,0]]
|
| | | 3139 0 3 [] 10 [[3,10,0]]
|
| | | 3140 0 8 [42] 1000 [[3,10,0]]
|
| | | 3141 0 1 [4502] 1 [[3,10,0]]
|
| | | 3142 0 4 [41] 35 [[3,10,0]]
|
| | | 3143 0 7 [] 10 [[3,10,0]]
|
| | | 3144 0 3 [] 10 [[3,10,0]]
|
| | | 3145 0 8 [42] 1000 [[3,10,0]]
|
| | | 3146 0 1 [4503] 1 [[3,10,0]]
|
| | | 3147 0 4 [41] 35 [[3,10,0]]
|
| | | 3148 0 7 [] 10 [[3,10,0]]
|
| | | 3149 0 3 [] 10 [[3,10,0]]
|
| | | 3150 0 8 [42] 1000 [[3,10,0]]
|
| | | 3151 0 1 [4504] 1 [[3,10,0]]
|
| | | 3152 0 4 [41] 35 [[3,10,0]]
|
| | | 3153 0 7 [] 10 [[3,10,0]]
|
| | | 3154 0 3 [] 10 [[3,10,0]]
|
| | | 3155 0 8 [42] 1000 [[3,10,0]]
|
| | | 3156 0 1 [4505] 1 [[3,10,0]]
|
| | | 3157 0 4 [41] 35 [[3,10,0]]
|
| | | 3158 0 7 [] 10 [[3,10,0]]
|
| | | 3159 0 3 [] 10 [[3,10,0]]
|
| | | 3160 0 8 [42] 1000 [[3,10,0]]
|
| | | 3161 0 1 [4506] 1 [[3,10,0]]
|
| | | 3162 0 4 [41] 35 [[3,10,0]]
|
| | | 3163 0 7 [] 10 [[3,10,0]]
|
| | | 3164 0 3 [] 10 [[3,10,0]]
|
| | | 3165 0 8 [42] 1000 [[3,10,0]]
|
| | | 3166 0 1 [4507] 1 [[3,10,0]]
|
| | | 3167 0 4 [41] 35 [[3,10,0]]
|
| | | 3168 0 7 [] 10 [[3,10,0]]
|
| | | 3169 0 3 [] 10 [[3,10,0]]
|
| | | 3170 0 8 [42] 1000 [[3,10,0]]
|
| | | 3171 0 1 [4508] 1 [[3,10,0]]
|
| | | 3172 0 4 [41] 35 [[3,10,0]]
|
| | | 3173 0 7 [] 10 [[3,10,0]]
|
| | | 3174 0 3 [] 10 [[3,10,0]]
|
| | | 3175 0 8 [42] 1000 [[3,10,0]]
|
| | | 3176 0 1 [4509] 1 [[3,10,0]]
|
| | | 3177 0 4 [41] 35 [[3,10,0]]
|
| | | 3178 0 7 [] 10 [[3,10,0]]
|
| | | 3179 0 3 [] 10 [[3,10,0]]
|
| | | 3180 0 8 [42] 1000 [[3,10,0]]
|
| | | 3181 0 1 [4510] 1 [[3,10,0]]
|
| | | 3182 0 4 [41] 35 [[3,10,0]]
|
| | | 3183 0 7 [] 10 [[3,10,0]]
|
| | | 3184 0 3 [] 10 [[3,10,0]]
|
| | | 3185 0 8 [42] 1000 [[3,10,0]]
|
| | | 3186 0 1 [4601] 1 [[3,10,0]]
|
| | | 3187 0 4 [41] 35 [[3,10,0]]
|
| | | 3188 0 7 [] 10 [[3,10,0]]
|
| | | 3189 0 3 [] 10 [[3,10,0]]
|
| | | 3190 0 8 [42] 1000 [[3,10,0]]
|
| | | 3191 0 1 [4602] 1 [[3,10,0]]
|
| | | 3192 0 4 [41] 35 [[3,10,0]]
|
| | | 3193 0 7 [] 10 [[3,10,0]]
|
| | | 3194 0 3 [] 10 [[3,10,0]]
|
| | | 3195 0 8 [42] 1000 [[3,10,0]]
|
| | | 3196 0 1 [4603] 1 [[3,10,0]]
|
