| | |
| | | TaskID TaskGroup TaskType TaskConds NeedValue AwardItemList
|
| | | 1001 0 4 [41] 3 [[3,5,0]]
|
| | | 1002 0 7 [] 2 [[3,5,0]]
|
| | | 1003 0 9 [1] 2 [[3,5,0]]
|
| | | 1004 0 5 [] 2 [[3,5,0]]
|
| | | 1005 0 1 [101] 1 [[3,5,0]]
|
| | | 1006 0 7 [] 5 [[3,5,0]]
|
| | | 1007 0 4 [41] 5 [[3,5,0]]
|
| | | 1008 0 8 [42] 100 [[4,5,0]]
|
| | | 1009 0 4 [41] 5 [[3,5,0]]
|
| | | 1010 0 1 [102] 1 [[3,5,0]]
|
| | | 1011 0 5 [] 3 [[3,5,0]]
|
| | | 1012 0 7 [] 5 [[3,5,0]]
|
| | | 1013 0 3 [] 5 [[3,5,0]]
|
| | | 1014 0 1 [103] 1 [[3,5,0]]
|
| | | 1015 0 5 [] 5 [[3,5,0]]
|
| | | 1016 0 6 [] 1 [[3,5,0]]
|
| | | 1017 0 1 [104] 1 [[3,5,0]]
|
| | | 1018 0 4 [41] 10 [[3,5,0]]
|
| | | 1019 0 7 [] 10 [[3,5,0]]
|
| | | 1020 0 3 [] 5 [[3,5,0]]
|
| | | 1021 0 1 [105] 1 [[3,5,0]]
|
| | | 1022 0 4 [41] 10 [[3,5,0]]
|
| | | 1023 0 7 [] 10 [[3,5,0]]
|
| | | 1024 0 3 [] 5 [[3,5,0]]
|
| | | 1025 0 1 [201] 1 [[3,5,0]]
|
| | | 1026 0 5 [] 10 [[3,5,0]]
|
| | | 1027 0 4 [41] 10 [[3,5,0]]
|
| | | 1028 0 7 [] 10 [[3,5,0]]
|
| | | 1029 0 9 [3] 2 [[3,5,0]]
|
| | | 1030 0 1 [202] 1 [[3,5,0]]
|
| | | 1031 0 5 [] 11 [[3,5,0]]
|
| | | 1032 0 4 [41] 15 [[3,5,0]]
|
| | | 1033 0 7 [] 10 [[3,5,0]]
|
| | | 1034 0 3 [] 10 [[3,5,0]]
|
| | | 1035 0 1 [203] 1 [[3,5,0]]
|
| | | 1036 0 5 [] 13 [[3,5,0]]
|
| | | 1037 0 4 [41] 20 [[3,5,0]]
|
| | | 1038 0 7 [] 10 [[3,5,0]]
|
| | | 1039 0 3 [] 10 [[3,5,0]]
|
| | | 1040 0 1 [204] 1 [[3,5,0]]
|
| | | 1041 0 5 [] 15 [[3,5,0]]
|
| | | 1042 0 4 [41] 20 [[3,5,0]]
|
| | | 1043 0 7 [] 10 [[3,5,0]]
|
| | | 1044 0 1 [205] 1 [[3,5,0],[6,3,0]]
|
| | | 1045 0 7 [] 10 [[3,5,0]]
|
| | | 1046 0 3 [] 10 [[3,5,0]]
|
| | | 1047 0 1 [301] 1 [[3,10,0]]
|
| | | 1048 0 4 [41] 20 [[3,10,0]]
|
| | | 1049 0 3 [] 10 [[3,10,0]]
|
| | | 1050 0 7 [] 10 [[3,10,0]]
|
| | | 1051 0 3 [] 10 [[3,10,0]]
|
| | | 1052 0 1 [302] 1 [[3,10,0]]
|
| | | 1053 0 3 [] 10 [[3,10,0]]
|
| | | 1054 0 4 [41] 20 [[3,10,0]]
|
| | | 1055 0 7 [] 10 [[3,10,0]]
|
| | | 1056 0 3 [] 10 [[3,10,0]]
|
| | | 1057 0 1 [303] 1 [[3,10,0]]
|
| | | 1058 0 3 [] 10 [[3,10,0]]
|
| | | 1059 0 4 [41] 20 [[3,10,0]]
|
| | | 1060 0 7 [] 10 [[3,10,0]]
|
| | | 1061 0 3 [] 10 [[3,10,0]]
|
| | | 1062 0 1 [304] 1 [[3,10,0]]
|
| | | 1063 0 5 [] 22 [[3,10,0]]
|
| | | 1064 0 4 [41] 20 [[3,10,0]]
|
| | | 1065 0 7 [] 10 [[3,10,0]]
|
| | | 1066 0 3 [] 10 [[3,10,0]]
|
| | | 1067 0 1 [305] 1 [[3,10,0]]
|
| | | 1068 0 3 [] 10 [[3,10,0]]
|
| | | 1069 0 4 [41] 20 [[3,10,0]]
|
| | | 1070 0 7 [] 10 [[3,10,0]]
|
| | | 1071 0 3 [] 10 [[3,10,0]]
|
| | | 1072 0 1 [306] 1 [[3,10,0]]
|
| | | 1073 0 5 [] 24 [[3,10,0]]
|
| | | 1074 0 4 [41] 30 [[3,10,0]]
|
| | | 1075 0 7 [] 10 [[3,10,0]]
|
| | | 1076 0 1 [307] 1 [[3,10,0]]
|
| | | 1077 0 5 [] 25 [[3,10,0]]
|
| | | 1078 0 4 [41] 30 [[3,10,0]]
|
| | | 1079 0 7 [] 10 [[3,10,0]]
|
| | | 1080 0 3 [] 10 [[3,10,0]]
|
| | | 1081 0 1 [308] 1 [[3,10,0]]
|
| | | 1082 0 8 [42] 1000 [[3,10,0]]
|
| | | 1083 0 4 [41] 30 [[3,10,0]]
|
| | | 1084 0 7 [] 10 [[3,10,0]]
|
| | | 1085 0 3 [] 10 [[3,10,0]]
|
| | | 1086 0 1 [401] 1 [[3,10,0]]
|
| | | 1087 0 4 [41] 35 [[3,10,0]]
|
| | | 1088 0 7 [] 10 [[3,10,0]]
|
| | | 1089 0 3 [] 10 [[3,10,0]]
|
| | | 1090 0 8 [42] 1000 [[3,10,0]]
|
| | | 1091 0 1 [402] 1 [[3,10,0]]
|
| | | 1092 0 4 [41] 35 [[3,10,0]]
|
| | | 1093 0 7 [] 10 [[3,10,0]]
|
| | | 1094 0 3 [] 10 [[3,10,0]]
|
| | | 1095 0 8 [42] 1000 [[3,10,0]]
|
| | | 1096 0 1 [403] 1 [[3,10,0]]
|
| | | 1097 0 4 [41] 35 [[3,10,0]]
|
| | | 1098 0 7 [] 10 [[3,10,0]]
|
| | | 1099 0 3 [] 10 [[3,10,0]]
|
| | | 1100 0 8 [42] 1000 [[3,10,0]]
|
| | | 1101 0 1 [404] 1 [[3,10,0]]
|
| | | 1102 0 4 [41] 35 [[3,10,0]]
|
| | | 1103 0 7 [] 10 [[3,10,0]]
|
| | | 1104 0 3 [] 10 [[3,10,0]]
|
| | | 1105 0 8 [42] 1000 [[3,10,0]]
|
| | | 1106 0 1 [405] 1 [[3,10,0]]
|
| | | 1107 0 4 [41] 35 [[3,10,0]]
|
| | | 1108 0 7 [] 10 [[3,10,0]]
|
| | | 1109 0 3 [] 10 [[3,10,0]]
|
| | | 1110 0 8 [42] 1000 [[3,10,0]]
|
| | | 1111 0 1 [406] 1 [[3,10,0]]
|
| | | 1112 0 4 [41] 35 [[3,10,0]]
|
| | | 1113 0 7 [] 10 [[3,10,0]]
|
| | | 1114 0 3 [] 10 [[3,10,0]]
|
| | | 1115 0 8 [42] 1000 [[3,10,0]]
|
| | | 1116 0 1 [407] 1 [[3,10,0]]
|
| | | 1117 0 4 [41] 35 [[3,10,0]]
|
| | | 1118 0 7 [] 10 [[3,10,0]]
|
| | | 1119 0 3 [] 10 [[3,10,0]]
|
| | | 1120 0 8 [42] 1000 [[3,10,0]]
|
| | | 1121 0 1 [408] 1 [[3,10,0]]
|
| | | 1122 0 4 [41] 35 [[3,10,0]]
|
| | | 1123 0 7 [] 10 [[3,10,0]]
|
| | | 1124 0 3 [] 10 [[3,10,0]]
|
| | | 1125 0 8 [42] 1000 [[3,10,0]]
|
| | | 1126 0 1 [409] 1 [[3,10,0]]
|
| | | 1127 0 4 [41] 35 [[3,10,0]]
|
| | | 1128 0 7 [] 10 [[3,10,0]]
|
| | | 1129 0 3 [] 10 [[3,10,0]]
|
| | | 1130 0 8 [42] 1000 [[3,10,0]]
|
| | | 1131 0 1 [410] 1 [[3,10,0]]
|
| | | 1132 0 4 [41] 35 [[3,10,0]]
|
| | | 1133 0 8 [42] 1000 [[3,10,0]]
|
| | | 1134 0 7 [] 10 [[3,10,0]]
|
| | | 1135 0 3 [] 10 [[3,10,0]]
|
| | | 1136 0 1 [501] 1 [[3,10,0]]
|
| | | 1137 0 4 [41] 35 [[3,10,0]]
|
| | | 1138 0 7 [] 10 [[3,10,0]]
|
| | | 1139 0 3 [] 10 [[3,10,0]]
|
| | | 1140 0 8 [42] 1000 [[3,10,0]]
|
| | | 1141 0 1 [502] 1 [[3,10,0]]
|
| | | 1142 0 4 [41] 35 [[3,10,0]]
|
| | | 1143 0 7 [] 10 [[3,10,0]]
|
| | | 1144 0 3 [] 10 [[3,10,0]]
|
| | | 1145 0 8 [42] 1000 [[3,10,0]]
|
| | | 1146 0 1 [503] 1 [[3,10,0]]
|
| | | 1147 0 4 [41] 35 [[3,10,0]]
|
| | | 1148 0 7 [] 10 [[3,10,0]]
|
| | | 1149 0 3 [] 10 [[3,10,0]]
|
| | | 1150 0 8 [42] 1000 [[3,10,0]]
|
| | | 1151 0 1 [504] 1 [[3,10,0]]
|
| | | 1152 0 4 [41] 35 [[3,10,0]]
|
| | | 1153 0 7 [] 10 [[3,10,0]]
|
| | | 1154 0 3 [] 10 [[3,10,0]]
|
| | | 1155 0 8 [42] 1000 [[3,10,0]]
|
| | | 1156 0 1 [505] 1 [[3,10,0]]
|
| | | 1157 0 4 [41] 35 [[3,10,0]]
|
| | | 1158 0 7 [] 10 [[3,10,0]]
|
| | | 1159 0 3 [] 10 [[3,10,0]]
|
| | | 1160 0 8 [42] 1000 [[3,10,0]]
|
| | | 1161 0 1 [506] 1 [[3,10,0]]
|
| | | 1162 0 4 [41] 35 [[3,10,0]]
|
| | | 1163 0 7 [] 10 [[3,10,0]]
|
| | | 1164 0 3 [] 10 [[3,10,0]]
|
| | | 1165 0 8 [42] 1000 [[3,10,0]]
|
| | | 1166 0 1 [507] 1 [[3,10,0]]
|
| | | 1167 0 4 [41] 35 [[3,10,0]]
|
| | | 1168 0 7 [] 10 [[3,10,0]]
|
| | | 1169 0 3 [] 10 [[3,10,0]]
|
| | | 1170 0 8 [42] 1000 [[3,10,0]]
|
| | | 1171 0 1 [508] 1 [[3,10,0]]
|
| | | 1172 0 4 [41] 35 [[3,10,0]]
|
| | | 1173 0 7 [] 10 [[3,10,0]]
|
| | | 1174 0 3 [] 10 [[3,10,0]]
|
| | | 1175 0 8 [42] 1000 [[3,10,0]]
|
| | | 1176 0 1 [509] 1 [[3,10,0]]
|
| | | 1177 0 4 [41] 35 [[3,10,0]]
|
| | | 1178 0 7 [] 10 [[3,10,0]]
|
| | | 1179 0 3 [] 10 [[3,10,0]]
|
| | | 1180 0 8 [42] 1000 [[3,10,0]]
|
| | | 1181 0 1 [510] 1 [[3,10,0]]
|
| | | 1182 0 4 [41] 35 [[3,10,0]]
|
| | | 1183 0 8 [42] 1000 [[3,10,0]]
|
| | | 1184 0 7 [] 10 [[3,10,0]]
|
| | | 1185 0 3 [] 10 [[3,10,0]]
|
| | | 1186 0 1 [601] 1 [[3,10,0]]
|
| | | 1187 0 4 [41] 35 [[3,10,0]]
|
| | | 1188 0 7 [] 10 [[3,10,0]]
|
| | | 1189 0 3 [] 10 [[3,10,0]]
|
| | | 1190 0 8 [42] 1000 [[3,10,0]]
|
| | | 1191 0 1 [602] 1 [[3,10,0]]
|
| | | 1192 0 4 [41] 35 [[3,10,0]]
|
| | | 1193 0 7 [] 10 [[3,10,0]]
|
| | | 1194 0 3 [] 10 [[3,10,0]]
|
| | | 1195 0 8 [42] 1000 [[3,10,0]]
|
| | | 1196 0 1 [603] 1 [[3,10,0]]
|
| | | 1197 0 4 [41] 35 [[3,10,0]]
|
| | | 1198 0 7 [] 10 [[3,10,0]]
|
| | | 1199 0 3 [] 10 [[3,10,0]]
|
| | | 1200 0 8 [42] 1000 [[3,10,0]]
|
| | | 1201 0 1 [604] 1 [[3,10,0]]
|
| | | 1202 0 4 [41] 35 [[3,10,0]]
|
| | | 1203 0 7 [] 10 [[3,10,0]]
|
| | | 1204 0 3 [] 10 [[3,10,0]]
|
| | | 1205 0 8 [42] 1000 [[3,10,0]]
|
| | | 1206 0 1 [605] 1 [[3,10,0]]
|
| | | 1207 0 4 [41] 35 [[3,10,0]]
|
| | | 1208 0 7 [] 10 [[3,10,0]]
|
| | | 1209 0 3 [] 10 [[3,10,0]]
|
| | | 1210 0 8 [42] 1000 [[3,10,0]]
|
| | | 1211 0 1 [606] 1 [[3,10,0]]
|
| | | 1212 0 4 [41] 35 [[3,10,0]]
|
| | | 1213 0 7 [] 10 [[3,10,0]]
|
| | | 1214 0 3 [] 10 [[3,10,0]]
|
| | | 1215 0 8 [42] 1000 [[3,10,0]]
|
| | | 1216 0 1 [607] 1 [[3,10,0]]
|
| | | 1217 0 4 [41] 35 [[3,10,0]]
|
| | | 1218 0 7 [] 10 [[3,10,0]]
|
| | | 1219 0 3 [] 10 [[3,10,0]]
|
| | | 1220 0 8 [42] 1000 [[3,10,0]]
|
| | | 1221 0 1 [608] 1 [[3,10,0]]
|
| | | 1222 0 4 [41] 35 [[3,10,0]]
|
| | | 1223 0 7 [] 10 [[3,10,0]]
|
| | | 1224 0 3 [] 10 [[3,10,0]]
|
| | | 1225 0 8 [42] 1000 [[3,10,0]]
|
| | | 1226 0 1 [609] 1 [[3,10,0]]
|
| | | 1227 0 4 [41] 35 [[3,10,0]]
|
| | | 1228 0 7 [] 10 [[3,10,0]]
|
| | | 1229 0 3 [] 10 [[3,10,0]]
|
| | | 1230 0 8 [42] 1000 [[3,10,0]]
|
| | | 1231 0 1 [610] 1 [[3,10,0]]
|
| | | 1232 0 4 [41] 35 [[3,10,0]]
|
| | | 1233 0 8 [42] 1000 [[3,10,0]]
|
| | | 1234 0 7 [] 10 [[3,10,0]]
|
| | | 1235 0 3 [] 10 [[3,10,0]]
|
| | | 1236 0 1 [701] 1 [[3,10,0]]
|
| | | 1237 0 4 [41] 35 [[3,10,0]]
|
| | | 1238 0 7 [] 10 [[3,10,0]]
|
| | | 1239 0 3 [] 10 [[3,10,0]]
|
| | | 1240 0 8 [42] 1000 [[3,10,0]]
|
| | | 1241 0 1 [702] 1 [[3,10,0]]
|
| | | 1242 0 4 [41] 35 [[3,10,0]]
|
| | | 1243 0 7 [] 10 [[3,10,0]]
|
| | | 1244 0 3 [] 10 [[3,10,0]]
|
| | | 1245 0 8 [42] 1000 [[3,10,0]]
|
| | | 1246 0 1 [703] 1 [[3,10,0]]
|
| | | 1247 0 4 [41] 35 [[3,10,0]]
|
| | | 1248 0 7 [] 10 [[3,10,0]]
|
| | | 1249 0 3 [] 10 [[3,10,0]]
|
| | | 1250 0 8 [42] 1000 [[3,10,0]]
|
| | | 1251 0 1 [704] 1 [[3,10,0]]
|
| | | 1252 0 4 [41] 35 [[3,10,0]]
|
| | | 1253 0 7 [] 10 [[3,10,0]]
|
| | | 1254 0 3 [] 10 [[3,10,0]]
|
| | | 1255 0 8 [42] 1000 [[3,10,0]]
|
| | | 1256 0 1 [705] 1 [[3,10,0]]
|
| | | 1257 0 4 [41] 35 [[3,10,0]]
|
| | | 1258 0 7 [] 10 [[3,10,0]]
|
| | | 1259 0 3 [] 10 [[3,10,0]]
|
| | | 1260 0 8 [42] 1000 [[3,10,0]]
|
| | | 1261 0 1 [706] 1 [[3,10,0]]
|
| | | 1262 0 4 [41] 35 [[3,10,0]]
|
| | | 1263 0 7 [] 10 [[3,10,0]]
|
| | | 1264 0 3 [] 10 [[3,10,0]]
|
| | | 1265 0 8 [42] 1000 [[3,10,0]]
|
| | | 1266 0 1 [707] 1 [[3,10,0]]
|
| | | 1267 0 4 [41] 35 [[3,10,0]]
|
| | | 1268 0 7 [] 10 [[3,10,0]]
|
| | | 1269 0 3 [] 10 [[3,10,0]]
|
| | | 1270 0 8 [42] 1000 [[3,10,0]]
|
| | | 1271 0 1 [708] 1 [[3,10,0]]
|
| | | 1272 0 4 [41] 35 [[3,10,0]]
|
| | | 1273 0 7 [] 10 [[3,10,0]]
|
| | | 1274 0 3 [] 10 [[3,10,0]]
|
| | | 1275 0 8 [42] 1000 [[3,10,0]]
|
| | | 1276 0 1 [709] 1 [[3,10,0]]
|
| | | 1277 0 4 [41] 35 [[3,10,0]]
|
| | | 1278 0 7 [] 10 [[3,10,0]]
|
| | | 1279 0 3 [] 10 [[3,10,0]]
|
| | | 1280 0 8 [42] 1000 [[3,10,0]]
|
| | | 1281 0 1 [710] 1 [[3,10,0]]
|
| | | 1282 0 4 [41] 35 [[3,10,0]]
|
| | | 1283 0 8 [42] 1000 [[3,10,0]]
|
| | | 1284 0 7 [] 10 [[3,10,0]]
|
| | | 1285 0 3 [] 10 [[3,10,0]]
|
| | | 1286 0 1 [801] 1 [[3,10,0]]
|
| | | 1287 0 4 [41] 35 [[3,10,0]]
|
| | | 1288 0 7 [] 10 [[3,10,0]]
|
| | | 1289 0 3 [] 10 [[3,10,0]]
|
| | | 1290 0 8 [42] 1000 [[3,10,0]]
|
| | | 1291 0 1 [802] 1 [[3,10,0]]
|
| | | 1292 0 4 [41] 35 [[3,10,0]]
|
| | | 1293 0 7 [] 10 [[3,10,0]]
|
| | | 1294 0 3 [] 10 [[3,10,0]]
|
| | | 1295 0 8 [42] 1000 [[3,10,0]]
|
| | | 1296 0 1 [803] 1 [[3,10,0]]
|
| | | 1297 0 4 [41] 35 [[3,10,0]]
|
| | | 1298 0 7 [] 10 [[3,10,0]]
|
| | | 1299 0 3 [] 10 [[3,10,0]]
|
| | | 1300 0 8 [42] 1000 [[3,10,0]]
|
| | | 1301 0 1 [804] 1 [[3,10,0]]
|
| | | 1302 0 4 [41] 35 [[3,10,0]]
|
| | | 1303 0 7 [] 10 [[3,10,0]]
|
| | | 1304 0 3 [] 10 [[3,10,0]]
|
| | | 1305 0 8 [42] 1000 [[3,10,0]]
|
| | | 1306 0 1 [805] 1 [[3,10,0]]
|
| | | 1307 0 4 [41] 35 [[3,10,0]]
|
| | | 1308 0 7 [] 10 [[3,10,0]]
|
| | | 1309 0 3 [] 10 [[3,10,0]]
|
| | | 1310 0 8 [42] 1000 [[3,10,0]]
|
| | | 1311 0 1 [806] 1 [[3,10,0]]
|
| | | 1312 0 4 [41] 35 [[3,10,0]]
|
| | | 1313 0 7 [] 10 [[3,10,0]]
|
| | | 1314 0 3 [] 10 [[3,10,0]]
|
| | | 1315 0 8 [42] 1000 [[3,10,0]]
|
| | | 1316 0 1 [807] 1 [[3,10,0]]
|
| | | 1317 0 4 [41] 35 [[3,10,0]]
|
| | | 1318 0 7 [] 10 [[3,10,0]]
|
| | | 1319 0 3 [] 10 [[3,10,0]]
|
| | | 1320 0 8 [42] 1000 [[3,10,0]]
|
| | | 1321 0 1 [808] 1 [[3,10,0]]
|
| | | 1322 0 4 [41] 35 [[3,10,0]]
|
| | | 1323 0 7 [] 10 [[3,10,0]]
|
| | | 1324 0 3 [] 10 [[3,10,0]]
|
| | | 1325 0 8 [42] 1000 [[3,10,0]]
|
| | | 1326 0 1 [809] 1 [[3,10,0]]
|
| | | 1327 0 4 [41] 35 [[3,10,0]]
|
| | | 1328 0 7 [] 10 [[3,10,0]]
|
| | | 1329 0 3 [] 10 [[3,10,0]]
|
| | | 1330 0 8 [42] 1000 [[3,10,0]]
|
| | | 1331 0 1 [810] 1 [[3,10,0]]
|
| | | 1332 0 4 [41] 35 [[3,10,0]]
|
| | | 1333 0 8 [42] 1000 [[3,10,0]]
|
| | | 1334 0 7 [] 10 [[3,10,0]]
|
| | | 1335 0 3 [] 10 [[3,10,0]]
|
| | | 1336 0 1 [901] 1 [[3,10,0]]
|
| | | 1337 0 4 [41] 35 [[3,10,0]]
|
| | | 1338 0 7 [] 10 [[3,10,0]]
|
| | | 1339 0 3 [] 10 [[3,10,0]]
|
| | | 1340 0 8 [42] 1000 [[3,10,0]]
|
| | | 1341 0 1 [902] 1 [[3,10,0]]
|
| | | 1342 0 4 [41] 35 [[3,10,0]]
|
| | | 1343 0 7 [] 10 [[3,10,0]]
|
| | | 1344 0 3 [] 10 [[3,10,0]]
|
| | | 1345 0 8 [42] 1000 [[3,10,0]]
|
| | | 1346 0 1 [903] 1 [[3,10,0]]
|
| | | 1347 0 4 [41] 35 [[3,10,0]]
|
| | | 1348 0 7 [] 10 [[3,10,0]]
|
| | | 1349 0 3 [] 10 [[3,10,0]]
|
| | | 1350 0 8 [42] 1000 [[3,10,0]]
|
| | | 1351 0 1 [904] 1 [[3,10,0]]
|
| | | 1352 0 4 [41] 35 [[3,10,0]]
|
| | | 1353 0 7 [] 10 [[3,10,0]]
|
| | | 1354 0 3 [] 10 [[3,10,0]]
|
| | | 1355 0 8 [42] 1000 [[3,10,0]]
|
| | | 1356 0 1 [905] 1 [[3,10,0]]
|
| | | 1357 0 4 [41] 35 [[3,10,0]]
|
| | | 1358 0 7 [] 10 [[3,10,0]]
|
| | | 1359 0 3 [] 10 [[3,10,0]]
|
| | | 1360 0 8 [42] 1000 [[3,10,0]]
|
| | | 1361 0 1 [906] 1 [[3,10,0]]
|
| | | 1362 0 4 [41] 35 [[3,10,0]]
|
| | | 1363 0 7 [] 10 [[3,10,0]]
|
| | | 1364 0 3 [] 10 [[3,10,0]]
|
| | | 1365 0 8 [42] 1000 [[3,10,0]]
|
| | | 1366 0 1 [907] 1 [[3,10,0]]
|
| | | 1367 0 4 [41] 35 [[3,10,0]]
|
| | | 1368 0 7 [] 10 [[3,10,0]]
|
| | | 1369 0 3 [] 10 [[3,10,0]]
|
| | | 1370 0 8 [42] 1000 [[3,10,0]]
|
| | | 1371 0 1 [908] 1 [[3,10,0]]
|
| | | 1372 0 4 [41] 35 [[3,10,0]]
|
| | | 1373 0 7 [] 10 [[3,10,0]]
|
| | | 1374 0 3 [] 10 [[3,10,0]]
|
| | | 1375 0 8 [42] 1000 [[3,10,0]]
|
| | | 1376 0 1 [909] 1 [[3,10,0]]
|
| | | 1377 0 4 [41] 35 [[3,10,0]]
|
| | | 1378 0 7 [] 10 [[3,10,0]]
|
| | | 1379 0 3 [] 10 [[3,10,0]]
|
| | | 1380 0 8 [42] 1000 [[3,10,0]]
|
| | | 1381 0 1 [910] 1 [[3,10,0]]
|
| | | 1382 0 4 [41] 35 [[3,10,0]]
|
| | | 1383 0 8 [42] 1000 [[3,10,0]]
|
| | | 1384 0 7 [] 10 [[3,10,0]]
|
| | | 1385 0 3 [] 10 [[3,10,0]]
|
| | | 1386 0 1 [1001] 1 [[3,10,0]]
|
| | | 1387 0 4 [41] 35 [[3,10,0]]
|
| | | 1388 0 7 [] 10 [[3,10,0]]
|
| | | 1389 0 3 [] 10 [[3,10,0]]
|
| | | 1390 0 8 [42] 1000 [[3,10,0]]
|
| | | 1391 0 1 [1002] 1 [[3,10,0]]
|
| | | 1392 0 4 [41] 35 [[3,10,0]]
|
| | | 1393 0 7 [] 10 [[3,10,0]]
|
| | | 1394 0 3 [] 10 [[3,10,0]]
|
| | | 1395 0 8 [42] 1000 [[3,10,0]]
|
| | | 1396 0 1 [1003] 1 [[3,10,0]]
|
| | | 1397 0 4 [41] 35 [[3,10,0]]
|
| | | 1398 0 7 [] 10 [[3,10,0]]
|
| | | 1399 0 3 [] 10 [[3,10,0]]
|
| | | 1400 0 8 [42] 1000 [[3,10,0]]
|
| | | 1401 0 1 [1004] 1 [[3,10,0]]
|
| | | 1402 0 4 [41] 35 [[3,10,0]]
|
| | | 1403 0 7 [] 10 [[3,10,0]]
|
| | | 1404 0 3 [] 10 [[3,10,0]]
|
| | | 1405 0 8 [42] 1000 [[3,10,0]]
|
| | | 1406 0 1 [1005] 1 [[3,10,0]]
|
| | | 1407 0 4 [41] 35 [[3,10,0]]
|
| | | 1408 0 7 [] 10 [[3,10,0]]
|
| | | 1409 0 3 [] 10 [[3,10,0]]
|
| | | 1410 0 8 [42] 1000 [[3,10,0]]
|
| | | 1411 0 1 [1006] 1 [[3,10,0]]
|
| | | 1412 0 4 [41] 35 [[3,10,0]]
|
| | | 1413 0 7 [] 10 [[3,10,0]]
|
| | | 1414 0 3 [] 10 [[3,10,0]]
|
| | | 1415 0 8 [42] 1000 [[3,10,0]]
|
| | | 1416 0 1 [1007] 1 [[3,10,0]]
|
| | | 1417 0 4 [41] 35 [[3,10,0]]
|
| | | 1418 0 7 [] 10 [[3,10,0]]
|
| | | 1419 0 3 [] 10 [[3,10,0]]
|
| | | 1420 0 8 [42] 1000 [[3,10,0]]
|
| | | 1421 0 1 [1008] 1 [[3,10,0]]
|
| | | 1422 0 4 [41] 35 [[3,10,0]]
|
| | | 1423 0 7 [] 10 [[3,10,0]]
|
| | | 1424 0 3 [] 10 [[3,10,0]]
|
| | | 1425 0 8 [42] 1000 [[3,10,0]]
|
| | | 1426 0 1 [1009] 1 [[3,10,0]]
|
| | | 1427 0 4 [41] 35 [[3,10,0]]
|
| | | 1428 0 7 [] 10 [[3,10,0]]
|
| | | 1429 0 3 [] 10 [[3,10,0]]
|
| | | 1430 0 8 [42] 1000 [[3,10,0]]
|
| | | 1431 0 1 [1010] 1 [[3,10,0]]
|
| | | 1432 0 4 [41] 35 [[3,10,0]]
|
| | | 1433 0 7 [] 10 [[3,10,0]]
|
| | | 1434 0 3 [] 10 [[3,10,0]]
|
| | | 1435 0 8 [42] 1000 [[3,10,0]]
|
| | | 1436 0 1 [1101] 1 [[3,10,0]]
|
| | | 1437 0 4 [41] 35 [[3,10,0]]
|
| | | 1438 0 7 [] 10 [[3,10,0]]
|
| | | 1439 0 3 [] 10 [[3,10,0]]
|
| | | 1440 0 8 [42] 1000 [[3,10,0]]
|
| | | 1441 0 1 [1102] 1 [[3,10,0]]
|
| | | 1442 0 4 [41] 35 [[3,10,0]]
|
| | | 1443 0 7 [] 10 [[3,10,0]]
|
| | | 1444 0 3 [] 10 [[3,10,0]]
|
| | | 1445 0 8 [42] 1000 [[3,10,0]]
|
| | | 1446 0 1 [1103] 1 [[3,10,0]]
|
| | | 1447 0 4 [41] 35 [[3,10,0]]
|
| | | 1448 0 7 [] 10 [[3,10,0]]
|
| | | 1449 0 3 [] 10 [[3,10,0]]
|
| | | 1450 0 8 [42] 1000 [[3,10,0]]
|
| | | 1451 0 1 [1104] 1 [[3,10,0]]
|
| | | 1452 0 4 [41] 35 [[3,10,0]]
|
| | | 1453 0 7 [] 10 [[3,10,0]]
|
| | | 1454 0 3 [] 10 [[3,10,0]]
|
| | | 1455 0 8 [42] 1000 [[3,10,0]]
|
| | | 1456 0 1 [1105] 1 [[3,10,0]]
|
| | | 1457 0 4 [41] 35 [[3,10,0]]
|
| | | 1458 0 7 [] 10 [[3,10,0]]
|
| | | 1459 0 3 [] 10 [[3,10,0]]
|
| | | 1460 0 8 [42] 1000 [[3,10,0]]
|
| | | 1461 0 1 [1106] 1 [[3,10,0]]
|
| | | 1462 0 4 [41] 35 [[3,10,0]]
|
| | | 1463 0 7 [] 10 [[3,10,0]]
|
| | | 1464 0 3 [] 10 [[3,10,0]]
|
| | | 1465 0 8 [42] 1000 [[3,10,0]]
|
| | | 1466 0 1 [1107] 1 [[3,10,0]]
|
| | | 1467 0 4 [41] 35 [[3,10,0]]
|
| | | 1468 0 7 [] 10 [[3,10,0]]
|
| | | 1469 0 3 [] 10 [[3,10,0]]
|
| | | 1470 0 8 [42] 1000 [[3,10,0]]
|
| | | 1471 0 1 [1108] 1 [[3,10,0]]
|
| | | 1472 0 4 [41] 35 [[3,10,0]]
|
| | | 1473 0 7 [] 10 [[3,10,0]]
|
| | | 1474 0 3 [] 10 [[3,10,0]]
|
| | | 1475 0 8 [42] 1000 [[3,10,0]]
|
| | | 1476 0 1 [1109] 1 [[3,10,0]]
|
| | | 1477 0 4 [41] 35 [[3,10,0]]
|
| | | 1478 0 7 [] 10 [[3,10,0]]
|
| | | 1479 0 3 [] 10 [[3,10,0]]
|
| | | 1480 0 8 [42] 1000 [[3,10,0]]
|
| | | 1481 0 1 [1110] 1 [[3,10,0]]
|
| | | 1482 0 4 [41] 35 [[3,10,0]]
|
| | | 1483 0 7 [] 10 [[3,10,0]]
|
| | | 1484 0 3 [] 10 [[3,10,0]]
|
| | | 1485 0 8 [42] 1000 [[3,10,0]]
|
| | | 1486 0 1 [1201] 1 [[3,10,0]]
|
| | | 1487 0 4 [41] 35 [[3,10,0]]
|
| | | 1488 0 7 [] 10 [[3,10,0]]
|
| | | 1489 0 3 [] 10 [[3,10,0]]
|
| | | 1490 0 8 [42] 1000 [[3,10,0]]
|
| | | 1491 0 1 [1202] 1 [[3,10,0]]
|
| | | 1492 0 4 [41] 35 [[3,10,0]]
|
| | | 1493 0 7 [] 10 [[3,10,0]]
|
| | | 1494 0 3 [] 10 [[3,10,0]]
|
| | | 1495 0 8 [42] 1000 [[3,10,0]]
|
| | | 1496 0 1 [1203] 1 [[3,10,0]]
|
| | | 1497 0 4 [41] 35 [[3,10,0]]
|
| | | 1498 0 7 [] 10 [[3,10,0]]
|
| | | 1499 0 3 [] 10 [[3,10,0]]
|
| | | 1500 0 8 [42] 1000 [[3,10,0]]
|
| | | 1501 0 1 [1204] 1 [[3,10,0]]
|
| | | 1502 0 4 [41] 35 [[3,10,0]]
|
| | | 1503 0 7 [] 10 [[3,10,0]]
|
| | | 1504 0 3 [] 10 [[3,10,0]]
|
| | | 1505 0 8 [42] 1000 [[3,10,0]]
|
| | | 1506 0 1 [1205] 1 [[3,10,0]]
|
| | | 1507 0 4 [41] 35 [[3,10,0]]
|
| | | 1508 0 7 [] 10 [[3,10,0]]
|
| | | 1509 0 3 [] 10 [[3,10,0]]
|
| | | 1510 0 8 [42] 1000 [[3,10,0]]
|
| | | 1511 0 1 [1206] 1 [[3,10,0]]
|
| | | 1512 0 4 [41] 35 [[3,10,0]]
|
| | | 1513 0 7 [] 10 [[3,10,0]]
|
| | | 1514 0 3 [] 10 [[3,10,0]]
|
| | | 1515 0 8 [42] 1000 [[3,10,0]]
|
| | | 1516 0 1 [1207] 1 [[3,10,0]]
|
| | | 1517 0 4 [41] 35 [[3,10,0]]
|
| | | 1518 0 7 [] 10 [[3,10,0]]
|
| | | 1519 0 3 [] 10 [[3,10,0]]
|
| | | 1520 0 8 [42] 1000 [[3,10,0]]
|
| | | 1521 0 1 [1208] 1 [[3,10,0]]
|
| | | 1522 0 4 [41] 35 [[3,10,0]]
|
| | | 1523 0 7 [] 10 [[3,10,0]]
|
| | | 1524 0 3 [] 10 [[3,10,0]]
|
| | | 1525 0 8 [42] 1000 [[3,10,0]]
|
| | | 1526 0 1 [1209] 1 [[3,10,0]]
|
| | | 1527 0 4 [41] 35 [[3,10,0]]
|
| | | 1528 0 7 [] 10 [[3,10,0]]
|
| | | 1529 0 3 [] 10 [[3,10,0]]
|
| | | 1530 0 8 [42] 1000 [[3,10,0]]
|
| | | 1531 0 1 [1210] 1 [[3,10,0]]
|
| | | 1532 0 4 [41] 35 [[3,10,0]]
|
| | | 1533 0 7 [] 10 [[3,10,0]]
|
| | | 1534 0 3 [] 10 [[3,10,0]]
|
| | | 1535 0 8 [42] 1000 [[3,10,0]]
|
| | | 1536 0 1 [1301] 1 [[3,10,0]]
|
| | | 1537 0 4 [41] 35 [[3,10,0]]
|
| | | 1538 0 7 [] 10 [[3,10,0]]
|
| | | 1539 0 3 [] 10 [[3,10,0]]
|
| | | 1540 0 8 [42] 1000 [[3,10,0]]
|
| | | 1541 0 1 [1302] 1 [[3,10,0]]
|
| | | 1542 0 4 [41] 35 [[3,10,0]]
|
| | | 1543 0 7 [] 10 [[3,10,0]]
|
| | | 1544 0 3 [] 10 [[3,10,0]]
|
| | | 1545 0 8 [42] 1000 [[3,10,0]]
|
| | | 1546 0 1 [1303] 1 [[3,10,0]]
|
| | | 1547 0 4 [41] 35 [[3,10,0]]
|
| | | 1548 0 7 [] 10 [[3,10,0]]
|
| | | 1549 0 3 [] 10 [[3,10,0]]
|
| | | 1550 0 8 [42] 1000 [[3,10,0]]
|
| | | 1551 0 1 [1304] 1 [[3,10,0]]
|
| | | 1552 0 4 [41] 35 [[3,10,0]]
|
| | | 1553 0 7 [] 10 [[3,10,0]]
|
| | | 1554 0 3 [] 10 [[3,10,0]]
|
| | | 1555 0 8 [42] 1000 [[3,10,0]]
|
| | | 1556 0 1 [1305] 1 [[3,10,0]]
|
| | | 1557 0 4 [41] 35 [[3,10,0]]
|
| | | 1558 0 7 [] 10 [[3,10,0]]
|
| | | 1559 0 3 [] 10 [[3,10,0]]
|
| | | 1560 0 8 [42] 1000 [[3,10,0]]
|
| | | 1561 0 1 [1306] 1 [[3,10,0]]
|
| | | 1562 0 4 [41] 35 [[3,10,0]]
|
| | | 1563 0 7 [] 10 [[3,10,0]]
|
| | | 1564 0 3 [] 10 [[3,10,0]]
|
| | | 1565 0 8 [42] 1000 [[3,10,0]]
|
| | | 1566 0 1 [1307] 1 [[3,10,0]]
|
| | | 1567 0 4 [41] 35 [[3,10,0]]
|
| | | 1568 0 7 [] 10 [[3,10,0]]
|
| | | 1569 0 3 [] 10 [[3,10,0]]
|
| | | 1570 0 8 [42] 1000 [[3,10,0]]
|
| | | 1571 0 1 [1308] 1 [[3,10,0]]
|
| | | 1572 0 4 [41] 35 [[3,10,0]]
|
| | | 1573 0 7 [] 10 [[3,10,0]]
|
| | | 1574 0 3 [] 10 [[3,10,0]]
|
| | | 1575 0 8 [42] 1000 [[3,10,0]]
|
| | | 1576 0 1 [1309] 1 [[3,10,0]]
|
| | | 1577 0 4 [41] 35 [[3,10,0]]
|
| | | 1578 0 7 [] 10 [[3,10,0]]
|
| | | 1579 0 3 [] 10 [[3,10,0]]
|
| | | 1580 0 8 [42] 1000 [[3,10,0]]
|
| | | 1581 0 1 [1310] 1 [[3,10,0]]
|
| | | 1582 0 4 [41] 35 [[3,10,0]]
|
| | | 1583 0 7 [] 10 [[3,10,0]]
|
| | | 1584 0 3 [] 10 [[3,10,0]]
|
| | | 1585 0 8 [42] 1000 [[3,10,0]]
|
| | | 1586 0 1 [1401] 1 [[3,10,0]]
|
| | | 1587 0 4 [41] 35 [[3,10,0]]
|
| | | 1588 0 7 [] 10 [[3,10,0]]
|
| | | 1589 0 3 [] 10 [[3,10,0]]
|
| | | 1590 0 8 [42] 1000 [[3,10,0]]
|
| | | 1591 0 1 [1402] 1 [[3,10,0]]
|
| | | 1592 0 4 [41] 35 [[3,10,0]]
|
| | | 1593 0 7 [] 10 [[3,10,0]]
|
| | | 1594 0 3 [] 10 [[3,10,0]]
|
| | | 1595 0 8 [42] 1000 [[3,10,0]]
|
| | | 1596 0 1 [1403] 1 [[3,10,0]]
|
| | | 1597 0 4 [41] 35 [[3,10,0]]
|
| | | 1598 0 7 [] 10 [[3,10,0]]
|
| | | 1599 0 3 [] 10 [[3,10,0]]
|
| | | 1600 0 8 [42] 1000 [[3,10,0]]
|
| | | 1601 0 1 [1404] 1 [[3,10,0]]
|
| | | 1602 0 4 [41] 35 [[3,10,0]]
|
| | | 1603 0 7 [] 10 [[3,10,0]]
|
| | | 1604 0 3 [] 10 [[3,10,0]]
|
| | | 1605 0 8 [42] 1000 [[3,10,0]]
|
| | | 1606 0 1 [1405] 1 [[3,10,0]]
|
| | | 1607 0 4 [41] 35 [[3,10,0]]
|
| | | 1608 0 7 [] 10 [[3,10,0]]
|
| | | 1609 0 3 [] 10 [[3,10,0]]
|
| | | 1610 0 8 [42] 1000 [[3,10,0]]
|
| | | 1611 0 1 [1406] 1 [[3,10,0]]
|
| | | 1612 0 4 [41] 35 [[3,10,0]]
|
| | | 1613 0 7 [] 10 [[3,10,0]]
|
| | | 1614 0 3 [] 10 [[3,10,0]]
|
| | | 1615 0 8 [42] 1000 [[3,10,0]]
|
| | | 1616 0 1 [1407] 1 [[3,10,0]]
|
| | | 1617 0 4 [41] 35 [[3,10,0]]
|
| | | 1618 0 7 [] 10 [[3,10,0]]
|
| | | 1619 0 3 [] 10 [[3,10,0]]
|
| | | 1620 0 8 [42] 1000 [[3,10,0]]
|
| | | 1621 0 1 [1408] 1 [[3,10,0]]
|
| | | 1622 0 4 [41] 35 [[3,10,0]]
|
| | | 1623 0 7 [] 10 [[3,10,0]]
|
| | | 1624 0 3 [] 10 [[3,10,0]]
|
| | | 1625 0 8 [42] 1000 [[3,10,0]]
|
| | | 1626 0 1 [1409] 1 [[3,10,0]]
|
| | | 1627 0 4 [41] 35 [[3,10,0]]
|
| | | 1628 0 7 [] 10 [[3,10,0]]
|
| | | 1629 0 3 [] 10 [[3,10,0]]
|
| | | 1630 0 8 [42] 1000 [[3,10,0]]
|
| | | 1631 0 1 [1410] 1 [[3,10,0]]
|
| | | 1632 0 4 [41] 35 [[3,10,0]]
|
| | | 1633 0 7 [] 10 [[3,10,0]]
|
| | | 1634 0 3 [] 10 [[3,10,0]]
|
| | | 1635 0 8 [42] 1000 [[3,10,0]]
|
| | | 1636 0 1 [1501] 1 [[3,10,0]]
|
| | | 1637 0 4 [41] 35 [[3,10,0]]
|
| | | 1638 0 7 [] 10 [[3,10,0]]
|
| | | 1639 0 3 [] 10 [[3,10,0]]
|
| | | 1640 0 8 [42] 1000 [[3,10,0]]
|
| | | 1641 0 1 [1502] 1 [[3,10,0]]
|
| | | 1642 0 4 [41] 35 [[3,10,0]]
|
| | | 1643 0 7 [] 10 [[3,10,0]]
|
| | | 1644 0 3 [] 10 [[3,10,0]]
|
| | | 1645 0 8 [42] 1000 [[3,10,0]]
|
| | | 1646 0 1 [1503] 1 [[3,10,0]]
|
| | | 1647 0 4 [41] 35 [[3,10,0]]
|
| | | 1648 0 7 [] 10 [[3,10,0]]
|
| | | 1649 0 3 [] 10 [[3,10,0]]
|
| | | 1650 0 8 [42] 1000 [[3,10,0]]
|
| | | 1651 0 1 [1504] 1 [[3,10,0]]
|
| | | 1652 0 4 [41] 35 [[3,10,0]]
|
| | | 1653 0 7 [] 10 [[3,10,0]]
|
| | | 1654 0 3 [] 10 [[3,10,0]]
|
| | | 1655 0 8 [42] 1000 [[3,10,0]]
|
| | | 1656 0 1 [1505] 1 [[3,10,0]]
|
| | | 1657 0 4 [41] 35 [[3,10,0]]
|
| | | 1658 0 7 [] 10 [[3,10,0]]
|
| | | 1659 0 3 [] 10 [[3,10,0]]
|
| | | 1660 0 8 [42] 1000 [[3,10,0]]
|
| | | 1661 0 1 [1506] 1 [[3,10,0]]
|
| | | 1662 0 4 [41] 35 [[3,10,0]]
|
| | | 1663 0 7 [] 10 [[3,10,0]]
|
| | | 1664 0 3 [] 10 [[3,10,0]]
|
| | | 1665 0 8 [42] 1000 [[3,10,0]]
|
| | | 1666 0 1 [1507] 1 [[3,10,0]]
|
| | | 1667 0 4 [41] 35 [[3,10,0]]
|
| | | 1668 0 7 [] 10 [[3,10,0]]
|
| | | 1669 0 3 [] 10 [[3,10,0]]
|
| | | 1670 0 8 [42] 1000 [[3,10,0]]
|
| | | 1671 0 1 [1508] 1 [[3,10,0]]
|
| | | 1672 0 4 [41] 35 [[3,10,0]]
|
| | | 1673 0 7 [] 10 [[3,10,0]]
|
| | | 1674 0 3 [] 10 [[3,10,0]]
|
| | | 1675 0 8 [42] 1000 [[3,10,0]]
|
| | | 1676 0 1 [1509] 1 [[3,10,0]]
|
| | | 1677 0 4 [41] 35 [[3,10,0]]
|
| | | 1678 0 7 [] 10 [[3,10,0]]
|
| | | 1679 0 3 [] 10 [[3,10,0]]
|
| | | 1680 0 8 [42] 1000 [[3,10,0]]
|
| | | 1681 0 1 [1510] 1 [[3,10,0]]
|
| | | 1682 0 4 [41] 35 [[3,10,0]]
|
| | | 1683 0 7 [] 10 [[3,10,0]]
|
| | | 1684 0 3 [] 10 [[3,10,0]]
|
| | | 1685 0 8 [42] 1000 [[3,10,0]]
|
| | | 1686 0 1 [1601] 1 [[3,10,0]]
|
| | | 1687 0 4 [41] 35 [[3,10,0]]
|
| | | 1688 0 7 [] 10 [[3,10,0]]
|
| | | 1689 0 3 [] 10 [[3,10,0]]
|
| | | 1690 0 8 [42] 1000 [[3,10,0]]
|
| | | 1691 0 1 [1602] 1 [[3,10,0]]
|
| | | 1692 0 4 [41] 35 [[3,10,0]]
|
| | | 1693 0 7 [] 10 [[3,10,0]]
|
| | | 1694 0 3 [] 10 [[3,10,0]]
|
| | | 1695 0 8 [42] 1000 [[3,10,0]]
|
| | | 1696 0 1 [1603] 1 [[3,10,0]]
|
| | | 1697 0 4 [41] 35 [[3,10,0]]
|
| | | 1698 0 7 [] 10 [[3,10,0]]
|
| | | 1699 0 3 [] 10 [[3,10,0]]
|
| | | 1700 0 8 [42] 1000 [[3,10,0]]
|
| | | 1701 0 1 [1604] 1 [[3,10,0]]
|
| | | 1702 0 4 [41] 35 [[3,10,0]]
|
| | | 1703 0 7 [] 10 [[3,10,0]]
|
| | | 1704 0 3 [] 10 [[3,10,0]]
|
| | | 1705 0 8 [42] 1000 [[3,10,0]]
|
| | | 1706 0 1 [1605] 1 [[3,10,0]]
|
| | | 1707 0 4 [41] 35 [[3,10,0]]
|
| | | 1708 0 7 [] 10 [[3,10,0]]
|
| | | 1709 0 3 [] 10 [[3,10,0]]
|
| | | 1710 0 8 [42] 1000 [[3,10,0]]
|
| | | 1711 0 1 [1606] 1 [[3,10,0]]
|
| | | 1712 0 4 [41] 35 [[3,10,0]]
|
| | | 1713 0 7 [] 10 [[3,10,0]]
|
| | | 1714 0 3 [] 10 [[3,10,0]]
|
| | | 1715 0 8 [42] 1000 [[3,10,0]]
|
| | | 1716 0 1 [1607] 1 [[3,10,0]]
|
| | | 1717 0 4 [41] 35 [[3,10,0]]
|
| | | 1718 0 7 [] 10 [[3,10,0]]
|
| | | 1719 0 3 [] 10 [[3,10,0]]
|
| | | 1720 0 8 [42] 1000 [[3,10,0]]
|
| | | 1721 0 1 [1608] 1 [[3,10,0]]
|
| | | 1722 0 4 [41] 35 [[3,10,0]]
|
| | | 1723 0 7 [] 10 [[3,10,0]]
|
| | | 1724 0 3 [] 10 [[3,10,0]]
|
| | | 1725 0 8 [42] 1000 [[3,10,0]]
|
| | | 1726 0 1 [1609] 1 [[3,10,0]]
|
| | | 1727 0 4 [41] 35 [[3,10,0]]
|
| | | 1728 0 7 [] 10 [[3,10,0]]
|
| | | 1729 0 3 [] 10 [[3,10,0]]
|
| | | 1730 0 8 [42] 1000 [[3,10,0]]
|
| | | 1731 0 1 [1610] 1 [[3,10,0]]
|
| | | 1732 0 4 [41] 35 [[3,10,0]]
|
| | | 1733 0 7 [] 10 [[3,10,0]]
|
| | | 1734 0 3 [] 10 [[3,10,0]]
|
| | | 1735 0 8 [42] 1000 [[3,10,0]]
|
| | | 1736 0 1 [1701] 1 [[3,10,0]]
|
| | | 1737 0 4 [41] 35 [[3,10,0]]
|
| | | 1738 0 7 [] 10 [[3,10,0]]
|
| | | 1739 0 3 [] 10 [[3,10,0]]
|
| | | 1740 0 8 [42] 1000 [[3,10,0]]
|
| | | 1741 0 1 [1702] 1 [[3,10,0]]
|
| | | 1742 0 4 [41] 35 [[3,10,0]]
|
| | | 1743 0 7 [] 10 [[3,10,0]]
|
| | | 1744 0 3 [] 10 [[3,10,0]]
|
| | | 1745 0 8 [42] 1000 [[3,10,0]]
|
| | | 1746 0 1 [1703] 1 [[3,10,0]]
|
| | | 1747 0 4 [41] 35 [[3,10,0]]
|
| | | 1748 0 7 [] 10 [[3,10,0]]
|
| | | 1749 0 3 [] 10 [[3,10,0]]
|
| | | 1750 0 8 [42] 1000 [[3,10,0]]
|
| | | 1751 0 1 [1704] 1 [[3,10,0]]
|
| | | 1752 0 4 [41] 35 [[3,10,0]]
|
| | | 1753 0 7 [] 10 [[3,10,0]]
|
| | | 1754 0 3 [] 10 [[3,10,0]]
|
| | | 1755 0 8 [42] 1000 [[3,10,0]]
|
| | | 1756 0 1 [1705] 1 [[3,10,0]]
|
| | | 1757 0 4 [41] 35 [[3,10,0]]
|
| | | 1758 0 7 [] 10 [[3,10,0]]
|
| | | 1759 0 3 [] 10 [[3,10,0]]
|
| | | 1760 0 8 [42] 1000 [[3,10,0]]
|
| | | 1761 0 1 [1706] 1 [[3,10,0]]
|
| | | 1762 0 4 [41] 35 [[3,10,0]]
|
| | | 1763 0 7 [] 10 [[3,10,0]]
|
| | | 1764 0 3 [] 10 [[3,10,0]]
|
| | | 1765 0 8 [42] 1000 [[3,10,0]]
|
| | | 1766 0 1 [1707] 1 [[3,10,0]]
|
| | | 1767 0 4 [41] 35 [[3,10,0]]
|
| | | 1768 0 7 [] 10 [[3,10,0]]
|
| | | 1769 0 3 [] 10 [[3,10,0]]
|
| | | 1770 0 8 [42] 1000 [[3,10,0]]
|
| | | 1771 0 1 [1708] 1 [[3,10,0]]
|
| | | 1772 0 4 [41] 35 [[3,10,0]]
|
| | | 1773 0 7 [] 10 [[3,10,0]]
|
| | | 1774 0 3 [] 10 [[3,10,0]]
|
| | | 1775 0 8 [42] 1000 [[3,10,0]]
|
| | | 1776 0 1 [1709] 1 [[3,10,0]]
|
| | | 1777 0 4 [41] 35 [[3,10,0]]
|
| | | 1778 0 7 [] 10 [[3,10,0]]
|
| | | 1779 0 3 [] 10 [[3,10,0]]