| | | 3197 0 4 [41] 35 [[3,10,0]]
|
| | | 3198 0 7 [] 10 [[3,10,0]]
|
| | | 3199 0 3 [] 10 [[3,10,0]]
|
| | | 3200 0 8 [42] 1000 [[3,10,0]]
|
| | | 3201 0 1 [4604] 1 [[3,10,0]]
|
| | | 3202 0 4 [41] 35 [[3,10,0]]
|
| | | 3203 0 7 [] 10 [[3,10,0]]
|
| | | 3204 0 3 [] 10 [[3,10,0]]
|
| | | 3205 0 8 [42] 1000 [[3,10,0]]
|
| | | 3206 0 1 [4605] 1 [[3,10,0]]
|
| | | 3207 0 4 [41] 35 [[3,10,0]]
|
| | | 3208 0 7 [] 10 [[3,10,0]]
|
| | | 3209 0 3 [] 10 [[3,10,0]]
|
| | | 3210 0 8 [42] 1000 [[3,10,0]]
|
| | | 3211 0 1 [4606] 1 [[3,10,0]]
|
| | | 3212 0 4 [41] 35 [[3,10,0]]
|
| | | 3213 0 7 [] 10 [[3,10,0]]
|
| | | 3214 0 3 [] 10 [[3,10,0]]
|
| | | 3215 0 8 [42] 1000 [[3,10,0]]
|
| | | 3216 0 1 [4607] 1 [[3,10,0]]
|
| | | 3217 0 4 [41] 35 [[3,10,0]]
|
| | | 3218 0 7 [] 10 [[3,10,0]]
|
| | | 3219 0 3 [] 10 [[3,10,0]]
|
| | | 3220 0 8 [42] 1000 [[3,10,0]]
|
| | | 3221 0 1 [4608] 1 [[3,10,0]]
|
| | | 3222 0 4 [41] 35 [[3,10,0]]
|
| | | 3223 0 7 [] 10 [[3,10,0]]
|
| | | 3224 0 3 [] 10 [[3,10,0]]
|
| | | 3225 0 8 [42] 1000 [[3,10,0]]
|
| | | 3226 0 1 [4609] 1 [[3,10,0]]
|
| | | 3227 0 4 [41] 35 [[3,10,0]]
|
| | | 3228 0 7 [] 10 [[3,10,0]]
|
| | | 3229 0 3 [] 10 [[3,10,0]]
|
| | | 3230 0 8 [42] 1000 [[3,10,0]]
|
| | | 3231 0 1 [4610] 1 [[3,10,0]]
|
| | | 3232 0 4 [41] 35 [[3,10,0]]
|
| | | 3233 0 7 [] 10 [[3,10,0]]
|
| | | 3234 0 3 [] 10 [[3,10,0]]
|
| | | 3235 0 8 [42] 1000 [[3,10,0]]
|
| | | 3236 0 1 [4701] 1 [[3,10,0]]
|
| | | 3237 0 4 [41] 35 [[3,10,0]]
|
| | | 3238 0 7 [] 10 [[3,10,0]]
|
| | | 3239 0 3 [] 10 [[3,10,0]]
|
| | | 3240 0 8 [42] 1000 [[3,10,0]]
|
| | | 3241 0 1 [4702] 1 [[3,10,0]]
|
| | | 3242 0 4 [41] 35 [[3,10,0]]
|
| | | 3243 0 7 [] 10 [[3,10,0]]
|
| | | 3244 0 3 [] 10 [[3,10,0]]
|
| | | 3245 0 8 [42] 1000 [[3,10,0]]
|
| | | 3246 0 1 [4703] 1 [[3,10,0]]
|
| | | 3247 0 4 [41] 35 [[3,10,0]]
|
| | | 3248 0 7 [] 10 [[3,10,0]]
|
| | | 3249 0 3 [] 10 [[3,10,0]]
|
| | | 3250 0 8 [42] 1000 [[3,10,0]]
|
| | | 3251 0 1 [4704] 1 [[3,10,0]]
|
| | | 3252 0 4 [41] 35 [[3,10,0]]
|
| | | 3253 0 7 [] 10 [[3,10,0]]
|
| | | 3254 0 3 [] 10 [[3,10,0]]
|
| | | 3255 0 8 [42] 1000 [[3,10,0]]
|