|
| | | 1780 0 8 [42] 1000 [[3,10,0]]
|
| | | 1781 0 1 [1710] 1 [[3,10,0]]
|
| | | 1782 0 4 [41] 35 [[3,10,0]]
|
| | | 1783 0 7 [] 10 [[3,10,0]]
|
| | | 1784 0 3 [] 10 [[3,10,0]]
|
| | | 1785 0 8 [42] 1000 [[3,10,0]]
|
| | | 1786 0 1 [1801] 1 [[3,10,0]]
|
| | | 1787 0 4 [41] 35 [[3,10,0]]
|
| | | 1788 0 7 [] 10 [[3,10,0]]
|
| | | 1789 0 3 [] 10 [[3,10,0]]
|
| | | 1790 0 8 [42] 1000 [[3,10,0]]
|
| | | 1791 0 1 [1802] 1 [[3,10,0]]
|
| | | 1792 0 4 [41] 35 [[3,10,0]]
|
| | | 1793 0 7 [] 10 [[3,10,0]]
|
| | | 1794 0 3 [] 10 [[3,10,0]]
|
| | | 1795 0 8 [42] 1000 [[3,10,0]]
|
| | | 1796 0 1 [1803] 1 [[3,10,0]]
|
| | | 1797 0 4 [41] 35 [[3,10,0]]
|
| | | 1798 0 7 [] 10 [[3,10,0]]
|
| | | 1799 0 3 [] 10 [[3,10,0]]
|
| | | 1800 0 8 [42] 1000 [[3,10,0]]
|
| | | 1801 0 1 [1804] 1 [[3,10,0]]
|
| | | 1802 0 4 [41] 35 [[3,10,0]]
|
| | | 1803 0 7 [] 10 [[3,10,0]]
|
| | | 1804 0 3 [] 10 [[3,10,0]]
|
| | | 1805 0 8 [42] 1000 [[3,10,0]]
|
| | | 1806 0 1 [1805] 1 [[3,10,0]]
|
| | | 1807 0 4 [41] 35 [[3,10,0]]
|
| | | 1808 0 7 [] 10 [[3,10,0]]
|
| | | 1809 0 3 [] 10 [[3,10,0]]
|
| | | 1810 0 8 [42] 1000 [[3,10,0]]
|
| | | 1811 0 1 [1806] 1 [[3,10,0]]
|
| | | 1812 0 4 [41] 35 [[3,10,0]]
|
| | | 1813 0 7 [] 10 [[3,10,0]]
|
| | | 1814 0 3 [] 10 [[3,10,0]]
|
| | | 1815 0 8 [42] 1000 [[3,10,0]]
|
| | | 1816 0 1 [1807] 1 [[3,10,0]]
|
| | | 1817 0 4 [41] 35 [[3,10,0]]
|
| | | 1818 0 7 [] 10 [[3,10,0]]
|
| | | 1819 0 3 [] 10 [[3,10,0]]
|
| | | 1820 0 8 [42] 1000 [[3,10,0]]
|
| | | 1821 0 1 [1808] 1 [[3,10,0]]
|
| | | 1822 0 4 [41] 35 [[3,10,0]]
|
| | | 1823 0 7 [] 10 [[3,10,0]]
|
| | | 1824 0 3 [] 10 [[3,10,0]]
|
| | | 1825 0 8 [42] 1000 [[3,10,0]]
|
| | | 1826 0 1 [1809] 1 [[3,10,0]]
|
| | | 1827 0 4 [41] 35 [[3,10,0]]
|
| | | 1828 0 7 [] 10 [[3,10,0]]
|
| | | 1829 0 3 [] 10 [[3,10,0]]
|
| | | 1010 0 4 [41] 3 [[3,5,0]]
|
| | | 1020 0 7 [] 2 [[3,5,0]]
|
| | | 1030 0 9 [1] 3 [[3,5,0]]
|
| | | 1040 0 5 [] 2 [[3,5,0]]
|
| | | 1050 0 1 [101] 1 [[3,5,0]]
|
| | | 1060 0 4 [41] 5 [[3,5,0]]
|
| | | 1070 0 7 [] 5 [[3,5,0]]
|
| | | 1080 0 8 [42] 100 [[3,5,0]]
|
| | | 1090 0 5 [] 3 [[3,5,0]]
|
| | | 1100 0 1 [102] 1 [[4,1,0]]
|
| | | 1110 0 2 [] 2 [[3,5,0]]
|
| | | 1120 0 7 [] 5 [[3,5,0]]
|
| | | 1130 0 3 [] 5 [[3,5,0]]
|
| | | 1140 0 1 [103] 1 [[3,5,0]]
|
| | | 1150 0 5 [] 5 [[4,2,0]]
|
| | | 1160 0 2 [] 3 [[3,5,0]]
|
| | | 1170 0 6 [] 1 [[3,5,0]]
|
| | | 1180 0 1 [104] 1 [[3,5,0]]
|
| | | 1190 0 7 [] 10 [[3,5,0]]
|
| | | 1200 0 3 [] 10 [[3,5,0]]
|
| | | 1210 0 4 [41] 10 [[3,5,0]]
|
| | | 1220 0 1 [105] 1 [[3,5,0]]
|
| | | 1230 0 4 [41] 10 [[3,5,0]]
|
| | | 1240 0 7 [] 10 [[3,5,0]]
|
| | | 1250 0 3 [] 10 [[3,5,0]]
|
| | | 1260 0 1 [201] 1 [[3,5,0]]
|
| | | 1270 0 5 [] 10 [[3,5,0]]
|
| | | 1280 0 4 [41] 10 [[3,5,0]]
|
| | | 1290 0 7 [] 10 [[3,5,0]]
|
| | | 1300 0 9 [3] 5 [[3,5,0]]
|
| | | 1310 0 1 [202] 1 [[3,5,0]]
|
| | | 1320 0 5 [] 11 [[3,5,0]]
|
| | | 1330 0 4 [41] 15 [[3,5,0]]
|
| | | 1340 0 7 [] 10 [[3,5,0]]
|
| | | 1350 0 3 [] 10 [[3,5,0]]
|
| | | 1360 0 1 [203] 1 [[3,5,0]]
|
| | | 1370 0 5 [] 13 [[3,5,0]]
|
| | | 1380 0 4 [41] 20 [[3,5,0]]
|
| | | 1390 0 7 [] 10 [[3,5,0]]
|
| | | 1400 0 3 [] 10 [[3,5,0]]
|
| | | 1410 0 1 [204] 1 [[3,5,0]]
|
| | | 1420 0 5 [] 15 [[3,5,0]]
|
| | | 1430 0 4 [41] 20 [[3,5,0]]
|
| | | 1440 0 7 [] 10 [[3,5,0]]
|
| | | 1450 0 1 [205] 1 [[3,5,0]]
|
| | | 1460 0 7 [] 10 [[3,5,0]]
|
| | | 1470 0 3 [] 10 [[3,10,0]]
|
| | | 1480 0 1 [301] 1 [[3,10,0]]
|
| | | 1490 0 4 [41] 20 [[3,10,0]]
|
| | | 1500 0 3 [] 10 [[3,10,0]]
|
| | | 1510 0 7 [] 10 [[3,10,0]]
|
| | | 1520 0 3 [] 10 [[3,10,0]]
|
| | | 1530 0 1 [302] 1 [[3,10,0]]
|
| | | 1540 0 3 [] 10 [[3,10,0]]
|
| | | 1550 0 4 [41] 20 [[3,10,0]]
|
| | | 1560 0 7 [] 10 [[3,10,0]]
|
| | | 1570 0 3 [] 10 [[3,10,0]]
|
| | | 1580 0 1 [303] 1 [[3,10,0]]
|
| | | 1590 0 3 [] 10 [[3,10,0]]
|
| | | 1600 0 4 [41] 20 [[3,10,0]]
|
| | | 1610 0 7 [] 10 [[3,10,0]]
|
| | | 1620 0 3 [] 10 [[3,10,0]]
|
| | | 1630 0 1 [304] 1 [[3,10,0]]
|
| | | 1640 0 5 [] 22 [[3,10,0]]
|
| | | 1650 0 4 [41] 20 [[3,10,0]]
|
| | | 1660 0 7 [] 10 [[3,10,0]]
|
| | | 1670 0 3 [] 10 [[3,10,0]]
|
| | | 1680 0 1 [305] 1 [[3,10,0]]
|
| | | 1690 0 3 [] 10 [[3,10,0]]
|
| | | 1700 0 4 [41] 20 [[3,10,0]]
|
| | | 1710 0 7 [] 10 [[3,10,0]]
|
| | | 1720 0 3 [] 10 [[3,10,0]]
|
| | | 1730 0 1 [306] 1 [[3,10,0]]
|
| | | 1740 0 5 [] 24 [[3,10,0]]
|
| | | 1750 0 4 [41] 30 [[3,10,0]]
|
| | | 1760 0 7 [] 10 [[3,10,0]]
|
| | | 1770 0 1 [307] 1 [[3,10,0]]
|
| | | 1780 0 5 [] 25 [[3,10,0]]
|
| | | 1790 0 4 [41] 30 [[3,10,0]]
|
| | | 1800 0 7 [] 10 [[3,10,0]]
|
| | | 1810 0 3 [] 10 [[3,10,0]]
|
| | | 1820 0 1 [308] 1 [[3,10,0]]
|
| | | 1830 0 8 [42] 1000 [[3,10,0]]
|
| | | 1831 0 1 [1810] 1 [[3,10,0]]
|
| | | 1832 0 4 [41] 35 [[3,10,0]]
|
| | | 1833 0 7 [] 10 [[3,10,0]]
|
| | | 1834 0 3 [] 10 [[3,10,0]]
|
| | | 1835 0 8 [42] 1000 [[3,10,0]]
|
| | | 1836 0 1 [1901] 1 [[3,10,0]]
|
| | | 1837 0 4 [41] 35 [[3,10,0]]
|
| | | 1838 0 7 [] 10 [[3,10,0]]
|
| | | 1839 0 3 [] 10 [[3,10,0]]
|
| | | 1840 0 8 [42] 1000 [[3,10,0]]
|
| | | 1841 0 1 [1902] 1 [[3,10,0]]
|
| | | 1842 0 4 [41] 35 [[3,10,0]]
|
| | | 1843 0 7 [] 10 [[3,10,0]]
|
| | | 1844 0 3 [] 10 [[3,10,0]]
|
| | | 1845 0 8 [42] 1000 [[3,10,0]]
|
| | | 1846 0 1 [1903] 1 [[3,10,0]]
|
| | | 1847 0 4 [41] 35 [[3,10,0]]
|
| | | 1848 0 7 [] 10 [[3,10,0]]
|
| | | 1849 0 3 [] 10 [[3,10,0]]
|
| | | 1850 0 8 [42] 1000 [[3,10,0]]
|
| | | 1851 0 1 [1904] 1 [[3,10,0]]
|
| | | 1852 0 4 [41] 35 [[3,10,0]]
|
| | | 1853 0 7 [] 10 [[3,10,0]]
|
| | | 1854 0 3 [] 10 [[3,10,0]]
|
| | | 1855 0 8 [42] 1000 [[3,10,0]]
|
| | | 1856 0 1 [1905] 1 [[3,10,0]]
|
| | | 1857 0 4 [41] 35 [[3,10,0]]
|
| | | 1858 0 7 [] 10 [[3,10,0]]
|
| | | 1859 0 3 [] 10 [[3,10,0]]
|
| | | 1860 0 8 [42] 1000 [[3,10,0]]
|
| | | 1861 0 1 [1906] 1 [[3,10,0]]
|
| | | 1862 0 4 [41] 35 [[3,10,0]]
|
| | | 1863 0 7 [] 10 [[3,10,0]]
|
| | | 1864 0 3 [] 10 [[3,10,0]]
|
| | | 1865 0 8 [42] 1000 [[3,10,0]]
|
| | | 1866 0 1 [1907] 1 [[3,10,0]]
|
| | | 1867 0 4 [41] 35 [[3,10,0]]
|
| | | 1868 0 7 [] 10 [[3,10,0]]
|
| | | 1869 0 3 [] 10 [[3,10,0]]
|
| | | 1870 0 8 [42] 1000 [[3,10,0]]
|
| | | 1871 0 1 [1908] 1 [[3,10,0]]
|
| | | 1872 0 4 [41] 35 [[3,10,0]]
|
| | | 1873 0 7 [] 10 [[3,10,0]]
|
| | | 1874 0 3 [] 10 [[3,10,0]]
|
| | | 1875 0 8 [42] 1000 [[3,10,0]]
|
| | | 1876 0 1 [1909] 1 [[3,10,0]]
|
| | | 1877 0 4 [41] 35 [[3,10,0]]
|
| | | 1878 0 7 [] 10 [[3,10,0]]
|
| | | 1879 0 3 [] 10 [[3,10,0]]
|
| | | 1880 0 8 [42] 1000 [[3,10,0]]
|
| | | 1881 0 1 [1910] 1 [[3,10,0]]
|
| | | 1882 0 4 [41] 35 [[3,10,0]]
|
| | | 1883 0 7 [] 10 [[3,10,0]]
|
| | | 1884 0 3 [] 10 [[3,10,0]]
|
| | | 1885 0 8 [42] 1000 [[3,10,0]]
|
| | | 1886 0 1 [2001] 1 [[3,10,0]]
|
| | | 1887 0 4 [41] 35 [[3,10,0]]
|
| | | 1888 0 7 [] 10 [[3,10,0]]
|
| | | 1889 0 3 [] 10 [[3,10,0]]
|
| | | 1890 0 8 [42] 1000 [[3,10,0]]
|
| | | 1891 0 1 [2002] 1 [[3,10,0]]
|
| | | 1892 0 4 [41] 35 [[3,10,0]]
|
| | | 1893 0 7 [] 10 [[3,10,0]]
|
| | | 1894 0 3 [] 10 [[3,10,0]]
|
| | | 1895 0 8 [42] 1000 [[3,10,0]]
|
| | | 1896 0 1 [2003] 1 [[3,10,0]]
|
| | | 1897 0 4 [41] 35 [[3,10,0]]
|
| | | 1898 0 7 [] 10 [[3,10,0]]
|
| | | 1899 0 3 [] 10 [[3,10,0]]
|
| | | 1900 0 8 [42] 1000 [[3,10,0]]
|
| | | 1901 0 1 [2004] 1 [[3,10,0]]
|
| | | 1902 0 4 [41] 35 [[3,10,0]]
|
| | | 1903 0 7 [] 10 [[3,10,0]]
|
| | | 1904 0 3 [] 10 [[3,10,0]]
|
| | | 1905 0 8 [42] 1000 [[3,10,0]]
|
| | | 1906 0 1 [2005] 1 [[3,10,0]]
|
| | | 1907 0 4 [41] 35 [[3,10,0]]
|
| | | 1908 0 7 [] 10 [[3,10,0]]
|
| | | 1909 0 3 [] 10 [[3,10,0]]
|
| | | 1840 0 4 [41] 30 [[3,10,0]]
|
| | | 1850 0 7 [] 10 [[3,10,0]]
|
| | | 1860 0 3 [] 10 [[3,10,0]]
|
| | | 1870 0 1 [401] 1 [[3,10,0]]
|
| | | 1880 0 4 [41] 35 [[3,10,0]]
|
| | | 1890 0 7 [] 10 [[3,10,0]]
|
| | | 1900 0 3 [] 10 [[3,10,0]]
|
| | | 1910 0 8 [42] 1000 [[3,10,0]]
|
| | | 1911 0 1 [2006] 1 [[3,10,0]]
|
| | | 1912 0 4 [41] 35 [[3,10,0]]
|
| | | 1913 0 7 [] 10 [[3,10,0]]
|
| | | 1914 0 3 [] 10 [[3,10,0]]
|
| | | 1915 0 8 [42] 1000 [[3,10,0]]
|
| | | 1916 0 1 [2007] 1 [[3,10,0]]
|
| | | 1917 0 4 [41] 35 [[3,10,0]]
|
| | | 1918 0 7 [] 10 [[3,10,0]]
|
| | | 1919 0 3 [] 10 [[3,10,0]]
|
| | | 1920 0 8 [42] 1000 [[3,10,0]]
|
| | | 1921 0 1 [2008] 1 [[3,10,0]]
|
| | | 1922 0 4 [41] 35 [[3,10,0]]
|
| | | 1923 0 7 [] 10 [[3,10,0]]
|
| | | 1924 0 3 [] 10 [[3,10,0]]
|
| | | 1925 0 8 [42] 1000 [[3,10,0]]
|
| | | 1926 0 1 [2009] 1 [[3,10,0]]
|
| | | 1927 0 4 [41] 35 [[3,10,0]]
|
| | | 1928 0 7 [] 10 [[3,10,0]]
|
| | | 1929 0 3 [] 10 [[3,10,0]]
|
| | | 1930 0 8 [42] 1000 [[3,10,0]]
|
| | | 1931 0 1 [2010] 1 [[3,10,0]]
|
| | | 1932 0 4 [41] 35 [[3,10,0]]
|
| | | 1933 0 7 [] 10 [[3,10,0]]
|
| | | 1934 0 3 [] 10 [[3,10,0]]
|
| | | 1935 0 8 [42] 1000 [[3,10,0]]
|
| | | 1936 0 1 [2101] 1 [[3,10,0]]
|
| | | 1937 0 4 [41] 35 [[3,10,0]]
|
| | | 1938 0 7 [] 10 [[3,10,0]]
|
| | | 1939 0 3 [] 10 [[3,10,0]]
|
| | | 1940 0 8 [42] 1000 [[3,10,0]]
|
| | | 1941 0 1 [2102] 1 [[3,10,0]]
|
| | | 1942 0 4 [41] 35 [[3,10,0]]
|
| | | 1943 0 7 [] 10 [[3,10,0]]
|
| | | 1944 0 3 [] 10 [[3,10,0]]
|
| | | 1945 0 8 [42] 1000 [[3,10,0]]
|
| | | 1946 0 1 [2103] 1 [[3,10,0]]
|
| | | 1947 0 4 [41] 35 [[3,10,0]]
|
| | | 1948 0 7 [] 10 [[3,10,0]]
|
| | | 1949 0 3 [] 10 [[3,10,0]]
|
| | | 1950 0 8 [42] 1000 [[3,10,0]]
|
| | | 1951 0 1 [2104] 1 [[3,10,0]]
|
| | | 1952 0 4 [41] 35 [[3,10,0]]
|
| | | 1953 0 7 [] 10 [[3,10,0]]
|
| | | 1954 0 3 [] 10 [[3,10,0]]
|
| | | 1955 0 8 [42] 1000 [[3,10,0]]
|
| | | 1956 0 1 [2105] 1 [[3,10,0]]
|
| | | 1957 0 4 [41] 35 [[3,10,0]]
|
| | | 1958 0 7 [] 10 [[3,10,0]]
|
| | | 1959 0 3 [] 10 [[3,10,0]]
|
| | | 1920 0 1 [402] 1 [[3,10,0]]
|
| | | 1930 0 4 [41] 35 [[3,10,0]]
|
| | | 1940 0 7 [] 10 [[3,10,0]]
|
| | | 1950 0 3 [] 10 [[3,10,0]]
|
| | | 1960 0 8 [42] 1000 [[3,10,0]]
|
| | | 1961 0 1 [2106] 1 [[3,10,0]]
|
| | | 1962 0 4 [41] 35 [[3,10,0]]
|
| | | 1963 0 7 [] 10 [[3,10,0]]
|
| | | 1964 0 3 [] 10 [[3,10,0]]
|
| | | 1965 0 8 [42] 1000 [[3,10,0]]
|
| | | 1966 0 1 [2107] 1 [[3,10,0]]
|
| | | 1967 0 4 [41] 35 [[3,10,0]]
|
| | | 1968 0 7 [] 10 [[3,10,0]]
|
| | | 1969 0 3 [] 10 [[3,10,0]]
|
| | | 1970 0 8 [42] 1000 [[3,10,0]]
|
| | | 1971 0 1 [2108] 1 [[3,10,0]]
|
| | | 1972 0 4 [41] 35 [[3,10,0]]
|
| | | 1973 0 7 [] 10 [[3,10,0]]
|
| | | 1974 0 3 [] 10 [[3,10,0]]
|
| | | 1975 0 8 [42] 1000 [[3,10,0]]
|
| | | 1976 0 1 [2109] 1 [[3,10,0]]
|
| | | 1977 0 4 [41] 35 [[3,10,0]]
|
| | | 1978 0 7 [] 10 [[3,10,0]]
|
| | | 1979 0 3 [] 10 [[3,10,0]]
|
| | | 1980 0 8 [42] 1000 [[3,10,0]]
|
| | | 1981 0 1 [2110] 1 [[3,10,0]]
|
| | | 1982 0 4 [41] 35 [[3,10,0]]
|
| | | 1983 0 7 [] 10 [[3,10,0]]
|
| | | 1984 0 3 [] 10 [[3,10,0]]
|
| | | 1985 0 8 [42] 1000 [[3,10,0]]
|
| | | 1986 0 1 [2201] 1 [[3,10,0]]
|
| | | 1987 0 4 [41] 35 [[3,10,0]]
|
| | | 1988 0 7 [] 10 [[3,10,0]]
|
| | | 1989 0 3 [] 10 [[3,10,0]]
|
| | | 1990 0 8 [42] 1000 [[3,10,0]]
|
| | | 1991 0 1 [2202] 1 [[3,10,0]]
|
| | | 1992 0 4 [41] 35 [[3,10,0]]
|
| | | 1993 0 7 [] 10 [[3,10,0]]
|
| | | 1994 0 3 [] 10 [[3,10,0]]
|
| | | 1995 0 8 [42] 1000 [[3,10,0]]
|
| | | 1996 0 1 [2203] 1 [[3,10,0]]
|
| | | 1997 0 4 [41] 35 [[3,10,0]]
|
| | | 1998 0 7 [] 10 [[3,10,0]]
|
| | | 1999 0 3 [] 10 [[3,10,0]]
|
| | | 2000 0 8 [42] 1000 [[3,10,0]]
|
| | | 2001 0 1 [2204] 1 [[3,10,0]]
|
| | | 2002 0 4 [41] 35 [[3,10,0]]
|
| | | 2003 0 7 [] 10 [[3,10,0]]
|
| | | 2004 0 3 [] 10 [[3,10,0]]
|
| | | 2005 0 8 [42] 1000 [[3,10,0]]
|
| | | 2006 0 1 [2205] 1 [[3,10,0]]
|
| | | 2007 0 4 [41] 35 [[3,10,0]]
|
| | | 2008 0 7 [] 10 [[3,10,0]]
|
| | | 2009 0 3 [] 10 [[3,10,0]]
|
| | | 1970 0 1 [403] 1 [[3,10,0]]
|
| | | 1980 0 4 [41] 35 [[3,10,0]]
|
| | | 1990 0 7 [] 10 [[3,10,0]]
|
| | | 2000 0 3 [] 10 [[3,10,0]]
|
| | | 2010 0 8 [42] 1000 [[3,10,0]]
|
| | | 2011 0 1 [2206] 1 [[3,10,0]]
|
| | | 2012 0 4 [41] 35 [[3,10,0]]
|
| | | 2013 0 7 [] 10 [[3,10,0]]
|
| | | 2014 0 3 [] 10 [[3,10,0]]
|
| | | 2015 0 8 [42] 1000 [[3,10,0]]
|
| | | 2016 0 1 [2207] 1 [[3,10,0]]
|
| | | 2017 0 4 [41] 35 [[3,10,0]]
|
| | | 2018 0 7 [] 10 [[3,10,0]]
|
| | | 2019 0 3 [] 10 [[3,10,0]]
|
| | | 2020 0 8 [42] 1000 [[3,10,0]]
|
| | | 2021 0 1 [2208] 1 [[3,10,0]]
|
| | | 2022 0 4 [41] 35 [[3,10,0]]
|
| | | 2023 0 7 [] 10 [[3,10,0]]
|
| | | 2024 0 3 [] 10 [[3,10,0]]
|
| | | 2025 0 8 [42] 1000 [[3,10,0]]
|
| | | 2026 0 1 [2209] 1 [[3,10,0]]
|
| | | 2027 0 4 [41] 35 [[3,10,0]]
|
| | | 2028 0 7 [] 10 [[3,10,0]]
|
| | | 2029 0 3 [] 10 [[3,10,0]]
|
| | | 2030 0 8 [42] 1000 [[3,10,0]]
|
| | | 2031 0 1 [2210] 1 [[3,10,0]]
|
| | | 2032 0 4 [41] 35 [[3,10,0]]
|
| | | 2033 0 7 [] 10 [[3,10,0]]
|
| | | 2034 0 3 [] 10 [[3,10,0]]
|
| | | 2035 0 8 [42] 1000 [[3,10,0]]
|
| | | 2036 0 1 [2301] 1 [[3,10,0]]
|
| | | 2037 0 4 [41] 35 [[3,10,0]]
|
| | | 2038 0 7 [] 10 [[3,10,0]]
|
| | | 2039 0 3 [] 10 [[3,10,0]]
|
| | | 2040 0 8 [42] 1000 [[3,10,0]]
|
| | | 2041 0 1 [2302] 1 [[3,10,0]]
|
| | | 2042 0 4 [41] 35 [[3,10,0]]
|
| | | 2043 0 7 [] 10 [[3,10,0]]
|
| | | 2044 0 3 [] 10 [[3,10,0]]
|
| | | 2045 0 8 [42] 1000 [[3,10,0]]
|
| | | 2046 0 1 [2303] 1 [[3,10,0]]
|
| | | 2047 0 4 [41] 35 [[3,10,0]]
|
| | | 2048 0 7 [] 10 [[3,10,0]]
|
| | | 2049 0 3 [] 10 [[3,10,0]]
|
| | | 2050 0 8 [42] 1000 [[3,10,0]]
|
| | | 2051 0 1 [2304] 1 [[3,10,0]]
|
| | | 2052 0 4 [41] 35 [[3,10,0]]
|
| | | 2053 0 7 [] 10 [[3,10,0]]
|
| | | 2054 0 3 [] 10 [[3,10,0]]
|
| | | 2055 0 8 [42] 1000 [[3,10,0]]
|
| | | 2056 0 1 [2305] 1 [[3,10,0]]
|
| | | 2057 0 4 [41] 35 [[3,10,0]]
|
| | | 2058 0 7 [] 10 [[3,10,0]]
|
| | | 2059 0 3 [] 10 [[3,10,0]]
|
| | | 2020 0 1 [404] 1 [[3,10,0]]
|
| | | 2030 0 4 [41] 35 [[3,10,0]]
|
| | | 2040 0 7 [] 10 [[3,10,0]]
|
| | | 2050 0 3 [] 10 [[3,10,0]]
|
| | | 2060 0 8 [42] 1000 [[3,10,0]]
|
| | | 2061 0 1 [2306] 1 [[3,10,0]]
|
| | | 2062 0 4 [41] 35 [[3,10,0]]
|
| | | 2063 0 7 [] 10 [[3,10,0]]
|
| | | 2064 0 3 [] 10 [[3,10,0]]
|
| | | 2065 0 8 [42] 1000 [[3,10,0]]
|
| | | 2066 0 1 [2307] 1 [[3,10,0]]
|
| | | 2067 0 4 [41] 35 [[3,10,0]]
|
| | | 2068 0 7 [] 10 [[3,10,0]]
|
| | | 2069 0 3 [] 10 [[3,10,0]]
|
| | | 2070 0 8 [42] 1000 [[3,10,0]]
|
| | | 2071 0 1 [2308] 1 [[3,10,0]]
|
| | | 2072 0 4 [41] 35 [[3,10,0]]
|
| | | 2073 0 7 [] 10 [[3,10,0]]
|
| | | 2074 0 3 [] 10 [[3,10,0]]
|
| | | 2075 0 8 [42] 1000 [[3,10,0]]
|
| | | 2076 0 1 [2309] 1 [[3,10,0]]
|
| | | 2077 0 4 [41] 35 [[3,10,0]]
|
| | | 2078 0 7 [] 10 [[3,10,0]]
|
| | | 2079 0 3 [] 10 [[3,10,0]]
|
| | | 2080 0 8 [42] 1000 [[3,10,0]]
|
| | | 2081 0 1 [2310] 1 [[3,10,0]]
|
| | | 2082 0 4 [41] 35 [[3,10,0]]
|
| | | 2083 0 7 [] 10 [[3,10,0]]
|
| | | 2084 0 3 [] 10 [[3,10,0]]
|
| | | 2085 0 8 [42] 1000 [[3,10,0]]
|
| | | 2086 0 1 [2401] 1 [[3,10,0]]
|
| | | 2087 0 4 [41] 35 [[3,10,0]]
|
| | | 2088 0 7 [] 10 [[3,10,0]]
|
| | | 2089 0 3 [] 10 [[3,10,0]]
|
| | | 2090 0 8 [42] 1000 [[3,10,0]]
|
| | | 2091 0 1 [2402] 1 [[3,10,0]]
|
| | | 2092 0 4 [41] 35 [[3,10,0]]
|
| | | 2093 0 7 [] 10 [[3,10,0]]
|
| | | 2094 0 3 [] 10 [[3,10,0]]
|
| | | 2095 0 8 [42] 1000 [[3,10,0]]
|
| | | 2096 0 1 [2403] 1 [[3,10,0]]
|
| | | 2097 0 4 [41] 35 [[3,10,0]]
|
| | | 2098 0 7 [] 10 [[3,10,0]]
|
| | | 2099 0 3 [] 10 [[3,10,0]]
|
| | | 2100 0 8 [42] 1000 [[3,10,0]]
|
| | | 2101 0 1 [2404] 1 [[3,10,0]]
|
| | | 2102 0 4 [41] 35 [[3,10,0]]
|
| | | 2103 0 7 [] 10 [[3,10,0]]
|
| | | 2104 0 3 [] 10 [[3,10,0]]
|
| | | 2105 0 8 [42] 1000 [[3,10,0]]
|
| | | 2106 0 1 [2405] 1 [[3,10,0]]
|
| | | 2107 0 4 [41] 35 [[3,10,0]]
|
| | | 2108 0 7 [] 10 [[3,10,0]]
|
| | | 2109 0 3 [] 10 [[3,10,0]]
|
| | | 2070 0 1 [405] 1 [[3,10,0]]
|
| | | 2080 0 4 [41] 35 [[3,10,0]]
|
| | | 2090 0 7 [] 10 [[3,10,0]]
|
| | | 2100 0 3 [] 10 [[3,10,0]]
|
| | | 2110 0 8 [42] 1000 [[3,10,0]]
|
| | | 2111 0 1 [2406] 1 [[3,10,0]]
|
| | | 2112 0 4 [41] 35 [[3,10,0]]
|
| | | 2113 0 7 [] 10 [[3,10,0]]
|
| | | 2114 0 3 [] 10 [[3,10,0]]
|
| | | 2115 0 8 [42] 1000 [[3,10,0]]
|
| | | 2116 0 1 [2407] 1 [[3,10,0]]
|
| | | 2117 0 4 [41] 35 [[3,10,0]]
|
| | | 2118 0 7 [] 10 [[3,10,0]]
|
| | | 2119 0 3 [] 10 [[3,10,0]]
|
| | | 2120 0 8 [42] 1000 [[3,10,0]]
|
| | | 2121 0 1 [2408] 1 [[3,10,0]]
|
| | | 2122 0 4 [41] 35 [[3,10,0]]
|
| | | 2123 0 7 [] 10 [[3,10,0]]
|
| | | 2124 0 3 [] 10 [[3,10,0]]
|
| | | 2125 0 8 [42] 1000 [[3,10,0]]
|
| | | 2126 0 1 [2409] 1 [[3,10,0]]
|
| | | 2127 0 4 [41] 35 [[3,10,0]]
|
| | | 2128 0 7 [] 10 [[3,10,0]]
|
| | | 2129 0 3 [] 10 [[3,10,0]]
|
| | | 2130 0 8 [42] 1000 [[3,10,0]]
|
| | | 2131 0 1 [2410] 1 [[3,10,0]]
|
| | | 2132 0 4 [41] 35 [[3,10,0]]
|
| | | 2133 0 7 [] 10 [[3,10,0]]
|
| | | 2134 0 3 [] 10 [[3,10,0]]
|
| | | 2135 0 8 [42] 1000 [[3,10,0]]
|
| | | 2136 0 1 [2501] 1 [[3,10,0]]
|
| | | 2137 0 4 [41] 35 [[3,10,0]]
|
| | | 2138 0 7 [] 10 [[3,10,0]]
|
| | | 2139 0 3 [] 10 [[3,10,0]]
|
| | | 2140 0 8 [42] 1000 [[3,10,0]]
|
| | | 2141 0 1 [2502] 1 [[3,10,0]]
|
| | | 2142 0 4 [41] 35 [[3,10,0]]
|
| | | 2143 0 7 [] 10 [[3,10,0]]
|
| | | 2144 0 3 [] 10 [[3,10,0]]
|
| | | 2145 0 8 [42] 1000 [[3,10,0]]
|
| | | 2146 0 1 [2503] 1 [[3,10,0]]
|
| | | 2147 0 4 [41] 35 [[3,10,0]]
|
| | | 2148 0 7 [] 10 [[3,10,0]]
|
| | | 2149 0 3 [] 10 [[3,10,0]]
|
| | | 2150 0 8 [42] 1000 [[3,10,0]]
|
| | | 2151 0 1 [2504] 1 [[3,10,0]]
|
| | | 2152 0 4 [41] 35 [[3,10,0]]
|
| | | 2153 0 7 [] 10 [[3,10,0]]
|
| | | 2154 0 3 [] 10 [[3,10,0]]
|
| | | 2155 0 8 [42] 1000 [[3,10,0]]
|
| | | 2156 0 1 [2505] 1 [[3,10,0]]
|
| | | 2157 0 4 [41] 35 [[3,10,0]]
|
| | | 2158 0 7 [] 10 [[3,10,0]]
|
| | | 2159 0 3 [] 10 [[3,10,0]]
|
| | | 2120 0 1 [406] 1 [[3,10,0]]
|
| | | 2130 0 4 [41] 35 [[3,10,0]]
|
| | | 2140 0 7 [] 10 [[3,10,0]]
|
| | | 2150 0 3 [] 10 [[3,10,0]]
|
| | | 2160 0 8 [42] 1000 [[3,10,0]]
|
| | | 2161 0 1 [2506] 1 [[3,10,0]]
|
| | | 2162 0 4 [41] 35 [[3,10,0]]
|
| | | 2163 0 7 [] 10 [[3,10,0]]
|
| | | 2164 0 3 [] 10 [[3,10,0]]
|
| | | 2165 0 8 [42] 1000 [[3,10,0]]
|
| | | 2166 0 1 [2507] 1 [[3,10,0]]
|
| | | 2167 0 4 [41] 35 [[3,10,0]]
|
| | | 2168 0 7 [] 10 [[3,10,0]]
|
| | | 2169 0 3 [] 10 [[3,10,0]]
|
| | | 2170 0 8 [42] 1000 [[3,10,0]]
|
| | | 2171 0 1 [2508] 1 [[3,10,0]]
|
| | | 2172 0 4 [41] 35 [[3,10,0]]
|
| | | 2173 0 7 [] 10 [[3,10,0]]
|
| | | 2174 0 3 [] 10 [[3,10,0]]
|
| | | 2175 0 8 [42] 1000 [[3,10,0]]
|
| | | 2176 0 1 [2509] 1 [[3,10,0]]
|
| | | 2177 0 4 [41] 35 [[3,10,0]]
|
| | | 2178 0 7 [] 10 [[3,10,0]]
|
| | | 2179 0 3 [] 10 [[3,10,0]]
|
| | | 2180 0 8 [42] 1000 [[3,10,0]]
|
| | | 2181 0 1 [2510] 1 [[3,10,0]]
|
| | | 2182 0 4 [41] 35 [[3,10,0]]
|
| | | 2183 0 7 [] 10 [[3,10,0]]
|
| | | 2184 0 3 [] 10 [[3,10,0]]
|
| | | 2185 0 8 [42] 1000 [[3,10,0]]
|
| | | 2186 0 1 [2601] 1 [[3,10,0]]
|
| | | 2187 0 4 [41] 35 [[3,10,0]]
|
| | | 2188 0 7 [] 10 [[3,10,0]]
|
| | | 2189 0 3 [] 10 [[3,10,0]]
|
| | | 2190 0 8 [42] 1000 [[3,10,0]]
|
| | | 2191 0 1 [2602] 1 [[3,10,0]]
|
| | | 2192 0 4 [41] 35 [[3,10,0]]
|
| | | 2193 0 7 [] 10 [[3,10,0]]
|
| | | 2194 0 3 [] 10 [[3,10,0]]
|
| | | 2195 0 8 [42] 1000 [[3,10,0]]
|
| | | 2196 0 1 [2603] 1 [[3,10,0]]
|
| | | 2197 0 4 [41] 35 [[3,10,0]]
|
| | | 2198 0 7 [] 10 [[3,10,0]]
|
| | | 2199 0 3 [] 10 [[3,10,0]]
|
| | | 2200 0 8 [42] 1000 [[3,10,0]]
|
| | | 2201 0 1 [2604] 1 [[3,10,0]]
|
| | | 2202 0 4 [41] 35 [[3,10,0]]
|
| | | 2203 0 7 [] 10 [[3,10,0]]
|
| | | 2204 0 3 [] 10 [[3,10,0]]
|
| | | 2205 0 8 [42] 1000 [[3,10,0]]
|
| | | 2206 0 1 [2605] 1 [[3,10,0]]
|
| | | 2207 0 4 [41] 35 [[3,10,0]]
|
| | | 2208 0 7 [] 10 [[3,10,0]]
|
| | | 2209 0 3 [] 10 [[3,10,0]]
|
| | | 2170 0 1 [407] 1 [[3,10,0]]
|
| | | 2180 0 4 [41] 35 [[3,10,0]]
|
| | | 2190 0 7 [] 10 [[3,10,0]]
|
| | | 2200 0 3 [] 10 [[3,10,0]]
|
| | | 2210 0 8 [42] 1000 [[3,10,0]]
|
| | | 2211 0 1 [2606] 1 [[3,10,0]]
|
| | | 2212 0 4 [41] 35 [[3,10,0]]
|
| | | 2213 0 7 [] 10 [[3,10,0]]
|
| | | 2214 0 3 [] 10 [[3,10,0]]
|
| | | 2215 0 8 [42] 1000 [[3,10,0]]
|
| | | 2216 0 1 [2607] 1 [[3,10,0]]
|
| | | 2217 0 4 [41] 35 [[3,10,0]]
|
| | | 2218 0 7 [] 10 [[3,10,0]]
|
| | | 2219 0 3 [] 10 [[3,10,0]]
|
| | | 2220 0 8 [42] 1000 [[3,10,0]]
|
| | | 2221 0 1 [2608] 1 [[3,10,0]]
|
| | | 2222 0 4 [41] 35 [[3,10,0]]
|
| | | 2223 0 7 [] 10 [[3,10,0]]
|
| | | 2224 0 3 [] 10 [[3,10,0]]
|
| | | 2225 0 8 [42] 1000 [[3,10,0]]
|
| | | 2226 0 1 [2609] 1 [[3,10,0]]
|
| | | 2227 0 4 [41] 35 [[3,10,0]]
|
| | | 2228 0 7 [] 10 [[3,10,0]]
|
| | | 2229 0 3 [] 10 [[3,10,0]]
|
| | | 2230 0 8 [42] 1000 [[3,10,0]]
|
| | | 2231 0 1 [2610] 1 [[3,10,0]]
|
| | | 2232 0 4 [41] 35 [[3,10,0]]
|
| | | 2233 0 7 [] 10 [[3,10,0]]
|
| | | 2234 0 3 [] 10 [[3,10,0]]
|
| | | 2235 0 8 [42] 1000 [[3,10,0]]
|
| | | 2236 0 1 [2701] 1 [[3,10,0]]
|
| | | 2237 0 4 [41] 35 [[3,10,0]]
|
| | | 2238 0 7 [] 10 [[3,10,0]]
|
| | | 2239 0 3 [] 10 [[3,10,0]]
|
| | | 2240 0 8 [42] 1000 [[3,10,0]]
|
| | | 2241 0 1 [2702] 1 [[3,10,0]]
|
| | | 2242 0 4 [41] 35 [[3,10,0]]
|
| | | 2243 0 7 [] 10 [[3,10,0]]
|
| | | 2244 0 3 [] 10 [[3,10,0]]
|
| | | 2245 0 8 [42] 1000 [[3,10,0]]
|
| | | 2246 0 1 [2703] 1 [[3,10,0]]
|
| | | 2247 0 4 [41] 35 [[3,10,0]]
|
| | | 2248 0 7 [] 10 [[3,10,0]]
|
| | | 2249 0 3 [] 10 [[3,10,0]]
|
| | | 2250 0 8 [42] 1000 [[3,10,0]]
|
| | | 2251 0 1 [2704] 1 [[3,10,0]]
|
| | | 2252 0 4 [41] 35 [[3,10,0]]
|
| | | 2253 0 7 [] 10 [[3,10,0]]
|
| | | 2254 0 3 [] 10 [[3,10,0]]
|
| | | 2255 0 8 [42] 1000 [[3,10,0]]
|
| | | 2256 0 1 [2705] 1 [[3,10,0]]
|
| | | 2257 0 4 [41] 35 [[3,10,0]]
|
| | | 2258 0 7 [] 10 [[3,10,0]]
|
| | | 2259 0 3 [] 10 [[3,10,0]]
|
| | | 2220 0 1 [408] 1 [[3,10,0]]
|
| | | 2230 0 4 [41] 35 [[3,10,0]]
|
| | | 2240 0 7 [] 10 [[3,10,0]]
|
| | | 2250 0 3 [] 10 [[3,10,0]]
|
| | | 2260 0 8 [42] 1000 [[3,10,0]]
|
| | | 2261 0 1 [2706] 1 [[3,10,0]]
|
| | | 2262 0 4 [41] 35 [[3,10,0]]
|
| | | 2263 0 7 [] 10 [[3,10,0]]
|
| | | 2264 0 3 [] 10 [[3,10,0]]
|
| | | 2265 0 8 [42] 1000 [[3,10,0]]
|
| | | 2266 0 1 [2707] 1 [[3,10,0]]
|
| | | 2267 0 4 [41] 35 [[3,10,0]]
|
| | | 2268 0 7 [] 10 [[3,10,0]]
|
| | | 2269 0 3 [] 10 [[3,10,0]]
|
| | | 2270 0 8 [42] 1000 [[3,10,0]]
|
| | | 2271 0 1 [2708] 1 [[3,10,0]]
|
| | | 2272 0 4 [41] 35 [[3,10,0]]
|
| | | 2273 0 7 [] 10 [[3,10,0]]
|
| | | 2274 0 3 [] 10 [[3,10,0]]
|
| | | 2275 0 8 [42] 1000 [[3,10,0]]
|
| | | 2276 0 1 [2709] 1 [[3,10,0]]
|
| | | 2277 0 4 [41] 35 [[3,10,0]]
|
| | | 2278 0 7 [] 10 [[3,10,0]]
|
| | | 2279 0 3 [] 10 [[3,10,0]]
|
| | | 2280 0 8 [42] 1000 [[3,10,0]]
|
| | | 2281 0 1 [2710] 1 [[3,10,0]]
|
| | | 2282 0 4 [41] 35 [[3,10,0]]
|
| | | 2283 0 7 [] 10 [[3,10,0]]
|
| | | 2284 0 3 [] 10 [[3,10,0]]
|
| | | 2285 0 8 [42] 1000 [[3,10,0]]
|
| | | 2286 0 1 [2801] 1 [[3,10,0]]
|
| | | 2287 0 4 [41] 35 [[3,10,0]]
|
| | | 2288 0 7 [] 10 [[3,10,0]]
|
| | | 2289 0 3 [] 10 [[3,10,0]]
|
| | | 2290 0 8 [42] 1000 [[3,10,0]]
|
| | | 2291 0 1 [2802] 1 [[3,10,0]]
|
| | | 2292 0 4 [41] 35 [[3,10,0]]
|
| | | 2293 0 7 [] 10 [[3,10,0]]
|
| | | 2294 0 3 [] 10 [[3,10,0]]
|
| | | 2295 0 8 [42] 1000 [[3,10,0]]
|
| | | 2296 0 1 [2803] 1 [[3,10,0]]
|
| | | 2297 0 4 [41] 35 [[3,10,0]]
|
| | | 2298 0 7 [] 10 [[3,10,0]]
|
| | | 2299 0 3 [] 10 [[3,10,0]]
|
| | | 2300 0 8 [42] 1000 [[3,10,0]]
|
| | | 2301 0 1 [2804] 1 [[3,10,0]]
|
| | | 2302 0 4 [41] 35 [[3,10,0]]
|
| | | 2303 0 7 [] 10 [[3,10,0]]
|
| | | 2304 0 3 [] 10 [[3,10,0]]
|
| | | 2305 0 8 [42] 1000 [[3,10,0]]
|
| | | 2306 0 1 [2805] 1 [[3,10,0]]
|
| | | 2307 0 4 [41] 35 [[3,10,0]]
|
| | | 2308 0 7 [] 10 [[3,10,0]]
|
| | | 2309 0 3 [] 10 [[3,10,0]]
|
| | | 2270 0 1 [409] 1 [[3,10,0]]
|
| | | 2280 0 4 [41] 35 [[3,10,0]]
|
| | | 2290 0 7 [] 10 [[3,10,0]]
|
| | | 2300 0 3 [] 10 [[3,10,0]]
|
| | | 2310 0 8 [42] 1000 [[3,10,0]]
|
| | | 2311 0 1 [2806] 1 [[3,10,0]]
|
| | | 2312 0 4 [41] 35 [[3,10,0]]
|
| | | 2313 0 7 [] 10 [[3,10,0]]
|
| | | 2314 0 3 [] 10 [[3,10,0]]
|
| | | 2315 0 8 [42] 1000 [[3,10,0]]
|
| | | 2316 0 1 [2807] 1 [[3,10,0]]
|
| | | 2317 0 4 [41] 35 [[3,10,0]]
|
| | | 2318 0 7 [] 10 [[3,10,0]]
|
| | | 2319 0 3 [] 10 [[3,10,0]]
|
| | | 2320 0 8 [42] 1000 [[3,10,0]]
|
| | | 2321 0 1 [2808] 1 [[3,10,0]]
|
| | | 2322 0 4 [41] 35 [[3,10,0]]
|
| | | 2323 0 7 [] 10 [[3,10,0]]
|
| | | 2324 0 3 [] 10 [[3,10,0]]
|
| | | 2325 0 8 [42] 1000 [[3,10,0]]
|
| | | 2326 0 1 [2809] 1 [[3,10,0]]
|
| | | 2327 0 4 [41] 35 [[3,10,0]]
|
| | | 2328 0 7 [] 10 [[3,10,0]]
|
| | | 2329 0 3 [] 10 [[3,10,0]]
|
| | | 2330 0 8 [42] 1000 [[3,10,0]]
|
| | | 2331 0 1 [2810] 1 [[3,10,0]]
|
| | | 2332 0 4 [41] 35 [[3,10,0]]
|
| | | 2333 0 7 [] 10 [[3,10,0]]
|
| | | 2334 0 3 [] 10 [[3,10,0]]
|
| | | 2335 0 8 [42] 1000 [[3,10,0]]
|
| | | 2336 0 1 [2901] 1 [[3,10,0]]
|
| | | 2337 0 4 [41] 35 [[3,10,0]]
|
| | | 2338 0 7 [] 10 [[3,10,0]]
|
| | | 2339 0 3 [] 10 [[3,10,0]]
|
| | | 2320 0 1 [410] 1 [[3,10,0]]
|
| | | 2330 0 4 [41] 35 [[3,10,0]]
|
| | | 2340 0 8 [42] 1000 [[3,10,0]]
|
| | | 2341 0 1 [2902] 1 [[3,10,0]]
|
| | | 2342 0 4 [41] 35 [[3,10,0]]
|
| | | 2343 0 7 [] 10 [[3,10,0]]
|
| | | 2344 0 3 [] 10 [[3,10,0]]
|
| | | 2345 0 8 [42] 1000 [[3,10,0]]
|
| | | 2346 0 1 [2903] 1 [[3,10,0]]
|
| | | 2347 0 4 [41] 35 [[3,10,0]]
|
| | | 2348 0 7 [] 10 [[3,10,0]]
|
| | | 2349 0 3 [] 10 [[3,10,0]]
|
| | | 2350 0 8 [42] 1000 [[3,10,0]]
|
| | | 2351 0 1 [2904] 1 [[3,10,0]]
|
| | | 2352 0 4 [41] 35 [[3,10,0]]
|
| | | 2353 0 7 [] 10 [[3,10,0]]
|
| | | 2354 0 3 [] 10 [[3,10,0]]
|
| | | 2355 0 8 [42] 1000 [[3,10,0]]
|
| | | 2356 0 1 [2905] 1 [[3,10,0]]
|
| | | 2357 0 4 [41] 35 [[3,10,0]]
|
| | | 2358 0 7 [] 10 [[3,10,0]]
|
| | | 2359 0 3 [] 10 [[3,10,0]]
|
| | | 2360 0 8 [42] 1000 [[3,10,0]]
|
| | | 2361 0 1 [2906] 1 [[3,10,0]]
|
| | | 2362 0 4 [41] 35 [[3,10,0]]
|
| | | 2363 0 7 [] 10 [[3,10,0]]
|
| | | 2364 0 3 [] 10 [[3,10,0]]
|
| | | 2365 0 8 [42] 1000 [[3,10,0]]
|
| | | 2366 0 1 [2907] 1 [[3,10,0]]
|
| | | 2367 0 4 [41] 35 [[3,10,0]]
|
| | | 2368 0 7 [] 10 [[3,10,0]]
|
| | | 2369 0 3 [] 10 [[3,10,0]]
|
| | | 2370 0 8 [42] 1000 [[3,10,0]]
|
| | | 2371 0 1 [2908] 1 [[3,10,0]]
|
| | | 2372 0 4 [41] 35 [[3,10,0]]
|
| | | 2373 0 7 [] 10 [[3,10,0]]
|
| | | 2374 0 3 [] 10 [[3,10,0]]
|
| | | 2375 0 8 [42] 1000 [[3,10,0]]
|
| | | 2376 0 1 [2909] 1 [[3,10,0]]
|
| | | 2377 0 4 [41] 35 [[3,10,0]]
|
| | | 2378 0 7 [] 10 [[3,10,0]]
|
| | | 2379 0 3 [] 10 [[3,10,0]]
|
| | | 2380 0 8 [42] 1000 [[3,10,0]]
|
| | | 2381 0 1 [2910] 1 [[3,10,0]]
|
| | | 2382 0 4 [41] 35 [[3,10,0]]
|
| | | 2383 0 7 [] 10 [[3,10,0]]
|
| | | 2384 0 3 [] 10 [[3,10,0]]
|
| | | 2385 0 8 [42] 1000 [[3,10,0]]
|
| | | 2386 0 1 [3001] 1 [[3,10,0]]
|
| | | 2387 0 4 [41] 35 [[3,10,0]]
|
| | | 2388 0 7 [] 10 [[3,10,0]]
|
| | | 2389 0 3 [] 10 [[3,10,0]]
|
| | | 2390 0 8 [42] 1000 [[3,10,0]]
|
| | | 2391 0 1 [3002] 1 [[3,10,0]]
|
| | | 2392 0 4 [41] 35 [[3,10,0]]
|
| | | 2393 0 7 [] 10 [[3,10,0]]
|
| | | 2394 0 3 [] 10 [[3,10,0]]
|
| | | 2395 0 8 [42] 1000 [[3,10,0]]
|
| | | 2396 0 1 [3003] 1 [[3,10,0]]
|
| | | 2397 0 4 [41] 35 [[3,10,0]]
|
| | | 2398 0 7 [] 10 [[3,10,0]]
|
| | | 2399 0 3 [] 10 [[3,10,0]]
|
| | | 2400 0 8 [42] 1000 [[3,10,0]]
|
| | | 2401 0 1 [3004] 1 [[3,10,0]]
|
| | | 2402 0 4 [41] 35 [[3,10,0]]
|
| | | 2403 0 7 [] 10 [[3,10,0]]
|
| | | 2404 0 3 [] 10 [[3,10,0]]
|
| | | 2405 0 8 [42] 1000 [[3,10,0]]
|
| | | 2406 0 1 [3005] 1 [[3,10,0]]
|
| | | 2407 0 4 [41] 35 [[3,10,0]]
|
| | | 2408 0 7 [] 10 [[3,10,0]]
|
| | | 2409 0 3 [] 10 [[3,10,0]]
|
| | | 2350 0 7 [] 10 [[3,10,0]]
|
| | | 2360 0 3 [] 10 [[3,10,0]]
|
| | | 2370 0 1 [501] 1 [[3,10,0]]
|
| | | 2380 0 4 [41] 35 [[3,10,0]]
|
| | | 2390 0 7 [] 10 [[3,10,0]]
|
| | | 2400 0 3 [] 10 [[3,10,0]]
|
| | | 2410 0 8 [42] 1000 [[3,10,0]]
|
| | | 2411 0 1 [3006] 1 [[3,10,0]]
|
| | | 2412 0 4 [41] 35 [[3,10,0]]
|
| | | 2413 0 7 [] 10 [[3,10,0]]
|
| | | 2414 0 3 [] 10 [[3,10,0]]
|
| | | 2415 0 8 [42] 1000 [[3,10,0]]
|
| | | 2416 0 1 [3007] 1 [[3,10,0]]
|
| | | 2417 0 4 [41] 35 [[3,10,0]]
|
| | | 2418 0 7 [] 10 [[3,10,0]]
|
| | | 2419 0 3 [] 10 [[3,10,0]]
|
| | | 2420 0 8 [42] 1000 [[3,10,0]]
|
| | | 2421 0 1 [3008] 1 [[3,10,0]]
|
| | | 2422 0 4 [41] 35 [[3,10,0]]
|
| | | 2423 0 7 [] 10 [[3,10,0]]
|
| | | 2424 0 3 [] 10 [[3,10,0]]
|
| | | 2425 0 8 [42] 1000 [[3,10,0]]
|
| | | 2426 0 1 [3009] 1 [[3,10,0]]
|
| | | 2427 0 4 [41] 35 [[3,10,0]]
|
| | | 2428 0 7 [] 10 [[3,10,0]]
|
| | | 2429 0 3 [] 10 [[3,10,0]]
|
| | | 2430 0 8 [42] 1000 [[3,10,0]]
|