| | | 3256 0 1 [4705] 1 [[3,10,0]]
|
| | | 3257 0 4 [41] 35 [[3,10,0]]
|
| | | 3258 0 7 [] 10 [[3,10,0]]
|
| | | 3259 0 3 [] 10 [[3,10,0]]
|
| | | 3260 0 8 [42] 1000 [[3,10,0]]
|
| | | 3261 0 1 [4706] 1 [[3,10,0]]
|
| | | 3262 0 4 [41] 35 [[3,10,0]]
|
| | | 3263 0 7 [] 10 [[3,10,0]]
|
| | | 3264 0 3 [] 10 [[3,10,0]]
|
| | | 3265 0 8 [42] 1000 [[3,10,0]]
|
| | | 3266 0 1 [4707] 1 [[3,10,0]]
|
| | | 3267 0 4 [41] 35 [[3,10,0]]
|
| | | 3268 0 7 [] 10 [[3,10,0]]
|
| | | 3269 0 3 [] 10 [[3,10,0]]
|
| | | 3270 0 8 [42] 1000 [[3,10,0]]
|
| | | 3271 0 1 [4708] 1 [[3,10,0]]
|
| | | 3272 0 4 [41] 35 [[3,10,0]]
|
| | | 3273 0 7 [] 10 [[3,10,0]]
|
| | | 3274 0 3 [] 10 [[3,10,0]]
|
| | | 3275 0 8 [42] 1000 [[3,10,0]]
|
| | | 3276 0 1 [4709] 1 [[3,10,0]]
|
| | | 3277 0 4 [41] 35 [[3,10,0]]
|
| | | 3278 0 7 [] 10 [[3,10,0]]
|
| | | 3279 0 3 [] 10 [[3,10,0]]
|
| | | 3280 0 8 [42] 1000 [[3,10,0]]
|
| | | 3281 0 1 [4710] 1 [[3,10,0]]
|
| | | 3282 0 4 [41] 35 [[3,10,0]]
|
| | | 3283 0 7 [] 10 [[3,10,0]]
|
| | | 3284 0 3 [] 10 [[3,10,0]]
|
| | | 3285 0 8 [42] 1000 [[3,10,0]]
|
| | | 3286 0 1 [4801] 1 [[3,10,0]]
|
| | | 3287 0 4 [41] 35 [[3,10,0]]
|
| | | 3288 0 7 [] 10 [[3,10,0]]
|
| | | 3289 0 3 [] 10 [[3,10,0]]
|
| | | 3290 0 8 [42] 1000 [[3,10,0]]
|
| | | 3291 0 1 [4802] 1 [[3,10,0]]
|
| | | 3292 0 4 [41] 35 [[3,10,0]]
|
| | | 3293 0 7 [] 10 [[3,10,0]]
|
| | | 3294 0 3 [] 10 [[3,10,0]]
|
| | | 3295 0 8 [42] 1000 [[3,10,0]]
|
| | | 3296 0 1 [4803] 1 [[3,10,0]]
|
| | | 3297 0 4 [41] 35 [[3,10,0]]
|
| | | 3298 0 7 [] 10 [[3,10,0]]
|
| | | 3299 0 3 [] 10 [[3,10,0]]
|
| | | 3300 0 8 [42] 1000 [[3,10,0]]
|
| | | 3301 0 1 [4804] 1 [[3,10,0]]
|
| | | 3302 0 4 [41] 35 [[3,10,0]]
|
| | | 3303 0 7 [] 10 [[3,10,0]]
|
| | | 3304 0 3 [] 10 [[3,10,0]]
|
| | | 3305 0 8 [42] 1000 [[3,10,0]]
|
| | | 3306 0 1 [4805] 1 [[3,10,0]]
|
| | | 3307 0 4 [41] 35 [[3,10,0]]
|
| | | 3308 0 7 [] 10 [[3,10,0]]
|
| | | 3309 0 3 [] 10 [[3,10,0]]
|
| | | 3310 0 8 [42] 1000 [[3,10,0]]
|
| | | 3311 0 1 [4806] 1 [[3,10,0]]
|
| | | 3312 0 4 [41] 35 [[3,10,0]]
|
| | | 3313 0 7 [] 10 [[3,10,0]]
|
| | | 3314 0 3 [] 10 [[3,10,0]]