| | | 2431 0 1 [3010] 1 [[3,10,0]]
|
| | | 2432 0 4 [41] 35 [[3,10,0]]
|
| | | 2433 0 7 [] 10 [[3,10,0]]
|
| | | 2434 0 3 [] 10 [[3,10,0]]
|
| | | 2435 0 8 [42] 1000 [[3,10,0]]
|
| | | 2436 0 1 [3101] 1 [[3,10,0]]
|
| | | 2437 0 4 [41] 35 [[3,10,0]]
|
| | | 2438 0 7 [] 10 [[3,10,0]]
|
| | | 2439 0 3 [] 10 [[3,10,0]]
|
| | | 2440 0 8 [42] 1000 [[3,10,0]]
|
| | | 2441 0 1 [3102] 1 [[3,10,0]]
|
| | | 2442 0 4 [41] 35 [[3,10,0]]
|
| | | 2443 0 7 [] 10 [[3,10,0]]
|
| | | 2444 0 3 [] 10 [[3,10,0]]
|
| | | 2445 0 8 [42] 1000 [[3,10,0]]
|
| | | 2446 0 1 [3103] 1 [[3,10,0]]
|
| | | 2447 0 4 [41] 35 [[3,10,0]]
|
| | | 2448 0 7 [] 10 [[3,10,0]]
|
| | | 2449 0 3 [] 10 [[3,10,0]]
|
| | | 2450 0 8 [42] 1000 [[3,10,0]]
|
| | | 2451 0 1 [3104] 1 [[3,10,0]]
|
| | | 2452 0 4 [41] 35 [[3,10,0]]
|
| | | 2453 0 7 [] 10 [[3,10,0]]
|
| | | 2454 0 3 [] 10 [[3,10,0]]
|
| | | 2455 0 8 [42] 1000 [[3,10,0]]
|
| | | 2456 0 1 [3105] 1 [[3,10,0]]
|
| | | 2457 0 4 [41] 35 [[3,10,0]]
|
| | | 2458 0 7 [] 10 [[3,10,0]]
|
| | | 2459 0 3 [] 10 [[3,10,0]]
|
| | | 2420 0 1 [502] 1 [[3,10,0]]
|
| | | 2430 0 4 [41] 35 [[3,10,0]]
|
| | | 2440 0 7 [] 10 [[3,10,0]]
|
| | | 2450 0 3 [] 10 [[3,10,0]]
|
| | | 2460 0 8 [42] 1000 [[3,10,0]]
|
| | | 2461 0 1 [3106] 1 [[3,10,0]]
|
| | | 2462 0 4 [41] 35 [[3,10,0]]
|
| | | 2463 0 7 [] 10 [[3,10,0]]
|
| | | 2464 0 3 [] 10 [[3,10,0]]
|
| | | 2465 0 8 [42] 1000 [[3,10,0]]
|
| | | 2466 0 1 [3107] 1 [[3,10,0]]
|
| | | 2467 0 4 [41] 35 [[3,10,0]]
|
| | | 2468 0 7 [] 10 [[3,10,0]]
|
| | | 2469 0 3 [] 10 [[3,10,0]]
|
| | | 2470 0 8 [42] 1000 [[3,10,0]]
|
| | | 2471 0 1 [3108] 1 [[3,10,0]]
|
| | | 2472 0 4 [41] 35 [[3,10,0]]
|
| | | 2473 0 7 [] 10 [[3,10,0]]
|
| | | 2474 0 3 [] 10 [[3,10,0]]
|
| | | 2475 0 8 [42] 1000 [[3,10,0]]
|
| | | 2476 0 1 [3109] 1 [[3,10,0]]
|
| | | 2477 0 4 [41] 35 [[3,10,0]]
|
| | | 2478 0 7 [] 10 [[3,10,0]]
|
| | | 2479 0 3 [] 10 [[3,10,0]]
|
| | | 2480 0 8 [42] 1000 [[3,10,0]]
|
| | | 2481 0 1 [3110] 1 [[3,10,0]]
|
| | | 2482 0 4 [41] 35 [[3,10,0]]
|
| | | 2483 0 7 [] 10 [[3,10,0]]
|
| | | 2484 0 3 [] 10 [[3,10,0]]
|
| | | 2485 0 8 [42] 1000 [[3,10,0]]
|
| | | 2486 0 1 [3201] 1 [[3,10,0]]
|
| | | 2487 0 4 [41] 35 [[3,10,0]]
|
| | | 2488 0 7 [] 10 [[3,10,0]]
|
| | | 2489 0 3 [] 10 [[3,10,0]]
|
| | | 2490 0 8 [42] 1000 [[3,10,0]]
|
| | | 2491 0 1 [3202] 1 [[3,10,0]]
|
| | | 2492 0 4 [41] 35 [[3,10,0]]
|
| | | 2493 0 7 [] 10 [[3,10,0]]
|
| | | 2494 0 3 [] 10 [[3,10,0]]
|
| | | 2495 0 8 [42] 1000 [[3,10,0]]
|
| | | 2496 0 1 [3203] 1 [[3,10,0]]
|
| | | 2497 0 4 [41] 35 [[3,10,0]]
|
| | | 2498 0 7 [] 10 [[3,10,0]]
|
| | | 2499 0 3 [] 10 [[3,10,0]]
|
| | | 2500 0 8 [42] 1000 [[3,10,0]]
|
| | | 2501 0 1 [3204] 1 [[3,10,0]]
|
| | | 2502 0 4 [41] 35 [[3,10,0]]
|
| | | 2503 0 7 [] 10 [[3,10,0]]
|
| | | 2504 0 3 [] 10 [[3,10,0]]
|
| | | 2505 0 8 [42] 1000 [[3,10,0]]
|
| | | 2506 0 1 [3205] 1 [[3,10,0]]
|
| | | 2507 0 4 [41] 35 [[3,10,0]]
|
| | | 2508 0 7 [] 10 [[3,10,0]]
|
| | | 2509 0 3 [] 10 [[3,10,0]]
|
| | | 2470 0 1 [503] 1 [[3,10,0]]
|
| | | 2480 0 4 [41] 35 [[3,10,0]]
|
| | | 2490 0 7 [] 10 [[3,10,0]]
|
| | | 2500 0 3 [] 10 [[3,10,0]]
|
| | | 2510 0 8 [42] 1000 [[3,10,0]]
|
| | | 2511 0 1 [3206] 1 [[3,10,0]]
|
| | | 2512 0 4 [41] 35 [[3,10,0]]
|
| | | 2513 0 7 [] 10 [[3,10,0]]
|
| | | 2514 0 3 [] 10 [[3,10,0]]
|
| | | 2515 0 8 [42] 1000 [[3,10,0]]
|
| | | 2516 0 1 [3207] 1 [[3,10,0]]
|
| | | 2517 0 4 [41] 35 [[3,10,0]]
|
| | | 2518 0 7 [] 10 [[3,10,0]]
|
| | | 2519 0 3 [] 10 [[3,10,0]]
|
| | | 2520 0 8 [42] 1000 [[3,10,0]]
|
| | | 2521 0 1 [3208] 1 [[3,10,0]]
|
| | | 2522 0 4 [41] 35 [[3,10,0]]
|
| | | 2523 0 7 [] 10 [[3,10,0]]
|
| | | 2524 0 3 [] 10 [[3,10,0]]
|
| | | 2525 0 8 [42] 1000 [[3,10,0]]
|
| | | 2526 0 1 [3209] 1 [[3,10,0]]
|
| | | 2527 0 4 [41] 35 [[3,10,0]]
|
| | | 2528 0 7 [] 10 [[3,10,0]]
|
| | | 2529 0 3 [] 10 [[3,10,0]]
|
| | | 2530 0 8 [42] 1000 [[3,10,0]]
|
| | | 2531 0 1 [3210] 1 [[3,10,0]]
|
| | | 2532 0 4 [41] 35 [[3,10,0]]
|
| | | 2533 0 7 [] 10 [[3,10,0]]
|
| | | 2534 0 3 [] 10 [[3,10,0]]
|
| | | 2535 0 8 [42] 1000 [[3,10,0]]
|
| | | 2536 0 1 [3301] 1 [[3,10,0]]
|
| | | 2537 0 4 [41] 35 [[3,10,0]]
|
| | | 2538 0 7 [] 10 [[3,10,0]]
|
| | | 2539 0 3 [] 10 [[3,10,0]]
|
| | | 2540 0 8 [42] 1000 [[3,10,0]]
|
| | | 2541 0 1 [3302] 1 [[3,10,0]]
|
| | | 2542 0 4 [41] 35 [[3,10,0]]
|
| | | 2543 0 7 [] 10 [[3,10,0]]
|
| | | 2544 0 3 [] 10 [[3,10,0]]
|
| | | 2545 0 8 [42] 1000 [[3,10,0]]
|
| | | 2546 0 1 [3303] 1 [[3,10,0]]
|
| | | 2547 0 4 [41] 35 [[3,10,0]]
|
| | | 2548 0 7 [] 10 [[3,10,0]]
|
| | | 2549 0 3 [] 10 [[3,10,0]]
|
| | | 2550 0 8 [42] 1000 [[3,10,0]]
|
| | | 2551 0 1 [3304] 1 [[3,10,0]]
|
| | | 2552 0 4 [41] 35 [[3,10,0]]
|
| | | 2553 0 7 [] 10 [[3,10,0]]
|
| | | 2554 0 3 [] 10 [[3,10,0]]
|
| | | 2555 0 8 [42] 1000 [[3,10,0]]
|
| | | 2556 0 1 [3305] 1 [[3,10,0]]
|
| | | 2557 0 4 [41] 35 [[3,10,0]]
|
| | | 2558 0 7 [] 10 [[3,10,0]]
|
| | | 2559 0 3 [] 10 [[3,10,0]]
|
| | | 2520 0 1 [504] 1 [[3,10,0]]
|
| | | 2530 0 4 [41] 35 [[3,10,0]]
|
| | | 2540 0 7 [] 10 [[3,10,0]]
|
| | | 2550 0 3 [] 10 [[3,10,0]]
|
| | | 2560 0 8 [42] 1000 [[3,10,0]]
|
| | | 2561 0 1 [3306] 1 [[3,10,0]]
|
| | | 2562 0 4 [41] 35 [[3,10,0]]
|
| | | 2563 0 7 [] 10 [[3,10,0]]
|
| | | 2564 0 3 [] 10 [[3,10,0]]
|
| | | 2565 0 8 [42] 1000 [[3,10,0]]
|
| | | 2566 0 1 [3307] 1 [[3,10,0]]
|
| | | 2567 0 4 [41] 35 [[3,10,0]]
|
| | | 2568 0 7 [] 10 [[3,10,0]]
|
| | | 2569 0 3 [] 10 [[3,10,0]]
|
| | | 2570 0 8 [42] 1000 [[3,10,0]]
|
| | | 2571 0 1 [3308] 1 [[3,10,0]]
|
| | | 2572 0 4 [41] 35 [[3,10,0]]
|
| | | 2573 0 7 [] 10 [[3,10,0]]
|
| | | 2574 0 3 [] 10 [[3,10,0]]
|
| | | 2575 0 8 [42] 1000 [[3,10,0]]
|
| | | 2576 0 1 [3309] 1 [[3,10,0]]
|
| | | 2577 0 4 [41] 35 [[3,10,0]]
|
| | | 2578 0 7 [] 10 [[3,10,0]]
|
| | | 2579 0 3 [] 10 [[3,10,0]]
|
| | | 2580 0 8 [42] 1000 [[3,10,0]]
|
| | | 2581 0 1 [3310] 1 [[3,10,0]]
|
| | | 2582 0 4 [41] 35 [[3,10,0]]
|
| | | 2583 0 7 [] 10 [[3,10,0]]
|
| | | 2584 0 3 [] 10 [[3,10,0]]
|
| | | 2585 0 8 [42] 1000 [[3,10,0]]
|
| | | 2586 0 1 [3401] 1 [[3,10,0]]
|
| | | 2587 0 4 [41] 35 [[3,10,0]]
|
| | | 2588 0 7 [] 10 [[3,10,0]]
|
| | | 2589 0 3 [] 10 [[3,10,0]]
|
| | | 2590 0 8 [42] 1000 [[3,10,0]]
|
| | | 2591 0 1 [3402] 1 [[3,10,0]]
|
| | | 2592 0 4 [41] 35 [[3,10,0]]
|
| | | 2593 0 7 [] 10 [[3,10,0]]
|
| | | 2594 0 3 [] 10 [[3,10,0]]
|
| | | 2595 0 8 [42] 1000 [[3,10,0]]
|
| | | 2596 0 1 [3403] 1 [[3,10,0]]
|
| | | 2597 0 4 [41] 35 [[3,10,0]]
|
| | | 2598 0 7 [] 10 [[3,10,0]]
|
| | | 2599 0 3 [] 10 [[3,10,0]]
|
| | | 2600 0 8 [42] 1000 [[3,10,0]]
|
| | | 2601 0 1 [3404] 1 [[3,10,0]]
|
| | | 2602 0 4 [41] 35 [[3,10,0]]
|
| | | 2603 0 7 [] 10 [[3,10,0]]
|
| | | 2604 0 3 [] 10 [[3,10,0]]
|
| | | 2605 0 8 [42] 1000 [[3,10,0]]
|
| | | 2606 0 1 [3405] 1 [[3,10,0]]
|
| | | 2607 0 4 [41] 35 [[3,10,0]]
|
| | | 2608 0 7 [] 10 [[3,10,0]]
|
| | | 2609 0 3 [] 10 [[3,10,0]]
|
| | | 2570 0 1 [505] 1 [[3,10,0]]
|
| | | 2580 0 4 [41] 35 [[3,10,0]]
|
| | | 2590 0 7 [] 10 [[3,10,0]]
|
| | | 2600 0 3 [] 10 [[3,10,0]]
|
| | | 2610 0 8 [42] 1000 [[3,10,0]]
|
| | | 2611 0 1 [3406] 1 [[3,10,0]]
|
| | | 2612 0 4 [41] 35 [[3,10,0]]
|
| | | 2613 0 7 [] 10 [[3,10,0]]
|
| | | 2614 0 3 [] 10 [[3,10,0]]
|
| | | 2615 0 8 [42] 1000 [[3,10,0]]
|
| | | 2616 0 1 [3407] 1 [[3,10,0]]
|
| | | 2617 0 4 [41] 35 [[3,10,0]]
|
| | | 2618 0 7 [] 10 [[3,10,0]]
|
| | | 2619 0 3 [] 10 [[3,10,0]]
|
| | | 2620 0 8 [42] 1000 [[3,10,0]]
|
| | | 2621 0 1 [3408] 1 [[3,10,0]]
|
| | | 2622 0 4 [41] 35 [[3,10,0]]
|
| | | 2623 0 7 [] 10 [[3,10,0]]
|
| | | 2624 0 3 [] 10 [[3,10,0]]
|
| | | 2625 0 8 [42] 1000 [[3,10,0]]
|
| | | 2626 0 1 [3409] 1 [[3,10,0]]
|
| | | 2627 0 4 [41] 35 [[3,10,0]]
|
| | | 2628 0 7 [] 10 [[3,10,0]]
|
| | | 2629 0 3 [] 10 [[3,10,0]]
|
| | | 2630 0 8 [42] 1000 [[3,10,0]]
|
| | | 2631 0 1 [3410] 1 [[3,10,0]]
|
| | | 2632 0 4 [41] 35 [[3,10,0]]
|
| | | 2633 0 7 [] 10 [[3,10,0]]
|
| | | 2634 0 3 [] 10 [[3,10,0]]
|
| | | 2635 0 8 [42] 1000 [[3,10,0]]
|
| | | 2636 0 1 [3501] 1 [[3,10,0]]
|
| | | 2637 0 4 [41] 35 [[3,10,0]]
|
| | | 2638 0 7 [] 10 [[3,10,0]]
|
| | | 2639 0 3 [] 10 [[3,10,0]]
|
| | | 2640 0 8 [42] 1000 [[3,10,0]]
|
| | | 2641 0 1 [3502] 1 [[3,10,0]]
|
| | | 2642 0 4 [41] 35 [[3,10,0]]
|
| | | 2643 0 7 [] 10 [[3,10,0]]
|
| | | 2644 0 3 [] 10 [[3,10,0]]
|
| | | 2645 0 8 [42] 1000 [[3,10,0]]
|
| | | 2646 0 1 [3503] 1 [[3,10,0]]
|
| | | 2647 0 4 [41] 35 [[3,10,0]]
|
| | | 2648 0 7 [] 10 [[3,10,0]]
|
| | | 2649 0 3 [] 10 [[3,10,0]]
|
| | | 2650 0 8 [42] 1000 [[3,10,0]]
|
| | | 2651 0 1 [3504] 1 [[3,10,0]]
|
| | | 2652 0 4 [41] 35 [[3,10,0]]
|
| | | 2653 0 7 [] 10 [[3,10,0]]
|
| | | 2654 0 3 [] 10 [[3,10,0]]
|
| | | 2655 0 8 [42] 1000 [[3,10,0]]
|
| | | 2656 0 1 [3505] 1 [[3,10,0]]
|
| | | 2657 0 4 [41] 35 [[3,10,0]]
|
| | | 2658 0 7 [] 10 [[3,10,0]]
|
| | | 2659 0 3 [] 10 [[3,10,0]]
|
| | | 2620 0 1 [506] 1 [[3,10,0]]
|
| | | 2630 0 4 [41] 35 [[3,10,0]]
|
| | | 2640 0 7 [] 10 [[3,10,0]]
|
| | | 2650 0 3 [] 10 [[3,10,0]]
|
| | | 2660 0 8 [42] 1000 [[3,10,0]]
|
| | | 2661 0 1 [3506] 1 [[3,10,0]]
|
| | | 2662 0 4 [41] 35 [[3,10,0]]
|
| | | 2663 0 7 [] 10 [[3,10,0]]
|
| | | 2664 0 3 [] 10 [[3,10,0]]
|
| | | 2665 0 8 [42] 1000 [[3,10,0]]
|
| | | 2666 0 1 [3507] 1 [[3,10,0]]
|
| | | 2667 0 4 [41] 35 [[3,10,0]]
|
| | | 2668 0 7 [] 10 [[3,10,0]]
|
| | | 2669 0 3 [] 10 [[3,10,0]]
|
| | | 2670 0 8 [42] 1000 [[3,10,0]]
|
| | | 2671 0 1 [3508] 1 [[3,10,0]]
|
| | | 2672 0 4 [41] 35 [[3,10,0]]
|
| | | 2673 0 7 [] 10 [[3,10,0]]
|
| | | 2674 0 3 [] 10 [[3,10,0]]
|
| | | 2675 0 8 [42] 1000 [[3,10,0]]
|
| | | 2676 0 1 [3509] 1 [[3,10,0]]
|
| | | 2677 0 4 [41] 35 [[3,10,0]]
|
| | | 2678 0 7 [] 10 [[3,10,0]]
|
| | | 2679 0 3 [] 10 [[3,10,0]]
|
| | | 2680 0 8 [42] 1000 [[3,10,0]]
|
| | | 2681 0 1 [3510] 1 [[3,10,0]]
|
| | | 2682 0 4 [41] 35 [[3,10,0]]
|
| | | 2683 0 7 [] 10 [[3,10,0]]
|
| | | 2684 0 3 [] 10 [[3,10,0]]
|
| | | 2685 0 8 [42] 1000 [[3,10,0]]
|
| | | 2686 0 1 [3601] 1 [[3,10,0]]
|
| | | 2687 0 4 [41] 35 [[3,10,0]]
|
| | | 2688 0 7 [] 10 [[3,10,0]]
|
| | | 2689 0 3 [] 10 [[3,10,0]]
|
| | | 2690 0 8 [42] 1000 [[3,10,0]]
|
| | | 2691 0 1 [3602] 1 [[3,10,0]]
|
| | | 2692 0 4 [41] 35 [[3,10,0]]
|
| | | 2693 0 7 [] 10 [[3,10,0]]
|
| | | 2694 0 3 [] 10 [[3,10,0]]
|
| | | 2695 0 8 [42] 1000 [[3,10,0]]
|
| | | 2696 0 1 [3603] 1 [[3,10,0]]
|
| | | 2697 0 4 [41] 35 [[3,10,0]]
|
| | | 2698 0 7 [] 10 [[3,10,0]]
|
| | | 2699 0 3 [] 10 [[3,10,0]]
|
| | | 2700 0 8 [42] 1000 [[3,10,0]]
|
| | | 2701 0 1 [3604] 1 [[3,10,0]]
|
| | | 2702 0 4 [41] 35 [[3,10,0]]
|
| | | 2703 0 7 [] 10 [[3,10,0]]
|
| | | 2704 0 3 [] 10 [[3,10,0]]
|
| | | 2705 0 8 [42] 1000 [[3,10,0]]
|
| | | 2706 0 1 [3605] 1 [[3,10,0]]
|
| | | 2707 0 4 [41] 35 [[3,10,0]]
|
| | | 2708 0 7 [] 10 [[3,10,0]]
|
| | | 2709 0 3 [] 10 [[3,10,0]]
|
| | | 2670 0 1 [507] 1 [[3,10,0]]
|
| | | 2680 0 4 [41] 35 [[3,10,0]]
|
| | | 2690 0 7 [] 10 [[3,10,0]]
|
| | | 2700 0 3 [] 10 [[3,10,0]]
|
| | | 2710 0 8 [42] 1000 [[3,10,0]]
|
| | | 2711 0 1 [3606] 1 [[3,10,0]]
|
| | | 2712 0 4 [41] 35 [[3,10,0]]
|
| | | 2713 0 7 [] 10 [[3,10,0]]
|
| | | 2714 0 3 [] 10 [[3,10,0]]
|
| | | 2715 0 8 [42] 1000 [[3,10,0]]
|
| | | 2716 0 1 [3607] 1 [[3,10,0]]
|
| | | 2717 0 4 [41] 35 [[3,10,0]]
|
| | | 2718 0 7 [] 10 [[3,10,0]]
|
| | | 2719 0 3 [] 10 [[3,10,0]]
|
| | | 2720 0 8 [42] 1000 [[3,10,0]]
|
| | | 2721 0 1 [3608] 1 [[3,10,0]]
|
| | | 2722 0 4 [41] 35 [[3,10,0]]
|
| | | 2723 0 7 [] 10 [[3,10,0]]
|
| | | 2724 0 3 [] 10 [[3,10,0]]
|
| | | 2725 0 8 [42] 1000 [[3,10,0]]
|
| | | 2726 0 1 [3609] 1 [[3,10,0]]
|
| | | 2727 0 4 [41] 35 [[3,10,0]]
|
| | | 2728 0 7 [] 10 [[3,10,0]]
|
| | | 2729 0 3 [] 10 [[3,10,0]]
|
| | | 2730 0 8 [42] 1000 [[3,10,0]]
|
| | | 2731 0 1 [3610] 1 [[3,10,0]]
|
| | | 2732 0 4 [41] 35 [[3,10,0]]
|
| | | 2733 0 7 [] 10 [[3,10,0]]
|
| | | 2734 0 3 [] 10 [[3,10,0]]
|
| | | 2735 0 8 [42] 1000 [[3,10,0]]
|
| | | 2736 0 1 [3701] 1 [[3,10,0]]
|
| | | 2737 0 4 [41] 35 [[3,10,0]]
|
| | | 2738 0 7 [] 10 [[3,10,0]]
|
| | | 2739 0 3 [] 10 [[3,10,0]]
|
| | | 2740 0 8 [42] 1000 [[3,10,0]]
|
| | | 2741 0 1 [3702] 1 [[3,10,0]]
|
| | | 2742 0 4 [41] 35 [[3,10,0]]
|
| | | 2743 0 7 [] 10 [[3,10,0]]
|
| | | 2744 0 3 [] 10 [[3,10,0]]
|
| | | 2745 0 8 [42] 1000 [[3,10,0]]
|
| | | 2746 0 1 [3703] 1 [[3,10,0]]
|
| | | 2747 0 4 [41] 35 [[3,10,0]]
|
| | | 2748 0 7 [] 10 [[3,10,0]]
|
| | | 2749 0 3 [] 10 [[3,10,0]]
|
| | | 2750 0 8 [42] 1000 [[3,10,0]]
|
| | | 2751 0 1 [3704] 1 [[3,10,0]]
|
| | | 2752 0 4 [41] 35 [[3,10,0]]
|
| | | 2753 0 7 [] 10 [[3,10,0]]
|
| | | 2754 0 3 [] 10 [[3,10,0]]
|
| | | 2755 0 8 [42] 1000 [[3,10,0]]
|
| | | 2756 0 1 [3705] 1 [[3,10,0]]
|
| | | 2757 0 4 [41] 35 [[3,10,0]]
|
| | | 2758 0 7 [] 10 [[3,10,0]]
|
| | | 2759 0 3 [] 10 [[3,10,0]]
|
| | | 2720 0 1 [508] 1 [[3,10,0]]
|
| | | 2730 0 4 [41] 35 [[3,10,0]]
|
| | | 2740 0 7 [] 10 [[3,10,0]]
|
| | | 2750 0 3 [] 10 [[3,10,0]]
|
| | | 2760 0 8 [42] 1000 [[3,10,0]]
|
| | | 2761 0 1 [3706] 1 [[3,10,0]]
|
| | | 2762 0 4 [41] 35 [[3,10,0]]
|
| | | 2763 0 7 [] 10 [[3,10,0]]
|
| | | 2764 0 3 [] 10 [[3,10,0]]
|
| | | 2765 0 8 [42] 1000 [[3,10,0]]
|
| | | 2766 0 1 [3707] 1 [[3,10,0]]
|
| | | 2767 0 4 [41] 35 [[3,10,0]]
|
| | | 2768 0 7 [] 10 [[3,10,0]]
|
| | | 2769 0 3 [] 10 [[3,10,0]]
|
| | | 2770 0 8 [42] 1000 [[3,10,0]]
|
| | | 2771 0 1 [3708] 1 [[3,10,0]]
|
| | | 2772 0 4 [41] 35 [[3,10,0]]
|
| | | 2773 0 7 [] 10 [[3,10,0]]
|
| | | 2774 0 3 [] 10 [[3,10,0]]
|
| | | 2775 0 8 [42] 1000 [[3,10,0]]
|
| | | 2776 0 1 [3709] 1 [[3,10,0]]
|
| | | 2777 0 4 [41] 35 [[3,10,0]]
|
| | | 2778 0 7 [] 10 [[3,10,0]]
|
| | | 2779 0 3 [] 10 [[3,10,0]]
|
| | | 2780 0 8 [42] 1000 [[3,10,0]]
|
| | | 2781 0 1 [3710] 1 [[3,10,0]]
|
| | | 2782 0 4 [41] 35 [[3,10,0]]
|
| | | 2783 0 7 [] 10 [[3,10,0]]
|
| | | 2784 0 3 [] 10 [[3,10,0]]
|
| | | 2785 0 8 [42] 1000 [[3,10,0]]
|
| | | 2786 0 1 [3801] 1 [[3,10,0]]
|
| | | 2787 0 4 [41] 35 [[3,10,0]]
|
| | | 2788 0 7 [] 10 [[3,10,0]]
|
| | | 2789 0 3 [] 10 [[3,10,0]]
|
| | | 2790 0 8 [42] 1000 [[3,10,0]]
|
| | | 2791 0 1 [3802] 1 [[3,10,0]]
|
| | | 2792 0 4 [41] 35 [[3,10,0]]
|
| | | 2793 0 7 [] 10 [[3,10,0]]
|
| | | 2794 0 3 [] 10 [[3,10,0]]
|
| | | 2795 0 8 [42] 1000 [[3,10,0]]
|
| | | 2796 0 1 [3803] 1 [[3,10,0]]
|
| | | 2797 0 4 [41] 35 [[3,10,0]]
|
| | | 2798 0 7 [] 10 [[3,10,0]]
|
| | | 2799 0 3 [] 10 [[3,10,0]]
|
| | | 2800 0 8 [42] 1000 [[3,10,0]]
|
| | | 2801 0 1 [3804] 1 [[3,10,0]]
|
| | | 2802 0 4 [41] 35 [[3,10,0]]
|
| | | 2803 0 7 [] 10 [[3,10,0]]
|
| | | 2804 0 3 [] 10 [[3,10,0]]
|
| | | 2805 0 8 [42] 1000 [[3,10,0]]
|
| | | 2806 0 1 [3805] 1 [[3,10,0]]
|
| | | 2807 0 4 [41] 35 [[3,10,0]]
|
| | | 2808 0 7 [] 10 [[3,10,0]]
|
| | | 2809 0 3 [] 10 [[3,10,0]]
|
| | | 2770 0 1 [509] 1 [[3,10,0]]
|
| | | 2780 0 4 [41] 35 [[3,10,0]]
|
| | | 2790 0 7 [] 10 [[3,10,0]]
|
| | | 2800 0 3 [] 10 [[3,10,0]]
|
| | | 2810 0 8 [42] 1000 [[3,10,0]]
|
| | | 2811 0 1 [3806] 1 [[3,10,0]]
|
| | | 2812 0 4 [41] 35 [[3,10,0]]
|
| | | 2813 0 7 [] 10 [[3,10,0]]
|
| | | 2814 0 3 [] 10 [[3,10,0]]
|
| | | 2815 0 8 [42] 1000 [[3,10,0]]
|
| | | 2816 0 1 [3807] 1 [[3,10,0]]
|
| | | 2817 0 4 [41] 35 [[3,10,0]]
|
| | | 2818 0 7 [] 10 [[3,10,0]]
|
| | | 2819 0 3 [] 10 [[3,10,0]]
|
| | | 2820 0 8 [42] 1000 [[3,10,0]]
|
| | | 2821 0 1 [3808] 1 [[3,10,0]]
|
| | | 2822 0 4 [41] 35 [[3,10,0]]
|
| | | 2823 0 7 [] 10 [[3,10,0]]
|
| | | 2824 0 3 [] 10 [[3,10,0]]
|
| | | 2825 0 8 [42] 1000 [[3,10,0]]
|
| | | 2826 0 1 [3809] 1 [[3,10,0]]
|
| | | 2827 0 4 [41] 35 [[3,10,0]]
|
| | | 2828 0 7 [] 10 [[3,10,0]]
|
| | | 2829 0 3 [] 10 [[3,10,0]]
|
| | | 2830 0 8 [42] 1000 [[3,10,0]]
|
| | | 2831 0 1 [3810] 1 [[3,10,0]]
|
| | | 2832 0 4 [41] 35 [[3,10,0]]
|
| | | 2833 0 7 [] 10 [[3,10,0]]
|
| | | 2834 0 3 [] 10 [[3,10,0]]
|
| | | 2835 0 8 [42] 1000 [[3,10,0]]
|
| | | 2836 0 1 [3901] 1 [[3,10,0]]
|
| | | 2837 0 4 [41] 35 [[3,10,0]]
|
| | | 2838 0 7 [] 10 [[3,10,0]]
|
| | | 2839 0 3 [] 10 [[3,10,0]]
|
| | | 2820 0 1 [510] 1 [[3,10,0]]
|
| | | 2830 0 4 [41] 35 [[3,10,0]]
|
| | | 2840 0 8 [42] 1000 [[3,10,0]]
|
| | | 2841 0 1 [3902] 1 [[3,10,0]]
|
| | | 2842 0 4 [41] 35 [[3,10,0]]
|
| | | 2843 0 7 [] 10 [[3,10,0]]
|
| | | 2844 0 3 [] 10 [[3,10,0]]
|
| | | 2845 0 8 [42] 1000 [[3,10,0]]
|
| | | 2846 0 1 [3903] 1 [[3,10,0]]
|
| | | 2847 0 4 [41] 35 [[3,10,0]]
|
| | | 2848 0 7 [] 10 [[3,10,0]]
|
| | | 2849 0 3 [] 10 [[3,10,0]]
|
| | | 2850 0 8 [42] 1000 [[3,10,0]]
|
| | | 2851 0 1 [3904] 1 [[3,10,0]]
|
| | | 2852 0 4 [41] 35 [[3,10,0]]
|
| | | 2853 0 7 [] 10 [[3,10,0]]
|
| | | 2854 0 3 [] 10 [[3,10,0]]
|
| | | 2855 0 8 [42] 1000 [[3,10,0]]
|
| | | 2856 0 1 [3905] 1 [[3,10,0]]
|
| | | 2857 0 4 [41] 35 [[3,10,0]]
|
| | | 2858 0 7 [] 10 [[3,10,0]]
|
| | | 2859 0 3 [] 10 [[3,10,0]]
|
| | | 2860 0 8 [42] 1000 [[3,10,0]]
|
| | | 2861 0 1 [3906] 1 [[3,10,0]]
|
| | | 2862 0 4 [41] 35 [[3,10,0]]
|
| | | 2863 0 7 [] 10 [[3,10,0]]
|
| | | 2864 0 3 [] 10 [[3,10,0]]
|
| | | 2865 0 8 [42] 1000 [[3,10,0]]
|
| | | 2866 0 1 [3907] 1 [[3,10,0]]
|
| | | 2867 0 4 [41] 35 [[3,10,0]]
|
| | | 2868 0 7 [] 10 [[3,10,0]]
|
| | | 2869 0 3 [] 10 [[3,10,0]]
|
| | | 2870 0 8 [42] 1000 [[3,10,0]]
|
| | | 2871 0 1 [3908] 1 [[3,10,0]]
|
| | | 2872 0 4 [41] 35 [[3,10,0]]
|
| | | 2873 0 7 [] 10 [[3,10,0]]
|
| | | 2874 0 3 [] 10 [[3,10,0]]
|
| | | 2875 0 8 [42] 1000 [[3,10,0]]
|
| | | 2876 0 1 [3909] 1 [[3,10,0]]
|
| | | 2877 0 4 [41] 35 [[3,10,0]]
|
| | | 2878 0 7 [] 10 [[3,10,0]]
|
| | | 2879 0 3 [] 10 [[3,10,0]]
|
| | | 2880 0 8 [42] 1000 [[3,10,0]]
|
| | | 2881 0 1 [3910] 1 [[3,10,0]]
|
| | | 2882 0 4 [41] 35 [[3,10,0]]
|
| | | 2883 0 7 [] 10 [[3,10,0]]
|
| | | 2884 0 3 [] 10 [[3,10,0]]
|
| | | 2885 0 8 [42] 1000 [[3,10,0]]
|
| | | 2886 0 1 [4001] 1 [[3,10,0]]
|
| | | 2887 0 4 [41] 35 [[3,10,0]]
|
| | | 2888 0 7 [] 10 [[3,10,0]]
|
| | | 2889 0 3 [] 10 [[3,10,0]]
|
| | | 2890 0 8 [42] 1000 [[3,10,0]]
|
| | | 2891 0 1 [4002] 1 [[3,10,0]]
|
| | | 2892 0 4 [41] 35 [[3,10,0]]
|
| | | 2893 0 7 [] 10 [[3,10,0]]
|
| | | 2894 0 3 [] 10 [[3,10,0]]
|
| | | 2895 0 8 [42] 1000 [[3,10,0]]
|
| | | 2896 0 1 [4003] 1 [[3,10,0]]
|
| | | 2897 0 4 [41] 35 [[3,10,0]]
|
| | | 2898 0 7 [] 10 [[3,10,0]]
|
| | | 2899 0 3 [] 10 [[3,10,0]]
|
| | | 2900 0 8 [42] 1000 [[3,10,0]]
|
| | | 2901 0 1 [4004] 1 [[3,10,0]]
|
| | | 2902 0 4 [41] 35 [[3,10,0]]
|
| | | 2903 0 7 [] 10 [[3,10,0]]
|
| | | 2904 0 3 [] 10 [[3,10,0]]
|
| | | 2905 0 8 [42] 1000 [[3,10,0]]
|
| | | 2906 0 1 [4005] 1 [[3,10,0]]
|
| | | 2907 0 4 [41] 35 [[3,10,0]]
|
| | | 2908 0 7 [] 10 [[3,10,0]]
|
| | | 2909 0 3 [] 10 [[3,10,0]]
|
| | | 2850 0 7 [] 10 [[3,10,0]]
|
| | | 2860 0 3 [] 10 [[3,10,0]]
|
| | | 2870 0 1 [601] 1 [[3,10,0]]
|
| | | 2880 0 4 [41] 35 [[3,10,0]]
|
| | | 2890 0 7 [] 10 [[3,10,0]]
|
| | | 2900 0 3 [] 10 [[3,10,0]]
|
| | | 2910 0 8 [42] 1000 [[3,10,0]]
|
| | | 2911 0 1 [4006] 1 [[3,10,0]]
|
| | | 2912 0 4 [41] 35 [[3,10,0]]
|
| | | 2913 0 7 [] 10 [[3,10,0]]
|
| | | 2914 0 3 [] 10 [[3,10,0]]
|
| | | 2915 0 8 [42] 1000 [[3,10,0]]
|
| | | 2916 0 1 [4007] 1 [[3,10,0]]
|
| | | 2917 0 4 [41] 35 [[3,10,0]]
|
| | | 2918 0 7 [] 10 [[3,10,0]]
|
| | | 2919 0 3 [] 10 [[3,10,0]]
|
| | | 2920 0 8 [42] 1000 [[3,10,0]]
|
| | | 2921 0 1 [4008] 1 [[3,10,0]]
|
| | | 2922 0 4 [41] 35 [[3,10,0]]
|
| | | 2923 0 7 [] 10 [[3,10,0]]
|
| | | 2924 0 3 [] 10 [[3,10,0]]
|
| | | 2925 0 8 [42] 1000 [[3,10,0]]
|
| | | 2926 0 1 [4009] 1 [[3,10,0]]
|
| | | 2927 0 4 [41] 35 [[3,10,0]]
|
| | | 2928 0 7 [] 10 [[3,10,0]]
|
| | | 2929 0 3 [] 10 [[3,10,0]]
|
| | | 2930 0 8 [42] 1000 [[3,10,0]]
|
| | | 2931 0 1 [4010] 1 [[3,10,0]]
|
| | | 2932 0 4 [41] 35 [[3,10,0]]
|
| | | 2933 0 7 [] 10 [[3,10,0]]
|
| | | 2934 0 3 [] 10 [[3,10,0]]
|
| | | 2935 0 8 [42] 1000 [[3,10,0]]
|
| | | 2936 0 1 [4101] 1 [[3,10,0]]
|
| | | 2937 0 4 [41] 35 [[3,10,0]]
|
| | | 2938 0 7 [] 10 [[3,10,0]]
|
| | | 2939 0 3 [] 10 [[3,10,0]]
|
| | | 2940 0 8 [42] 1000 [[3,10,0]]
|
| | | 2941 0 1 [4102] 1 [[3,10,0]]
|
| | | 2942 0 4 [41] 35 [[3,10,0]]
|
| | | 2943 0 7 [] 10 [[3,10,0]]
|
| | | 2944 0 3 [] 10 [[3,10,0]]
|
| | | 2945 0 8 [42] 1000 [[3,10,0]]
|
| | | 2946 0 1 [4103] 1 [[3,10,0]]
|
| | | 2947 0 4 [41] 35 [[3,10,0]]
|
| | | 2948 0 7 [] 10 [[3,10,0]]
|
| | | 2949 0 3 [] 10 [[3,10,0]]
|
| | | 2950 0 8 [42] 1000 [[3,10,0]]
|
| | | 2951 0 1 [4104] 1 [[3,10,0]]
|
| | | 2952 0 4 [41] 35 [[3,10,0]]
|
| | | 2953 0 7 [] 10 [[3,10,0]]
|
| | | 2954 0 3 [] 10 [[3,10,0]]
|
| | | 2955 0 8 [42] 1000 [[3,10,0]]
|
| | | 2956 0 1 [4105] 1 [[3,10,0]]
|
| | | 2957 0 4 [41] 35 [[3,10,0]]
|
| | | 2958 0 7 [] 10 [[3,10,0]]
|
| | | 2959 0 3 [] 10 [[3,10,0]]
|
| | | 2920 0 1 [602] 1 [[3,10,0]]
|
| | | 2930 0 4 [41] 35 [[3,10,0]]
|
| | | 2940 0 7 [] 10 [[3,10,0]]
|
| | | 2950 0 3 [] 10 [[3,10,0]]
|
| | | 2960 0 8 [42] 1000 [[3,10,0]]
|
| | | 2961 0 1 [4106] 1 [[3,10,0]]
|
| | | 2962 0 4 [41] 35 [[3,10,0]]
|
| | | 2963 0 7 [] 10 [[3,10,0]]
|
| | | 2964 0 3 [] 10 [[3,10,0]]
|
| | | 2965 0 8 [42] 1000 [[3,10,0]]
|
| | | 2966 0 1 [4107] 1 [[3,10,0]]
|
| | | 2967 0 4 [41] 35 [[3,10,0]]
|
| | | 2968 0 7 [] 10 [[3,10,0]]
|
| | | 2969 0 3 [] 10 [[3,10,0]]
|
| | | 2970 0 8 [42] 1000 [[3,10,0]]
|
| | | 2971 0 1 [4108] 1 [[3,10,0]]
|
| | | 2972 0 4 [41] 35 [[3,10,0]]
|
| | | 2973 0 7 [] 10 [[3,10,0]]
|
| | | 2974 0 3 [] 10 [[3,10,0]]
|
| | | 2975 0 8 [42] 1000 [[3,10,0]]
|
| | | 2976 0 1 [4109] 1 [[3,10,0]]
|
| | | 2977 0 4 [41] 35 [[3,10,0]]
|
| | | 2978 0 7 [] 10 [[3,10,0]]
|
| | | 2979 0 3 [] 10 [[3,10,0]]
|
| | | 2980 0 8 [42] 1000 [[3,10,0]]
|
| | | 2981 0 1 [4110] 1 [[3,10,0]]
|
| | | 2982 0 4 [41] 35 [[3,10,0]]
|
| | | 2983 0 7 [] 10 [[3,10,0]]
|
| | | 2984 0 3 [] 10 [[3,10,0]]
|
| | | 2985 0 8 [42] 1000 [[3,10,0]]
|
| | | 2986 0 1 [4201] 1 [[3,10,0]]
|
| | | 2987 0 4 [41] 35 [[3,10,0]]
|
| | | 2988 0 7 [] 10 [[3,10,0]]
|
| | | 2989 0 3 [] 10 [[3,10,0]]
|
| | | 2990 0 8 [42] 1000 [[3,10,0]]
|
| | | 2991 0 1 [4202] 1 [[3,10,0]]
|
| | | 2992 0 4 [41] 35 [[3,10,0]]
|
| | | 2993 0 7 [] 10 [[3,10,0]]
|
| | | 2994 0 3 [] 10 [[3,10,0]]
|
| | | 2995 0 8 [42] 1000 [[3,10,0]]
|
| | | 2996 0 1 [4203] 1 [[3,10,0]]
|
| | | 2997 0 4 [41] 35 [[3,10,0]]
|
| | | 2998 0 7 [] 10 [[3,10,0]]
|
| | | 2999 0 3 [] 10 [[3,10,0]]
|
| | | 3000 0 8 [42] 1000 [[3,10,0]]
|
| | | 3001 0 1 [4204] 1 [[3,10,0]]
|
| | | 3002 0 4 [41] 35 [[3,10,0]]
|
| | | 3003 0 7 [] 10 [[3,10,0]]
|
| | | 3004 0 3 [] 10 [[3,10,0]]
|
| | | 3005 0 8 [42] 1000 [[3,10,0]]
|
| | | 3006 0 1 [4205] 1 [[3,10,0]]
|
| | | 3007 0 4 [41] 35 [[3,10,0]]
|
| | | 3008 0 7 [] 10 [[3,10,0]]
|
| | | 3009 0 3 [] 10 [[3,10,0]]
|
| | | 2970 0 1 [603] 1 [[3,10,0]]
|
| | | 2980 0 4 [41] 35 [[3,10,0]]
|
| | | 2990 0 7 [] 10 [[3,10,0]]
|
| | | 3000 0 3 [] 10 [[3,10,0]]
|
| | | 3010 0 8 [42] 1000 [[3,10,0]]
|
| | | 3011 0 1 [4206] 1 [[3,10,0]]
|
| | | 3012 0 4 [41] 35 [[3,10,0]]
|
| | | 3013 0 7 [] 10 [[3,10,0]]
|
| | | 3014 0 3 [] 10 [[3,10,0]]
|
| | | 3015 0 8 [42] 1000 [[3,10,0]]
|
| | | 3016 0 1 [4207] 1 [[3,10,0]]
|
| | | 3017 0 4 [41] 35 [[3,10,0]]
|
| | | 3018 0 7 [] 10 [[3,10,0]]
|
| | | 3019 0 3 [] 10 [[3,10,0]]
|
| | | 3020 0 8 [42] 1000 [[3,10,0]]
|
| | | 3021 0 1 [4208] 1 [[3,10,0]]
|
| | | 3022 0 4 [41] 35 [[3,10,0]]
|
| | | 3023 0 7 [] 10 [[3,10,0]]
|
| | | 3024 0 3 [] 10 [[3,10,0]]
|
| | | 3025 0 8 [42] 1000 [[3,10,0]]
|
| | | 3026 0 1 [4209] 1 [[3,10,0]]
|
| | | 3027 0 4 [41] 35 [[3,10,0]]
|
| | | 3028 0 7 [] 10 [[3,10,0]]
|
| | | 3029 0 3 [] 10 [[3,10,0]]
|
| | | 3030 0 8 [42] 1000 [[3,10,0]]
|
| | | 3031 0 1 [4210] 1 [[3,10,0]]
|
| | | 3032 0 4 [41] 35 [[3,10,0]]
|
| | | 3033 0 7 [] 10 [[3,10,0]]
|
| | | 3034 0 3 [] 10 [[3,10,0]]
|
| | | 3035 0 8 [42] 1000 [[3,10,0]]
|
| | | 3036 0 1 [4301] 1 [[3,10,0]]
|
| | | 3037 0 4 [41] 35 [[3,10,0]]
|
| | | 3038 0 7 [] 10 [[3,10,0]]
|
| | | 3039 0 3 [] 10 [[3,10,0]]
|
| | | 3040 0 8 [42] 1000 [[3,10,0]]
|
| | | 3041 0 1 [4302] 1 [[3,10,0]]
|
| | | 3042 0 4 [41] 35 [[3,10,0]]
|
| | | 3043 0 7 [] 10 [[3,10,0]]
|
| | | 3044 0 3 [] 10 [[3,10,0]]
|
| | | 3045 0 8 [42] 1000 [[3,10,0]]
|
| | | 3046 0 1 [4303] 1 [[3,10,0]]
|
| | | 3047 0 4 [41] 35 [[3,10,0]]
|
| | | 3048 0 7 [] 10 [[3,10,0]]
|
| | | 3049 0 3 [] 10 [[3,10,0]]
|
| | | 3050 0 8 [42] 1000 [[3,10,0]]
|
| | | 3051 0 1 [4304] 1 [[3,10,0]]
|
| | | 3052 0 4 [41] 35 [[3,10,0]]
|
| | | 3053 0 7 [] 10 [[3,10,0]]
|
| | | 3054 0 3 [] 10 [[3,10,0]]
|
| | | 3055 0 8 [42] 1000 [[3,10,0]]
|
| | | 3056 0 1 [4305] 1 [[3,10,0]]
|
| | | 3057 0 4 [41] 35 [[3,10,0]]
|
| | | 3058 0 7 [] 10 [[3,10,0]]
|
| | | 3059 0 3 [] 10 [[3,10,0]]
|
| | | 3020 0 1 [604] 1 [[3,10,0]]
|
| | | 3030 0 4 [41] 35 [[3,10,0]]
|
| | | 3040 0 7 [] 10 [[3,10,0]]
|
| | | 3050 0 3 [] 10 [[3,10,0]]
|
| | | 3060 0 8 [42] 1000 [[3,10,0]]
|
| | | 3061 0 1 [4306] 1 [[3,10,0]]
|
| | | 3062 0 4 [41] 35 [[3,10,0]]
|
| | | 3063 0 7 [] 10 [[3,10,0]]
|
| | | 3064 0 3 [] 10 [[3,10,0]]
|
| | | 3065 0 8 [42] 1000 [[3,10,0]]
|
| | | 3066 0 1 [4307] 1 [[3,10,0]]
|
| | | 3067 0 4 [41] 35 [[3,10,0]]
|
| | | 3068 0 7 [] 10 [[3,10,0]]
|
| | | 3069 0 3 [] 10 [[3,10,0]]
|
| | | 3070 0 8 [42] 1000 [[3,10,0]]
|
| | | 3071 0 1 [4308] 1 [[3,10,0]]
|
| | | 3072 0 4 [41] 35 [[3,10,0]]
|
| | | 3073 0 7 [] 10 [[3,10,0]]
|
| | | 3074 0 3 [] 10 [[3,10,0]]
|
| | | 3075 0 8 [42] 1000 [[3,10,0]]
|
| | | 3076 0 1 [4309] 1 [[3,10,0]]
|
| | | 3077 0 4 [41] 35 [[3,10,0]]
|
| | | 3078 0 7 [] 10 [[3,10,0]]
|
| | | 3079 0 3 [] 10 [[3,10,0]]
|
| | | 3080 0 8 [42] 1000 [[3,10,0]]
|
| | | 3081 0 1 [4310] 1 [[3,10,0]]
|
| | | 3082 0 4 [41] 35 [[3,10,0]]
|
| | | 3083 0 7 [] 10 [[3,10,0]]
|
| | | 3084 0 3 [] 10 [[3,10,0]]
|
| | | 3085 0 8 [42] 1000 [[3,10,0]]
|
| | | 3086 0 1 [4401] 1 [[3,10,0]]
|
| | | 3087 0 4 [41] 35 [[3,10,0]]
|
| | | 3088 0 7 [] 10 [[3,10,0]]
|
| | | 3089 0 3 [] 10 [[3,10,0]]
|
| | | 3090 0 8 [42] 1000 [[3,10,0]]
|
| | | 3091 0 1 [4402] 1 [[3,10,0]]
|
| | | 3092 0 4 [41] 35 [[3,10,0]]
|
| | | 3093 0 7 [] 10 [[3,10,0]]
|
| | | 3094 0 3 [] 10 [[3,10,0]]
|
| | | 3095 0 8 [42] 1000 [[3,10,0]]
|
| | | 3096 0 1 [4403] 1 [[3,10,0]]
|
| | | 3097 0 4 [41] 35 [[3,10,0]]
|
| | | 3098 0 7 [] 10 [[3,10,0]]
|
| | | 3099 0 3 [] 10 [[3,10,0]]
|
| | | 3100 0 8 [42] 1000 [[3,10,0]]
|
| | | 3101 0 1 [4404] 1 [[3,10,0]]
|
| | | 3102 0 4 [41] 35 [[3,10,0]]
|
| | | 3103 0 7 [] 10 [[3,10,0]]
|
| | | 3104 0 3 [] 10 [[3,10,0]]
|
| | | 3105 0 8 [42] 1000 [[3,10,0]]
|
| | | 3106 0 1 [4405] 1 [[3,10,0]]
|
| | | 3107 0 4 [41] 35 [[3,10,0]]
|
| | | 3108 0 7 [] 10 [[3,10,0]]
|
| | | 3109 0 3 [] 10 [[3,10,0]]
|
| | | 3070 0 1 [605] 1 [[3,10,0]]
|
| | | 3080 0 4 [41] 35 [[3,10,0]]
|
| | | 3090 0 7 [] 10 [[3,10,0]]
|
| | | 3100 0 3 [] 10 [[3,10,0]]
|
| | | 3110 0 8 [42] 1000 [[3,10,0]]
|
| | | 3111 0 1 [4406] 1 [[3,10,0]]
|
| | | 3112 0 4 [41] 35 [[3,10,0]]
|
| | | 3113 0 7 [] 10 [[3,10,0]]
|
| | | 3114 0 3 [] 10 [[3,10,0]]
|
| | | 3115 0 8 [42] 1000 [[3,10,0]]
|
| | | 3116 0 1 [4407] 1 [[3,10,0]]
|
| | | 3117 0 4 [41] 35 [[3,10,0]]
|
| | | 3118 0 7 [] 10 [[3,10,0]]
|
| | | 3119 0 3 [] 10 [[3,10,0]]
|
| | | 3120 0 8 [42] 1000 [[3,10,0]]
|
| | | 3121 0 1 [4408] 1 [[3,10,0]]
|
| | | 3122 0 4 [41] 35 [[3,10,0]]
|
| | | 3123 0 7 [] 10 [[3,10,0]]
|
| | | 3124 0 3 [] 10 [[3,10,0]]
|
| | | 3125 0 8 [42] 1000 [[3,10,0]]
|
| | | 3126 0 1 [4409] 1 [[3,10,0]]
|
| | | 3127 0 4 [41] 35 [[3,10,0]]
|
| | | 3128 0 7 [] 10 [[3,10,0]]
|
| | | 3129 0 3 [] 10 [[3,10,0]]
|
| | | 3130 0 8 [42] 1000 [[3,10,0]]
|
| | | 3131 0 1 [4410] 1 [[3,10,0]]
|
| | | 3132 0 4 [41] 35 [[3,10,0]]
|
| | | 3133 0 7 [] 10 [[3,10,0]]
|
| | | 3134 0 3 [] 10 [[3,10,0]]
|
| | | 3135 0 8 [42] 1000 [[3,10,0]]
|
| | | 3136 0 1 [4501] 1 [[3,10,0]]
|
| | | 3137 0 4 [41] 35 [[3,10,0]]
|
| | | 3138 0 7 [] 10 [[3,10,0]]
|
| | | 3139 0 3 [] 10 [[3,10,0]]
|
| | | 3140 0 8 [42] 1000 [[3,10,0]]
|
| | | 3141 0 1 [4502] 1 [[3,10,0]]
|
| | | 3142 0 4 [41] 35 [[3,10,0]]
|
| | | 3143 0 7 [] 10 [[3,10,0]]
|
| | | 3144 0 3 [] 10 [[3,10,0]]
|
| | | 3145 0 8 [42] 1000 [[3,10,0]]
|
| | | 3146 0 1 [4503] 1 [[3,10,0]]
|
| | | 3147 0 4 [41] 35 [[3,10,0]]
|
| | | 3148 0 7 [] 10 [[3,10,0]]
|
| | | 3149 0 3 [] 10 [[3,10,0]]
|
| | | 3150 0 8 [42] 1000 [[3,10,0]]
|
| | | 3151 0 1 [4504] 1 [[3,10,0]]
|