|
| | | 3315 0 8 [42] 1000 [[3,10,0]]
|
| | | 3316 0 1 [4807] 1 [[3,10,0]]
|
| | | 3317 0 4 [41] 35 [[3,10,0]]
|
| | | 3318 0 7 [] 10 [[3,10,0]]
|
| | | 3319 0 3 [] 10 [[3,10,0]]
|
| | | 3320 0 8 [42] 1000 [[3,10,0]]
|
| | | 3321 0 1 [4808] 1 [[3,10,0]]
|
| | | 3322 0 4 [41] 35 [[3,10,0]]
|
| | | 3323 0 7 [] 10 [[3,10,0]]
|
| | | 3324 0 3 [] 10 [[3,10,0]]
|
| | | 3325 0 8 [42] 1000 [[3,10,0]]
|
| | | 3326 0 1 [4809] 1 [[3,10,0]]
|
| | | 3327 0 4 [41] 35 [[3,10,0]]
|
| | | 3328 0 7 [] 10 [[3,10,0]]
|
| | | 3329 0 3 [] 10 [[3,10,0]]
|
| | | 3330 0 8 [42] 1000 [[3,10,0]]
|
| | | 3331 0 1 [4810] 1 [[3,10,0]]
|
| | | 3332 0 4 [41] 35 [[3,10,0]]
|
| | | 3333 0 7 [] 10 [[3,10,0]]
|
| | | 3334 0 3 [] 10 [[3,10,0]]
|
| | | 3335 0 8 [42] 1000 [[3,10,0]]
|
| | | 3336 0 1 [4901] 1 [[3,10,0]]
|
| | | 3337 0 4 [41] 35 [[3,10,0]]
|
| | | 3338 0 7 [] 10 [[3,10,0]]
|
| | | 3339 0 3 [] 10 [[3,10,0]]
|
| | | 3340 0 8 [42] 1000 [[3,10,0]]
|
| | | 3341 0 1 [4902] 1 [[3,10,0]]
|
| | | 3342 0 4 [41] 35 [[3,10,0]]
|
| | | 3343 0 7 [] 10 [[3,10,0]]
|
| | | 3344 0 3 [] 10 [[3,10,0]]
|
| | | 3345 0 8 [42] 1000 [[3,10,0]]
|
| | | 3346 0 1 [4903] 1 [[3,10,0]]
|
| | | 3347 0 4 [41] 35 [[3,10,0]]
|
| | | 3348 0 7 [] 10 [[3,10,0]]
|
| | | 3349 0 3 [] 10 [[3,10,0]]
|
| | | 3350 0 8 [42] 1000 [[3,10,0]]
|
| | | 3351 0 1 [4904] 1 [[3,10,0]]
|
| | | 3352 0 4 [41] 35 [[3,10,0]]
|
| | | 3353 0 7 [] 10 [[3,10,0]]
|
| | | 3354 0 3 [] 10 [[3,10,0]]
|
| | | 3355 0 8 [42] 1000 [[3,10,0]]
|
| | | 3356 0 1 [4905] 1 [[3,10,0]]
|
| | | 3357 0 4 [41] 35 [[3,10,0]]
|
| | | 3358 0 7 [] 10 [[3,10,0]]
|
| | | 3359 0 3 [] 10 [[3,10,0]]
|
| | | 3360 0 8 [42] 1000 [[3,10,0]]
|
| | | 3361 0 1 [4906] 1 [[3,10,0]]
|
| | | 3362 0 4 [41] 35 [[3,10,0]]
|
| | | 3363 0 7 [] 10 [[3,10,0]]
|
| | | 3364 0 3 [] 10 [[3,10,0]]
|
| | | 3365 0 8 [42] 1000 [[3,10,0]]
|
| | | 3366 0 1 [4907] 1 [[3,10,0]]
|
| | | 3367 0 4 [41] 35 [[3,10,0]]
|
| | | 3368 0 7 [] 10 [[3,10,0]]
|
| | | 3369 0 3 [] 10 [[3,10,0]]
|
| | | 3370 0 8 [42] 1000 [[3,10,0]]
|
| | | 3371 0 1 [4908] 1 [[3,10,0]]
|
| | | 3372 0 4 [41] 35 [[3,10,0]]
|