| | | 3152 0 4 [41] 35 [[3,10,0]]
|
| | | 3153 0 7 [] 10 [[3,10,0]]
|
| | | 3154 0 3 [] 10 [[3,10,0]]
|
| | | 3155 0 8 [42] 1000 [[3,10,0]]
|
| | | 3156 0 1 [4505] 1 [[3,10,0]]
|
| | | 3157 0 4 [41] 35 [[3,10,0]]
|
| | | 3158 0 7 [] 10 [[3,10,0]]
|
| | | 3159 0 3 [] 10 [[3,10,0]]
|
| | | 3120 0 1 [606] 1 [[3,10,0]]
|
| | | 3130 0 4 [41] 35 [[3,10,0]]
|
| | | 3140 0 7 [] 10 [[3,10,0]]
|
| | | 3150 0 3 [] 10 [[3,10,0]]
|
| | | 3160 0 8 [42] 1000 [[3,10,0]]
|
| | | 3161 0 1 [4506] 1 [[3,10,0]]
|
| | | 3162 0 4 [41] 35 [[3,10,0]]
|
| | | 3163 0 7 [] 10 [[3,10,0]]
|
| | | 3164 0 3 [] 10 [[3,10,0]]
|
| | | 3165 0 8 [42] 1000 [[3,10,0]]
|
| | | 3166 0 1 [4507] 1 [[3,10,0]]
|
| | | 3167 0 4 [41] 35 [[3,10,0]]
|
| | | 3168 0 7 [] 10 [[3,10,0]]
|
| | | 3169 0 3 [] 10 [[3,10,0]]
|
| | | 3170 0 8 [42] 1000 [[3,10,0]]
|
| | | 3171 0 1 [4508] 1 [[3,10,0]]
|
| | | 3172 0 4 [41] 35 [[3,10,0]]
|
| | | 3173 0 7 [] 10 [[3,10,0]]
|
| | | 3174 0 3 [] 10 [[3,10,0]]
|
| | | 3175 0 8 [42] 1000 [[3,10,0]]
|
| | | 3176 0 1 [4509] 1 [[3,10,0]]
|
| | | 3177 0 4 [41] 35 [[3,10,0]]
|
| | | 3178 0 7 [] 10 [[3,10,0]]
|
| | | 3179 0 3 [] 10 [[3,10,0]]
|
| | | 3180 0 8 [42] 1000 [[3,10,0]]
|
| | | 3181 0 1 [4510] 1 [[3,10,0]]
|
| | | 3182 0 4 [41] 35 [[3,10,0]]
|
| | | 3183 0 7 [] 10 [[3,10,0]]
|
| | | 3184 0 3 [] 10 [[3,10,0]]
|
| | | 3185 0 8 [42] 1000 [[3,10,0]]
|
| | | 3186 0 1 [4601] 1 [[3,10,0]]
|
| | | 3187 0 4 [41] 35 [[3,10,0]]
|
| | | 3188 0 7 [] 10 [[3,10,0]]
|
| | | 3189 0 3 [] 10 [[3,10,0]]
|
| | | 3190 0 8 [42] 1000 [[3,10,0]]
|
| | | 3191 0 1 [4602] 1 [[3,10,0]]
|
| | | 3192 0 4 [41] 35 [[3,10,0]]
|
| | | 3193 0 7 [] 10 [[3,10,0]]
|
| | | 3194 0 3 [] 10 [[3,10,0]]
|
| | | 3195 0 8 [42] 1000 [[3,10,0]]
|
| | | 3196 0 1 [4603] 1 [[3,10,0]]
|
| | | 3197 0 4 [41] 35 [[3,10,0]]
|
| | | 3198 0 7 [] 10 [[3,10,0]]
|
| | | 3199 0 3 [] 10 [[3,10,0]]
|
| | | 3200 0 8 [42] 1000 [[3,10,0]]
|
| | | 3201 0 1 [4604] 1 [[3,10,0]]
|
| | | 3202 0 4 [41] 35 [[3,10,0]]
|
| | | 3203 0 7 [] 10 [[3,10,0]]
|
| | | 3204 0 3 [] 10 [[3,10,0]]
|
| | | 3205 0 8 [42] 1000 [[3,10,0]]
|
| | | 3206 0 1 [4605] 1 [[3,10,0]]
|
| | | 3207 0 4 [41] 35 [[3,10,0]]
|
| | | 3208 0 7 [] 10 [[3,10,0]]
|
| | | 3209 0 3 [] 10 [[3,10,0]]
|
| | | 3170 0 1 [607] 1 [[3,10,0]]
|
| | | 3180 0 4 [41] 35 [[3,10,0]]
|
| | | 3190 0 7 [] 10 [[3,10,0]]
|
| | | 3200 0 3 [] 10 [[3,10,0]]
|
| | | 3210 0 8 [42] 1000 [[3,10,0]]
|
| | | 3211 0 1 [4606] 1 [[3,10,0]]
|
| | | 3212 0 4 [41] 35 [[3,10,0]]
|
| | | 3213 0 7 [] 10 [[3,10,0]]
|
| | | 3214 0 3 [] 10 [[3,10,0]]
|
| | | 3215 0 8 [42] 1000 [[3,10,0]]
|
| | | 3216 0 1 [4607] 1 [[3,10,0]]
|
| | | 3217 0 4 [41] 35 [[3,10,0]]
|
| | | 3218 0 7 [] 10 [[3,10,0]]
|
| | | 3219 0 3 [] 10 [[3,10,0]]
|
| | | 3220 0 8 [42] 1000 [[3,10,0]]
|
| | | 3221 0 1 [4608] 1 [[3,10,0]]
|
| | | 3222 0 4 [41] 35 [[3,10,0]]
|
| | | 3223 0 7 [] 10 [[3,10,0]]
|
| | | 3224 0 3 [] 10 [[3,10,0]]
|
| | | 3225 0 8 [42] 1000 [[3,10,0]]
|
| | | 3226 0 1 [4609] 1 [[3,10,0]]
|
| | | 3227 0 4 [41] 35 [[3,10,0]]
|
| | | 3228 0 7 [] 10 [[3,10,0]]
|
| | | 3229 0 3 [] 10 [[3,10,0]]
|
| | | 3230 0 8 [42] 1000 [[3,10,0]]
|
| | | 3231 0 1 [4610] 1 [[3,10,0]]
|
| | | 3232 0 4 [41] 35 [[3,10,0]]
|
| | | 3233 0 7 [] 10 [[3,10,0]]
|
| | | 3234 0 3 [] 10 [[3,10,0]]
|
| | | 3235 0 8 [42] 1000 [[3,10,0]]
|
| | | 3236 0 1 [4701] 1 [[3,10,0]]
|
| | | 3237 0 4 [41] 35 [[3,10,0]]
|
| | | 3238 0 7 [] 10 [[3,10,0]]
|
| | | 3239 0 3 [] 10 [[3,10,0]]
|
| | | 3240 0 8 [42] 1000 [[3,10,0]]
|
| | | 3241 0 1 [4702] 1 [[3,10,0]]
|
| | | 3242 0 4 [41] 35 [[3,10,0]]
|
| | | 3243 0 7 [] 10 [[3,10,0]]
|
| | | 3244 0 3 [] 10 [[3,10,0]]
|
| | | 3245 0 8 [42] 1000 [[3,10,0]]
|
| | | 3246 0 1 [4703] 1 [[3,10,0]]
|
| | | 3247 0 4 [41] 35 [[3,10,0]]
|
| | | 3248 0 7 [] 10 [[3,10,0]]
|
| | | 3249 0 3 [] 10 [[3,10,0]]
|
| | | 3250 0 8 [42] 1000 [[3,10,0]]
|
| | | 3251 0 1 [4704] 1 [[3,10,0]]
|
| | | 3252 0 4 [41] 35 [[3,10,0]]
|
| | | 3253 0 7 [] 10 [[3,10,0]]
|
| | | 3254 0 3 [] 10 [[3,10,0]]
|
| | | 3255 0 8 [42] 1000 [[3,10,0]]
|
| | | 3256 0 1 [4705] 1 [[3,10,0]]
|
| | | 3257 0 4 [41] 35 [[3,10,0]]
|
| | | 3258 0 7 [] 10 [[3,10,0]]
|
| | | 3259 0 3 [] 10 [[3,10,0]]
|
| | | 3220 0 1 [608] 1 [[3,10,0]]
|
| | | 3230 0 4 [41] 35 [[3,10,0]]
|
| | | 3240 0 7 [] 10 [[3,10,0]]
|
| | | 3250 0 3 [] 10 [[3,10,0]]
|
| | | 3260 0 8 [42] 1000 [[3,10,0]]
|
| | | 3261 0 1 [4706] 1 [[3,10,0]]
|
| | | 3262 0 4 [41] 35 [[3,10,0]]
|
| | | 3263 0 7 [] 10 [[3,10,0]]
|
| | | 3264 0 3 [] 10 [[3,10,0]]
|
| | | 3265 0 8 [42] 1000 [[3,10,0]]
|
| | | 3266 0 1 [4707] 1 [[3,10,0]]
|
| | | 3267 0 4 [41] 35 [[3,10,0]]
|
| | | 3268 0 7 [] 10 [[3,10,0]]
|
| | | 3269 0 3 [] 10 [[3,10,0]]
|
| | | 3270 0 8 [42] 1000 [[3,10,0]]
|
| | | 3271 0 1 [4708] 1 [[3,10,0]]
|
| | | 3272 0 4 [41] 35 [[3,10,0]]
|
| | | 3273 0 7 [] 10 [[3,10,0]]
|
| | | 3274 0 3 [] 10 [[3,10,0]]
|
| | | 3275 0 8 [42] 1000 [[3,10,0]]
|
| | | 3276 0 1 [4709] 1 [[3,10,0]]
|
| | | 3277 0 4 [41] 35 [[3,10,0]]
|
| | | 3278 0 7 [] 10 [[3,10,0]]
|
| | | 3279 0 3 [] 10 [[3,10,0]]
|
| | | 3280 0 8 [42] 1000 [[3,10,0]]
|
| | | 3281 0 1 [4710] 1 [[3,10,0]]
|
| | | 3282 0 4 [41] 35 [[3,10,0]]
|
| | | 3283 0 7 [] 10 [[3,10,0]]
|
| | | 3284 0 3 [] 10 [[3,10,0]]
|
| | | 3285 0 8 [42] 1000 [[3,10,0]]
|
| | | 3286 0 1 [4801] 1 [[3,10,0]]
|
| | | 3287 0 4 [41] 35 [[3,10,0]]
|
| | | 3288 0 7 [] 10 [[3,10,0]]
|
| | | 3289 0 3 [] 10 [[3,10,0]]
|
| | | 3290 0 8 [42] 1000 [[3,10,0]]
|
| | | 3291 0 1 [4802] 1 [[3,10,0]]
|
| | | 3292 0 4 [41] 35 [[3,10,0]]
|
| | | 3293 0 7 [] 10 [[3,10,0]]
|
| | | 3294 0 3 [] 10 [[3,10,0]]
|
| | | 3295 0 8 [42] 1000 [[3,10,0]]
|
| | | 3296 0 1 [4803] 1 [[3,10,0]]
|
| | | 3297 0 4 [41] 35 [[3,10,0]]
|
| | | 3298 0 7 [] 10 [[3,10,0]]
|
| | | 3299 0 3 [] 10 [[3,10,0]]
|
| | | 3300 0 8 [42] 1000 [[3,10,0]]
|
| | | 3301 0 1 [4804] 1 [[3,10,0]]
|
| | | 3302 0 4 [41] 35 [[3,10,0]]
|
| | | 3303 0 7 [] 10 [[3,10,0]]
|
| | | 3304 0 3 [] 10 [[3,10,0]]
|
| | | 3305 0 8 [42] 1000 [[3,10,0]]
|
| | | 3306 0 1 [4805] 1 [[3,10,0]]
|
| | | 3307 0 4 [41] 35 [[3,10,0]]
|
| | | 3308 0 7 [] 10 [[3,10,0]]
|
| | | 3309 0 3 [] 10 [[3,10,0]]
|
| | | 3270 0 1 [609] 1 [[3,10,0]]
|
| | | 3280 0 4 [41] 35 [[3,10,0]]
|
| | | 3290 0 7 [] 10 [[3,10,0]]
|
| | | 3300 0 3 [] 10 [[3,10,0]]
|
| | | 3310 0 8 [42] 1000 [[3,10,0]]
|
| | | 3311 0 1 [4806] 1 [[3,10,0]]
|
| | | 3312 0 4 [41] 35 [[3,10,0]]
|
| | | 3313 0 7 [] 10 [[3,10,0]]
|
| | | 3314 0 3 [] 10 [[3,10,0]]
|
| | | 3315 0 8 [42] 1000 [[3,10,0]]
|
| | | 3316 0 1 [4807] 1 [[3,10,0]]
|
| | | 3317 0 4 [41] 35 [[3,10,0]]
|
| | | 3318 0 7 [] 10 [[3,10,0]]
|
| | | 3319 0 3 [] 10 [[3,10,0]]
|
| | | 3320 0 8 [42] 1000 [[3,10,0]]
|
| | | 3321 0 1 [4808] 1 [[3,10,0]]
|
| | | 3322 0 4 [41] 35 [[3,10,0]]
|
| | | 3323 0 7 [] 10 [[3,10,0]]
|
| | | 3324 0 3 [] 10 [[3,10,0]]
|
| | | 3325 0 8 [42] 1000 [[3,10,0]]
|
| | | 3326 0 1 [4809] 1 [[3,10,0]]
|
| | | 3327 0 4 [41] 35 [[3,10,0]]
|
| | | 3328 0 7 [] 10 [[3,10,0]]
|
| | | 3329 0 3 [] 10 [[3,10,0]]
|
| | | 3330 0 8 [42] 1000 [[3,10,0]]
|
| | | 3331 0 1 [4810] 1 [[3,10,0]]
|
| | | 3332 0 4 [41] 35 [[3,10,0]]
|
| | | 3333 0 7 [] 10 [[3,10,0]]
|
| | | 3334 0 3 [] 10 [[3,10,0]]
|
| | | 3335 0 8 [42] 1000 [[3,10,0]]
|
| | | 3336 0 1 [4901] 1 [[3,10,0]]
|
| | | 3337 0 4 [41] 35 [[3,10,0]]
|
| | | 3338 0 7 [] 10 [[3,10,0]]
|
| | | 3339 0 3 [] 10 [[3,10,0]]
|
| | | 3320 0 1 [610] 1 [[3,10,0]]
|
| | | 3330 0 4 [41] 35 [[3,10,0]]
|
| | | 3340 0 8 [42] 1000 [[3,10,0]]
|
| | | 3341 0 1 [4902] 1 [[3,10,0]]
|
| | | 3342 0 4 [41] 35 [[3,10,0]]
|
| | | 3343 0 7 [] 10 [[3,10,0]]
|
| | | 3344 0 3 [] 10 [[3,10,0]]
|
| | | 3345 0 8 [42] 1000 [[3,10,0]]
|
| | | 3346 0 1 [4903] 1 [[3,10,0]]
|
| | | 3347 0 4 [41] 35 [[3,10,0]]
|
| | | 3348 0 7 [] 10 [[3,10,0]]
|
| | | 3349 0 3 [] 10 [[3,10,0]]
|
| | | 3350 0 8 [42] 1000 [[3,10,0]]
|
| | | 3351 0 1 [4904] 1 [[3,10,0]]
|
| | | 3352 0 4 [41] 35 [[3,10,0]]
|
| | | 3353 0 7 [] 10 [[3,10,0]]
|
| | | 3354 0 3 [] 10 [[3,10,0]]
|
| | | 3355 0 8 [42] 1000 [[3,10,0]]
|
| | | 3356 0 1 [4905] 1 [[3,10,0]]
|
| | | 3357 0 4 [41] 35 [[3,10,0]]
|
| | | 3358 0 7 [] 10 [[3,10,0]]
|
| | | 3359 0 3 [] 10 [[3,10,0]]
|
| | | 3360 0 8 [42] 1000 [[3,10,0]]
|
| | | 3361 0 1 [4906] 1 [[3,10,0]]
|
| | | 3362 0 4 [41] 35 [[3,10,0]]
|
| | | 3363 0 7 [] 10 [[3,10,0]]
|
| | | 3364 0 3 [] 10 [[3,10,0]]
|
| | | 3365 0 8 [42] 1000 [[3,10,0]]
|
| | | 3366 0 1 [4907] 1 [[3,10,0]]
|
| | | 3367 0 4 [41] 35 [[3,10,0]]
|
| | | 3368 0 7 [] 10 [[3,10,0]]
|
| | | 3369 0 3 [] 10 [[3,10,0]]
|
| | | 3370 0 8 [42] 1000 [[3,10,0]]
|
| | | 3371 0 1 [4908] 1 [[3,10,0]]
|
| | | 3372 0 4 [41] 35 [[3,10,0]]
|
| | | 3373 0 7 [] 10 [[3,10,0]]
|
| | | 3374 0 3 [] 10 [[3,10,0]]
|
| | | 3375 0 8 [42] 1000 [[3,10,0]]
|
| | | 3376 0 1 [4909] 1 [[3,10,0]]
|
| | | 3377 0 4 [41] 35 [[3,10,0]]
|
| | | 3378 0 7 [] 10 [[3,10,0]]
|
| | | 3379 0 3 [] 10 [[3,10,0]]
|
| | | 3380 0 8 [42] 1000 [[3,10,0]]
|
| | | 3381 0 1 [4910] 1 [[3,10,0]]
|
| | | 3382 0 4 [41] 35 [[3,10,0]]
|
| | | 3383 0 7 [] 10 [[3,10,0]]
|
| | | 3384 0 3 [] 10 [[3,10,0]]
|
| | | 3385 0 8 [42] 1000 [[3,10,0]]
|
| | | 3386 0 1 [5001] 1 [[3,10,0]]
|
| | | 3387 0 4 [41] 35 [[3,10,0]]
|
| | | 3388 0 7 [] 10 [[3,10,0]]
|
| | | 3389 0 3 [] 10 [[3,10,0]]
|
| | | 3390 0 8 [42] 1000 [[3,10,0]]
|
| | | 3391 0 1 [5002] 1 [[3,10,0]]
|
| | | 3392 0 4 [41] 35 [[3,10,0]]
|
| | | 3393 0 7 [] 10 [[3,10,0]]
|
| | | 3394 0 3 [] 10 [[3,10,0]]
|
| | | 3395 0 8 [42] 1000 [[3,10,0]]
|
| | | 3396 0 1 [5003] 1 [[3,10,0]]
|
| | | 3397 0 4 [41] 35 [[3,10,0]]
|
| | | 3398 0 7 [] 10 [[3,10,0]]
|
| | | 3399 0 3 [] 10 [[3,10,0]]
|
| | | 3400 0 8 [42] 1000 [[3,10,0]]
|
| | | 3401 0 1 [5004] 1 [[3,10,0]]
|
| | | 3402 0 4 [41] 35 [[3,10,0]]
|
| | | 3403 0 7 [] 10 [[3,10,0]]
|
| | | 3404 0 3 [] 10 [[3,10,0]]
|
| | | 3405 0 8 [42] 1000 [[3,10,0]]
|
| | | 3406 0 1 [5005] 1 [[3,10,0]]
|
| | | 3407 0 4 [41] 35 [[3,10,0]]
|
| | | 3408 0 7 [] 10 [[3,10,0]]
|
| | | 3409 0 3 [] 10 [[3,10,0]]
|
| | | 3350 0 7 [] 10 [[3,10,0]]
|
| | | 3360 0 3 [] 10 [[3,10,0]]
|
| | | 3370 0 1 [701] 1 [[3,10,0]]
|
| | | 3380 0 4 [41] 35 [[3,10,0]]
|
| | | 3390 0 7 [] 10 [[3,10,0]]
|
| | | 3400 0 3 [] 10 [[3,10,0]]
|
| | | 3410 0 8 [42] 1000 [[3,10,0]]
|
| | | 3411 0 1 [5006] 1 [[3,10,0]]
|
| | | 3412 0 4 [41] 35 [[3,10,0]]
|
| | | 3413 0 7 [] 10 [[3,10,0]]
|
| | | 3414 0 3 [] 10 [[3,10,0]]
|
| | | 3415 0 8 [42] 1000 [[3,10,0]]
|
| | | 3416 0 1 [5007] 1 [[3,10,0]]
|
| | | 3417 0 4 [41] 35 [[3,10,0]]
|
| | | 3418 0 7 [] 10 [[3,10,0]]
|
| | | 3419 0 3 [] 10 [[3,10,0]]
|
| | | 3420 0 8 [42] 1000 [[3,10,0]]
|
| | | 3421 0 1 [5008] 1 [[3,10,0]]
|
| | | 3422 0 4 [41] 35 [[3,10,0]]
|
| | | 3423 0 7 [] 10 [[3,10,0]]
|
| | | 3424 0 3 [] 10 [[3,10,0]]
|
| | | 3425 0 8 [42] 1000 [[3,10,0]]
|
| | | 3426 0 1 [5009] 1 [[3,10,0]]
|
| | | 3427 0 4 [41] 35 [[3,10,0]]
|
| | | 3428 0 7 [] 10 [[3,10,0]]
|
| | | 3429 0 3 [] 10 [[3,10,0]]
|
| | | 3430 0 8 [42] 1000 [[3,10,0]]
|
| | | 3431 0 1 [5010] 1 [[3,10,0]]
|
| | | 3420 0 1 [702] 1 [[3,10,0]]
|
| | | 3430 0 4 [41] 35 [[3,10,0]]
|
| | | 3440 0 7 [] 10 [[3,10,0]]
|
| | | 3450 0 3 [] 10 [[3,10,0]]
|
| | | 3460 0 8 [42] 1000 [[3,10,0]]
|
| | | 3470 0 1 [703] 1 [[3,10,0]]
|
| | | 3480 0 4 [41] 35 [[3,10,0]]
|
| | | 3490 0 7 [] 10 [[3,10,0]]
|
| | | 3500 0 3 [] 10 [[3,10,0]]
|
| | | 3510 0 8 [42] 1000 [[3,10,0]]
|
| | | 3520 0 1 [704] 1 [[3,10,0]]
|
| | | 3530 0 4 [41] 35 [[3,10,0]]
|
| | | 3540 0 7 [] 10 [[3,10,0]]
|
| | | 3550 0 3 [] 10 [[3,10,0]]
|
| | | 3560 0 8 [42] 1000 [[3,10,0]]
|
| | | 3570 0 1 [705] 1 [[3,10,0]]
|
| | | 3580 0 4 [41] 35 [[3,10,0]]
|
| | | 3590 0 7 [] 10 [[3,10,0]]
|
| | | 3600 0 3 [] 10 [[3,10,0]]
|
| | | 3610 0 8 [42] 1000 [[3,10,0]]
|
| | | 3620 0 1 [706] 1 [[3,10,0]]
|
| | | 3630 0 4 [41] 35 [[3,10,0]]
|
| | | 3640 0 7 [] 10 [[3,10,0]]
|
| | | 3650 0 3 [] 10 [[3,10,0]]
|
| | | 3660 0 8 [42] 1000 [[3,10,0]]
|
| | | 3670 0 1 [707] 1 [[3,10,0]]
|
| | | 3680 0 4 [41] 35 [[3,10,0]]
|
| | | 3690 0 7 [] 10 [[3,10,0]]
|
| | | 3700 0 3 [] 10 [[3,10,0]]
|
| | | 3710 0 8 [42] 1000 [[3,10,0]]
|
| | | 3720 0 1 [708] 1 [[3,10,0]]
|
| | | 3730 0 4 [41] 35 [[3,10,0]]
|
| | | 3740 0 7 [] 10 [[3,10,0]]
|
| | | 3750 0 3 [] 10 [[3,10,0]]
|
| | | 3760 0 8 [42] 1000 [[3,10,0]]
|
| | | 3770 0 1 [709] 1 [[3,10,0]]
|
| | | 3780 0 4 [41] 35 [[3,10,0]]
|
| | | 3790 0 7 [] 10 [[3,10,0]]
|
| | | 3800 0 3 [] 10 [[3,10,0]]
|
| | | 3810 0 8 [42] 1000 [[3,10,0]]
|
| | | 3820 0 1 [710] 1 [[3,10,0]]
|
| | | 3830 0 4 [41] 35 [[3,10,0]]
|
| | | 3840 0 8 [42] 1000 [[3,10,0]]
|
| | | 3850 0 7 [] 10 [[3,10,0]]
|
| | | 3860 0 3 [] 10 [[3,10,0]]
|
| | | 3870 0 1 [801] 1 [[3,10,0]]
|
| | | 3880 0 4 [41] 35 [[3,10,0]]
|
| | | 3890 0 7 [] 10 [[3,10,0]]
|
| | | 3900 0 3 [] 10 [[3,10,0]]
|
| | | 3910 0 8 [42] 1000 [[3,10,0]]
|
| | | 3920 0 1 [802] 1 [[3,10,0]]
|
| | | 3930 0 4 [41] 35 [[3,10,0]]
|
| | | 3940 0 7 [] 10 [[3,10,0]]
|
| | | 3950 0 3 [] 10 [[3,10,0]]
|
| | | 3960 0 8 [42] 1000 [[3,10,0]]
|
| | | 3970 0 1 [803] 1 [[3,10,0]]
|
| | | 3980 0 4 [41] 35 [[3,10,0]]
|
| | | 3990 0 7 [] 10 [[3,10,0]]
|
| | | 4000 0 3 [] 10 [[3,10,0]]
|
| | | 4010 0 8 [42] 1000 [[3,10,0]]
|
| | | 4020 0 1 [804] 1 [[3,10,0]]
|
| | | 4030 0 4 [41] 35 [[3,10,0]]
|
| | | 4040 0 7 [] 10 [[3,10,0]]
|
| | | 4050 0 3 [] 10 [[3,10,0]]
|
| | | 4060 0 8 [42] 1000 [[3,10,0]]
|
| | | 4070 0 1 [805] 1 [[3,10,0]]
|
| | | 4080 0 4 [41] 35 [[3,10,0]]
|
| | | 4090 0 7 [] 10 [[3,10,0]]
|
| | | 4100 0 3 [] 10 [[3,10,0]]
|
| | | 4110 0 8 [42] 1000 [[3,10,0]]
|
| | | 4120 0 1 [806] 1 [[3,10,0]]
|
| | | 4130 0 4 [41] 35 [[3,10,0]]
|
| | | 4140 0 7 [] 10 [[3,10,0]]
|
| | | 4150 0 3 [] 10 [[3,10,0]]
|
| | | 4160 0 8 [42] 1000 [[3,10,0]]
|
| | | 4170 0 1 [807] 1 [[3,10,0]]
|
| | | 4180 0 4 [41] 35 [[3,10,0]]
|
| | | 4190 0 7 [] 10 [[3,10,0]]
|
| | | 4200 0 3 [] 10 [[3,10,0]]
|
| | | 4210 0 8 [42] 1000 [[3,10,0]]
|
| | | 4220 0 1 [808] 1 [[3,10,0]]
|
| | | 4230 0 4 [41] 35 [[3,10,0]]
|
| | | 4240 0 7 [] 10 [[3,10,0]]
|
| | | 4250 0 3 [] 10 [[3,10,0]]
|
| | | 4260 0 8 [42] 1000 [[3,10,0]]