| | | 3373 0 7 [] 10 [[3,10,0]]
|
| | | 3374 0 3 [] 10 [[3,10,0]]
|
| | | 3375 0 8 [42] 1000 [[3,10,0]]
|
| | | 3376 0 1 [4909] 1 [[3,10,0]]
|
| | | 3377 0 4 [41] 35 [[3,10,0]]
|
| | | 3378 0 7 [] 10 [[3,10,0]]
|
| | | 3379 0 3 [] 10 [[3,10,0]]
|
| | | 3380 0 8 [42] 1000 [[3,10,0]]
|
| | | 3381 0 1 [4910] 1 [[3,10,0]]
|
| | | 3382 0 4 [41] 35 [[3,10,0]]
|
| | | 3383 0 7 [] 10 [[3,10,0]]
|
| | | 3384 0 3 [] 10 [[3,10,0]]
|
| | | 3385 0 8 [42] 1000 [[3,10,0]]
|
| | | 3386 0 1 [5001] 1 [[3,10,0]]
|
| | | 3387 0 4 [41] 35 [[3,10,0]]
|
| | | 3388 0 7 [] 10 [[3,10,0]]
|
| | | 3389 0 3 [] 10 [[3,10,0]]
|
| | | 3390 0 8 [42] 1000 [[3,10,0]]
|
| | | 3391 0 1 [5002] 1 [[3,10,0]]
|
| | | 3392 0 4 [41] 35 [[3,10,0]]
|
| | | 3393 0 7 [] 10 [[3,10,0]]
|
| | | 3394 0 3 [] 10 [[3,10,0]]
|
| | | 3395 0 8 [42] 1000 [[3,10,0]]
|
| | | 3396 0 1 [5003] 1 [[3,10,0]]
|
| | | 3397 0 4 [41] 35 [[3,10,0]]
|
| | | 3398 0 7 [] 10 [[3,10,0]]
|
| | | 3399 0 3 [] 10 [[3,10,0]]
|
| | | 3400 0 8 [42] 1000 [[3,10,0]]
|
| | | 3401 0 1 [5004] 1 [[3,10,0]]
|
| | | 3402 0 4 [41] 35 [[3,10,0]]
|
| | | 3403 0 7 [] 10 [[3,10,0]]
|
| | | 3404 0 3 [] 10 [[3,10,0]]
|
| | | 3405 0 8 [42] 1000 [[3,10,0]]
|
| | | 3406 0 1 [5005] 1 [[3,10,0]]
|
| | | 3407 0 4 [41] 35 [[3,10,0]]
|
| | | 3408 0 7 [] 10 [[3,10,0]]
|
| | | 3409 0 3 [] 10 [[3,10,0]]
|
| | | 3410 0 8 [42] 1000 [[3,10,0]]
|
| | | 3411 0 1 [5006] 1 [[3,10,0]]
|
| | | 3412 0 4 [41] 35 [[3,10,0]]
|
| | | 3413 0 7 [] 10 [[3,10,0]]
|
| | | 3414 0 3 [] 10 [[3,10,0]]
|
| | | 3415 0 8 [42] 1000 [[3,10,0]]
|
| | | 3416 0 1 [5007] 1 [[3,10,0]]
|
| | | 3417 0 4 [41] 35 [[3,10,0]]
|
| | | 3418 0 7 [] 10 [[3,10,0]]
|
| | | 3419 0 3 [] 10 [[3,10,0]]
|
| | | 3420 0 8 [42] 1000 [[3,10,0]]
|
| | | 3421 0 1 [5008] 1 [[3,10,0]]
|
| | | 3422 0 4 [41] 35 [[3,10,0]]
|
| | | 3423 0 7 [] 10 [[3,10,0]]
|
| | | 3424 0 3 [] 10 [[3,10,0]]
|
| | | 3425 0 8 [42] 1000 [[3,10,0]]
|
| | | 3426 0 1 [5009] 1 [[3,10,0]]
|
| | | 3427 0 4 [41] 35 [[3,10,0]]
|
| | | 3428 0 7 [] 10 [[3,10,0]]
|
| | | 3429 0 3 [] 10 [[3,10,0]]
|
| | | 3430 0 8 [42] 1000 [[3,10,0]]
|
| | | 3431 0 1 [5010] 1 [[3,10,0]]
|