|
| | | 4270 0 1 [809] 1 [[3,10,0]]
|
| | | 4280 0 4 [41] 35 [[3,10,0]]
|
| | | 4290 0 7 [] 10 [[3,10,0]]
|
| | | 4300 0 3 [] 10 [[3,10,0]]
|
| | | 4310 0 8 [42] 1000 [[3,10,0]]
|
| | | 4320 0 1 [810] 1 [[3,10,0]]
|
| | | 4330 0 4 [41] 35 [[3,10,0]]
|
| | | 4340 0 8 [42] 1000 [[3,10,0]]
|
| | | 4350 0 7 [] 10 [[3,10,0]]
|
| | | 4360 0 3 [] 10 [[3,10,0]]
|
| | | 4370 0 1 [901] 1 [[3,10,0]]
|
| | | 4380 0 4 [41] 35 [[3,10,0]]
|
| | | 4390 0 7 [] 10 [[3,10,0]]
|
| | | 4400 0 3 [] 10 [[3,10,0]]
|
| | | 4410 0 8 [42] 1000 [[3,10,0]]
|
| | | 4420 0 1 [902] 1 [[3,10,0]]
|
| | | 4430 0 4 [41] 35 [[3,10,0]]
|
| | | 4440 0 7 [] 10 [[3,10,0]]
|
| | | 4450 0 3 [] 10 [[3,10,0]]
|
| | | 4460 0 8 [42] 1000 [[3,10,0]]
|
| | | 4470 0 1 [903] 1 [[3,10,0]]
|
| | | 4480 0 4 [41] 35 [[3,10,0]]
|
| | | 4490 0 7 [] 10 [[3,10,0]]
|
| | | 4500 0 3 [] 10 [[3,10,0]]
|
| | | 4510 0 8 [42] 1000 [[3,10,0]]
|
| | | 4520 0 1 [904] 1 [[3,10,0]]
|
| | | 4530 0 4 [41] 35 [[3,10,0]]
|
| | | 4540 0 7 [] 10 [[3,10,0]]
|
| | | 4550 0 3 [] 10 [[3,10,0]]
|
| | | 4560 0 8 [42] 1000 [[3,10,0]]
|
| | | 4570 0 1 [905] 1 [[3,10,0]]
|
| | | 4580 0 4 [41] 35 [[3,10,0]]
|
| | | 4590 0 7 [] 10 [[3,10,0]]
|
| | | 4600 0 3 [] 10 [[3,10,0]]
|
| | | 4610 0 8 [42] 1000 [[3,10,0]]
|
| | | 4620 0 1 [906] 1 [[3,10,0]]
|
| | | 4630 0 4 [41] 35 [[3,10,0]]
|
| | | 4640 0 7 [] 10 [[3,10,0]]
|
| | | 4650 0 3 [] 10 [[3,10,0]]
|
| | | 4660 0 8 [42] 1000 [[3,10,0]]
|
| | | 4670 0 1 [907] 1 [[3,10,0]]
|
| | | 4680 0 4 [41] 35 [[3,10,0]]
|
| | | 4690 0 7 [] 10 [[3,10,0]]
|
| | | 4700 0 3 [] 10 [[3,10,0]]
|
| | | 4710 0 8 [42] 1000 [[3,10,0]]
|
| | | 4720 0 1 [908] 1 [[3,10,0]]
|
| | | 4730 0 4 [41] 35 [[3,10,0]]
|
| | | 4740 0 7 [] 10 [[3,10,0]]
|
| | | 4750 0 3 [] 10 [[3,10,0]]
|
| | | 4760 0 8 [42] 1000 [[3,10,0]]
|
| | | 4770 0 1 [909] 1 [[3,10,0]]
|
| | | 4780 0 4 [41] 35 [[3,10,0]]
|
| | | 4790 0 7 [] 10 [[3,10,0]]
|
| | | 4800 0 3 [] 10 [[3,10,0]]
|
| | | 4810 0 8 [42] 1000 [[3,10,0]]
|
| | | 4820 0 1 [910] 1 [[3,10,0]]
|
| | | 4830 0 4 [41] 35 [[3,10,0]]
|
| | | 4840 0 8 [42] 1000 [[3,10,0]]
|
| | | 4850 0 7 [] 10 [[3,10,0]]
|
| | | 4860 0 3 [] 10 [[3,10,0]]
|
| | | 4870 0 1 [1001] 1 [[3,10,0]]
|
| | | 4880 0 4 [41] 35 [[3,10,0]]
|
| | | 4890 0 7 [] 10 [[3,10,0]]
|
| | | 4900 0 3 [] 10 [[3,10,0]]
|
| | | 4910 0 8 [42] 1000 [[3,10,0]]
|
| | | 4920 0 1 [1002] 1 [[3,10,0]]
|
| | | 4930 0 4 [41] 35 [[3,10,0]]
|
| | | 4940 0 7 [] 10 [[3,10,0]]
|
| | | 4950 0 3 [] 10 [[3,10,0]]
|
| | | 4960 0 8 [42] 1000 [[3,10,0]]
|
| | | 4970 0 1 [1003] 1 [[3,10,0]]
|
| | | 4980 0 4 [41] 35 [[3,10,0]]
|
| | | 4990 0 7 [] 10 [[3,10,0]]
|
| | | 5000 0 3 [] 10 [[3,10,0]]
|
| | | 5010 0 8 [42] 1000 [[3,10,0]]
|
| | | 5020 0 1 [1004] 1 [[3,10,0]]
|
| | | 5030 0 4 [41] 35 [[3,10,0]]
|
| | | 5040 0 7 [] 10 [[3,10,0]]
|
| | | 5050 0 3 [] 10 [[3,10,0]]
|
| | | 5060 0 8 [42] 1000 [[3,10,0]]
|
| | | 5070 0 1 [1005] 1 [[3,10,0]]
|
| | | 5080 0 4 [41] 35 [[3,10,0]]
|
| | | 5090 0 7 [] 10 [[3,10,0]]
|
| | | 5100 0 3 [] 10 [[3,10,0]]
|
| | | 5110 0 8 [42] 1000 [[3,10,0]]
|
| | | 5120 0 1 [1006] 1 [[3,10,0]]
|
| | | 5130 0 4 [41] 35 [[3,10,0]]
|
| | | 5140 0 7 [] 10 [[3,10,0]]
|
| | | 5150 0 3 [] 10 [[3,10,0]]
|
| | | 5160 0 8 [42] 1000 [[3,10,0]]
|
| | | 5170 0 1 [1007] 1 [[3,10,0]]
|
| | | 5180 0 4 [41] 35 [[3,10,0]]
|
| | | 5190 0 7 [] 10 [[3,10,0]]
|
| | | 5200 0 3 [] 10 [[3,10,0]]
|
| | | 5210 0 8 [42] 1000 [[3,10,0]]
|
| | | 5220 0 1 [1008] 1 [[3,10,0]]
|
| | | 5230 0 4 [41] 35 [[3,10,0]]
|
| | | 5240 0 7 [] 10 [[3,10,0]]
|
| | | 5250 0 3 [] 10 [[3,10,0]]
|
| | | 5260 0 8 [42] 1000 [[3,10,0]]
|
| | | 5270 0 1 [1009] 1 [[3,10,0]]
|
| | | 5280 0 4 [41] 35 [[3,10,0]]
|
| | | 5290 0 7 [] 10 [[3,10,0]]
|
| | | 5300 0 3 [] 10 [[3,10,0]]
|
| | | 5310 0 8 [42] 1000 [[3,10,0]]
|
| | | 5320 0 1 [1010] 1 [[3,10,0]]
|
| | | 5330 0 4 [41] 35 [[3,10,0]]
|
| | | 5340 0 7 [] 10 [[3,10,0]]
|
| | | 5350 0 3 [] 10 [[3,10,0]]
|
| | | 5360 0 8 [42] 1000 [[3,10,0]]
|
| | | 5370 0 1 [1101] 1 [[3,10,0]]
|
| | | 5380 0 4 [41] 35 [[3,10,0]]
|
| | | 5390 0 7 [] 10 [[3,10,0]]
|
| | | 5400 0 3 [] 10 [[3,10,0]]
|
| | | 5410 0 8 [42] 1000 [[3,10,0]]
|
| | | 5420 0 1 [1102] 1 [[3,10,0]]
|
| | | 5430 0 4 [41] 35 [[3,10,0]]
|
| | | 5440 0 7 [] 10 [[3,10,0]]
|
| | | 5450 0 3 [] 10 [[3,10,0]]
|
| | | 5460 0 8 [42] 1000 [[3,10,0]]
|
| | | 5470 0 1 [1103] 1 [[3,10,0]]
|
| | | 5480 0 4 [41] 35 [[3,10,0]]
|
| | | 5490 0 7 [] 10 [[3,10,0]]
|
| | | 5500 0 3 [] 10 [[3,10,0]]
|
| | | 5510 0 8 [42] 1000 [[3,10,0]]
|
| | | 5520 0 1 [1104] 1 [[3,10,0]]
|
| | | 5530 0 4 [41] 35 [[3,10,0]]
|
| | | 5540 0 7 [] 10 [[3,10,0]]
|
| | | 5550 0 3 [] 10 [[3,10,0]]
|
| | | 5560 0 8 [42] 1000 [[3,10,0]]
|
| | | 5570 0 1 [1105] 1 [[3,10,0]]
|
| | | 5580 0 4 [41] 35 [[3,10,0]]
|
| | | 5590 0 7 [] 10 [[3,10,0]]
|
| | | 5600 0 3 [] 10 [[3,10,0]]
|
| | | 5610 0 8 [42] 1000 [[3,10,0]]
|
| | | 5620 0 1 [1106] 1 [[3,10,0]]
|
| | | 5630 0 4 [41] 35 [[3,10,0]]
|
| | | 5640 0 7 [] 10 [[3,10,0]]
|
| | | 5650 0 3 [] 10 [[3,10,0]]
|
| | | 5660 0 8 [42] 1000 [[3,10,0]]
|
| | | 5670 0 1 [1107] 1 [[3,10,0]]
|
| | | 5680 0 4 [41] 35 [[3,10,0]]
|
| | | 5690 0 7 [] 10 [[3,10,0]]
|
| | | 5700 0 3 [] 10 [[3,10,0]]
|
| | | 5710 0 8 [42] 1000 [[3,10,0]]
|
| | | 5720 0 1 [1108] 1 [[3,10,0]]
|
| | | 5730 0 4 [41] 35 [[3,10,0]]
|
| | | 5740 0 7 [] 10 [[3,10,0]]
|
| | | 5750 0 3 [] 10 [[3,10,0]]
|
| | | 5760 0 8 [42] 1000 [[3,10,0]]
|
| | | 5770 0 1 [1109] 1 [[3,10,0]]
|
| | | 5780 0 4 [41] 35 [[3,10,0]]
|
| | | 5790 0 7 [] 10 [[3,10,0]]
|
| | | 5800 0 3 [] 10 [[3,10,0]]
|
| | | 5810 0 8 [42] 1000 [[3,10,0]]
|
| | | 5820 0 1 [1110] 1 [[3,10,0]]
|
| | | 5830 0 4 [41] 35 [[3,10,0]]
|
| | | 5840 0 7 [] 10 [[3,10,0]]
|
| | | 5850 0 3 [] 10 [[3,10,0]]
|
| | | 5860 0 8 [42] 1000 [[3,10,0]]
|
| | | 5870 0 1 [1201] 1 [[3,10,0]]
|
| | | 5880 0 4 [41] 35 [[3,10,0]]
|
| | | 5890 0 7 [] 10 [[3,10,0]]
|
| | | 5900 0 3 [] 10 [[3,10,0]]
|
| | | 5910 0 8 [42] 1000 [[3,10,0]]
|
| | | 5920 0 1 [1202] 1 [[3,10,0]]
|
| | | 5930 0 4 [41] 35 [[3,10,0]]
|
| | | 5940 0 7 [] 10 [[3,10,0]]
|
| | | 5950 0 3 [] 10 [[3,10,0]]
|
| | | 5960 0 8 [42] 1000 [[3,10,0]]
|
| | | 5970 0 1 [1203] 1 [[3,10,0]]
|
| | | 5980 0 4 [41] 35 [[3,10,0]]
|
| | | 5990 0 7 [] 10 [[3,10,0]]
|
| | | 6000 0 3 [] 10 [[3,10,0]]
|
| | | 6010 0 8 [42] 1000 [[3,10,0]]
|
| | | 6020 0 1 [1204] 1 [[3,10,0]]
|
| | | 6030 0 4 [41] 35 [[3,10,0]]
|
| | | 6040 0 7 [] 10 [[3,10,0]]
|
| | | 6050 0 3 [] 10 [[3,10,0]]
|
| | | 6060 0 8 [42] 1000 [[3,10,0]]
|
| | | 6070 0 1 [1205] 1 [[3,10,0]]
|
| | | 6080 0 4 [41] 35 [[3,10,0]]
|
| | | 6090 0 7 [] 10 [[3,10,0]]
|
| | | 6100 0 3 [] 10 [[3,10,0]]
|
| | | 6110 0 8 [42] 1000 [[3,10,0]]
|
| | | 6120 0 1 [1206] 1 [[3,10,0]]
|
| | | 6130 0 4 [41] 35 [[3,10,0]]
|
| | | 6140 0 7 [] 10 [[3,10,0]]
|
| | | 6150 0 3 [] 10 [[3,10,0]]
|
| | | 6160 0 8 [42] 1000 [[3,10,0]]
|
| | | 6170 0 1 [1207] 1 [[3,10,0]]
|
| | | 6180 0 4 [41] 35 [[3,10,0]]
|
| | | 6190 0 7 [] 10 [[3,10,0]]
|
| | | 6200 0 3 [] 10 [[3,10,0]]
|
| | | 6210 0 8 [42] 1000 [[3,10,0]]
|
| | | 6220 0 1 [1208] 1 [[3,10,0]]
|
| | | 6230 0 4 [41] 35 [[3,10,0]]
|
| | | 6240 0 7 [] 10 [[3,10,0]]
|
| | | 6250 0 3 [] 10 [[3,10,0]]
|
| | | 6260 0 8 [42] 1000 [[3,10,0]]
|
| | | 6270 0 1 [1209] 1 [[3,10,0]]
|
| | | 6280 0 4 [41] 35 [[3,10,0]]
|
| | | 6290 0 7 [] 10 [[3,10,0]]
|
| | | 6300 0 3 [] 10 [[3,10,0]]
|
| | | 6310 0 8 [42] 1000 [[3,10,0]]
|
| | | 6320 0 1 [1210] 1 [[3,10,0]]
|
| | | 6330 0 4 [41] 35 [[3,10,0]]
|
| | | 6340 0 7 [] 10 [[3,10,0]]
|
| | | 6350 0 3 [] 10 [[3,10,0]]
|
| | | 6360 0 8 [42] 1000 [[3,10,0]]
|
| | | 6370 0 1 [1301] 1 [[3,10,0]]
|
| | | 6380 0 4 [41] 35 [[3,10,0]]
|
| | | 6390 0 7 [] 10 [[3,10,0]]
|
| | | 6400 0 3 [] 10 [[3,10,0]]
|
| | | 6410 0 8 [42] 1000 [[3,10,0]]
|
| | | 6420 0 1 [1302] 1 [[3,10,0]]
|
| | | 6430 0 4 [41] 35 [[3,10,0]]
|
| | | 6440 0 7 [] 10 [[3,10,0]]
|
| | | 6450 0 3 [] 10 [[3,10,0]]
|
| | | 6460 0 8 [42] 1000 [[3,10,0]]
|
| | | 6470 0 1 [1303] 1 [[3,10,0]]
|
| | | 6480 0 4 [41] 35 [[3,10,0]]
|
| | | 6490 0 7 [] 10 [[3,10,0]]
|
| | | 6500 0 3 [] 10 [[3,10,0]]
|
| | | 6510 0 8 [42] 1000 [[3,10,0]]
|
| | | 6520 0 1 [1304] 1 [[3,10,0]]
|
| | | 6530 0 4 [41] 35 [[3,10,0]]
|
| | | 6540 0 7 [] 10 [[3,10,0]]
|
| | | 6550 0 3 [] 10 [[3,10,0]]
|
| | | 6560 0 8 [42] 1000 [[3,10,0]]
|
| | | 6570 0 1 [1305] 1 [[3,10,0]]
|
| | | 6580 0 4 [41] 35 [[3,10,0]]
|
| | | 6590 0 7 [] 10 [[3,10,0]]
|
| | | 6600 0 3 [] 10 [[3,10,0]]
|
| | | 6610 0 8 [42] 1000 [[3,10,0]]
|
| | | 6620 0 1 [1306] 1 [[3,10,0]]
|
| | | 6630 0 4 [41] 35 [[3,10,0]]
|
| | | 6640 0 7 [] 10 [[3,10,0]]
|
| | | 6650 0 3 [] 10 [[3,10,0]]
|
| | | 6660 0 8 [42] 1000 [[3,10,0]]
|
| | | 6670 0 1 [1307] 1 [[3,10,0]]
|
| | | 6680 0 4 [41] 35 [[3,10,0]]
|
| | | 6690 0 7 [] 10 [[3,10,0]]
|
| | | 6700 0 3 [] 10 [[3,10,0]]
|
| | | 6710 0 8 [42] 1000 [[3,10,0]]
|
| | | 6720 0 1 [1308] 1 [[3,10,0]]
|
| | | 6730 0 4 [41] 35 [[3,10,0]]
|
| | | 6740 0 7 [] 10 [[3,10,0]]
|
| | | 6750 0 3 [] 10 [[3,10,0]]
|
| | | 6760 0 8 [42] 1000 [[3,10,0]]
|
| | | 6770 0 1 [1309] 1 [[3,10,0]]
|
| | | 6780 0 4 [41] 35 [[3,10,0]]
|
| | | 6790 0 7 [] 10 [[3,10,0]]
|
| | | 6800 0 3 [] 10 [[3,10,0]]
|
| | | 6810 0 8 [42] 1000 [[3,10,0]]
|
| | | 6820 0 1 [1310] 1 [[3,10,0]]
|
| | | 6830 0 4 [41] 35 [[3,10,0]]
|
| | | 6840 0 7 [] 10 [[3,10,0]]
|
| | | 6850 0 3 [] 10 [[3,10,0]]
|
| | | 6860 0 8 [42] 1000 [[3,10,0]]
|
| | | 6870 0 1 [1401] 1 [[3,10,0]]
|
| | | 6880 0 4 [41] 35 [[3,10,0]]
|
| | | 6890 0 7 [] 10 [[3,10,0]]
|
| | | 6900 0 3 [] 10 [[3,10,0]]
|
| | | 6910 0 8 [42] 1000 [[3,10,0]]
|
| | | 6920 0 1 [1402] 1 [[3,10,0]]
|
| | | 6930 0 4 [41] 35 [[3,10,0]]
|
| | | 6940 0 7 [] 10 [[3,10,0]]
|
| | | 6950 0 3 [] 10 [[3,10,0]]
|
| | | 6960 0 8 [42] 1000 [[3,10,0]]
|
| | | 6970 0 1 [1403] 1 [[3,10,0]]
|
| | | 6980 0 4 [41] 35 [[3,10,0]]
|
| | | 6990 0 7 [] 10 [[3,10,0]]
|
| | | 7000 0 3 [] 10 [[3,10,0]]
|
| | | 7010 0 8 [42] 1000 [[3,10,0]]
|
| | | 7020 0 1 [1404] 1 [[3,10,0]]
|
| | | 7030 0 4 [41] 35 [[3,10,0]]
|
| | | 7040 0 7 [] 10 [[3,10,0]]
|
| | | 7050 0 3 [] 10 [[3,10,0]]
|
| | | 7060 0 8 [42] 1000 [[3,10,0]]
|
| | | 7070 0 1 [1405] 1 [[3,10,0]]
|
| | | 7080 0 4 [41] 35 [[3,10,0]]
|
| | | 7090 0 7 [] 10 [[3,10,0]]
|
| | | 7100 0 3 [] 10 [[3,10,0]]
|
| | | 7110 0 8 [42] 1000 [[3,10,0]]
|
| | | 7120 0 1 [1406] 1 [[3,10,0]]
|
| | | 7130 0 4 [41] 35 [[3,10,0]]
|
| | | 7140 0 7 [] 10 [[3,10,0]]
|
| | | 7150 0 3 [] 10 [[3,10,0]]
|
| | | 7160 0 8 [42] 1000 [[3,10,0]]
|
| | | 7170 0 1 [1407] 1 [[3,10,0]]
|
| | | 7180 0 4 [41] 35 [[3,10,0]]
|
| | | 7190 0 7 [] 10 [[3,10,0]]
|
| | | 7200 0 3 [] 10 [[3,10,0]]
|
| | | 7210 0 8 [42] 1000 [[3,10,0]]
|
| | | 7220 0 1 [1408] 1 [[3,10,0]]
|
| | | 7230 0 4 [41] 35 [[3,10,0]]
|
| | | 7240 0 7 [] 10 [[3,10,0]]
|
| | | 7250 0 3 [] 10 [[3,10,0]]
|
| | | 7260 0 8 [42] 1000 [[3,10,0]]
|
| | | 7270 0 1 [1409] 1 [[3,10,0]]
|
| | | 7280 0 4 [41] 35 [[3,10,0]]
|
| | | 7290 0 7 [] 10 [[3,10,0]]
|
| | | 7300 0 3 [] 10 [[3,10,0]]
|
| | | 7310 0 8 [42] 1000 [[3,10,0]]
|
| | | 7320 0 1 [1410] 1 [[3,10,0]]
|
| | | 7330 0 4 [41] 35 [[3,10,0]]
|
| | | 7340 0 7 [] 10 [[3,10,0]]
|
| | | 7350 0 3 [] 10 [[3,10,0]]
|
| | | 7360 0 8 [42] 1000 [[3,10,0]]
|
| | | 7370 0 1 [1501] 1 [[3,10,0]]
|
| | | 7380 0 4 [41] 35 [[3,10,0]]
|
| | | 7390 0 7 [] 10 [[3,10,0]]
|
| | | 7400 0 3 [] 10 [[3,10,0]]
|
| | | 7410 0 8 [42] 1000 [[3,10,0]]
|
| | | 7420 0 1 [1502] 1 [[3,10,0]]
|
| | | 7430 0 4 [41] 35 [[3,10,0]]
|
| | | 7440 0 7 [] 10 [[3,10,0]]
|
| | | 7450 0 3 [] 10 [[3,10,0]]
|
| | | 7460 0 8 [42] 1000 [[3,10,0]]
|
| | | 7470 0 1 [1503] 1 [[3,10,0]]
|
| | | 7480 0 4 [41] 35 [[3,10,0]]
|
| | | 7490 0 7 [] 10 [[3,10,0]]
|
| | | 7500 0 3 [] 10 [[3,10,0]]
|
| | | 7510 0 8 [42] 1000 [[3,10,0]]
|
| | | 7520 0 1 [1504] 1 [[3,10,0]]
|
| | | 7530 0 4 [41] 35 [[3,10,0]]
|
| | | 7540 0 7 [] 10 [[3,10,0]]
|
| | | 7550 0 3 [] 10 [[3,10,0]]
|
| | | 7560 0 8 [42] 1000 [[3,10,0]]
|
| | | 7570 0 1 [1505] 1 [[3,10,0]]
|
| | | 7580 0 4 [41] 35 [[3,10,0]]
|
| | | 7590 0 7 [] 10 [[3,10,0]]
|
| | | 7600 0 3 [] 10 [[3,10,0]]
|
| | | 7610 0 8 [42] 1000 [[3,10,0]]
|
| | | 7620 0 1 [1506] 1 [[3,10,0]]
|
| | | 7630 0 4 [41] 35 [[3,10,0]]
|
| | | 7640 0 7 [] 10 [[3,10,0]]
|
| | | 7650 0 3 [] 10 [[3,10,0]]
|
| | | 7660 0 8 [42] 1000 [[3,10,0]]
|
| | | 7670 0 1 [1507] 1 [[3,10,0]]
|
| | | 7680 0 4 [41] 35 [[3,10,0]]
|
| | | 7690 0 7 [] 10 [[3,10,0]]
|
| | | 7700 0 3 [] 10 [[3,10,0]]
|
| | | 7710 0 8 [42] 1000 [[3,10,0]]
|
| | | 7720 0 1 [1508] 1 [[3,10,0]]
|
| | | 7730 0 4 [41] 35 [[3,10,0]]
|
| | | 7740 0 7 [] 10 [[3,10,0]]
|
| | | 7750 0 3 [] 10 [[3,10,0]]
|
| | | 7760 0 8 [42] 1000 [[3,10,0]]
|
| | | 7770 0 1 [1509] 1 [[3,10,0]]
|
| | | 7780 0 4 [41] 35 [[3,10,0]]
|
| | | 7790 0 7 [] 10 [[3,10,0]]
|
| | | 7800 0 3 [] 10 [[3,10,0]]
|
| | | 7810 0 8 [42] 1000 [[3,10,0]]
|
| | | 7820 0 1 [1510] 1 [[3,10,0]]
|
| | | 7830 0 4 [41] 35 [[3,10,0]]
|
| | | 7840 0 7 [] 10 [[3,10,0]]
|
| | | 7850 0 3 [] 10 [[3,10,0]]
|
| | | 7860 0 8 [42] 1000 [[3,10,0]]
|
| | | 7870 0 1 [1601] 1 [[3,10,0]]
|
| | | 7880 0 4 [41] 35 [[3,10,0]]
|
| | | 7890 0 7 [] 10 [[3,10,0]]
|
| | | 7900 0 3 [] 10 [[3,10,0]]
|
| | | 7910 0 8 [42] 1000 [[3,10,0]]
|
| | | 7920 0 1 [1602] 1 [[3,10,0]]
|
| | | 7930 0 4 [41] 35 [[3,10,0]]
|
| | | 7940 0 7 [] 10 [[3,10,0]]
|
| | | 7950 0 3 [] 10 [[3,10,0]]
|
| | | 7960 0 8 [42] 1000 [[3,10,0]]
|
| | | 7970 0 1 [1603] 1 [[3,10,0]]
|
| | | 7980 0 4 [41] 35 [[3,10,0]]
|
| | | 7990 0 7 [] 10 [[3,10,0]]
|
| | | 8000 0 3 [] 10 [[3,10,0]]
|
| | | 8010 0 8 [42] 1000 [[3,10,0]]
|
| | | 8020 0 1 [1604] 1 [[3,10,0]]
|
| | | 8030 0 4 [41] 35 [[3,10,0]]
|
| | | 8040 0 7 [] 10 [[3,10,0]]
|
| | | 8050 0 3 [] 10 [[3,10,0]]
|
| | | 8060 0 8 [42] 1000 [[3,10,0]]
|
| | | 8070 0 1 [1605] 1 [[3,10,0]]
|
| | | 8080 0 4 [41] 35 [[3,10,0]]
|
| | | 8090 0 7 [] 10 [[3,10,0]]
|
| | | 8100 0 3 [] 10 [[3,10,0]]
|
| | | 8110 0 8 [42] 1000 [[3,10,0]]
|
| | | 8120 0 1 [1606] 1 [[3,10,0]]
|
| | | 8130 0 4 [41] 35 [[3,10,0]]
|
| | | 8140 0 7 [] 10 [[3,10,0]]
|
| | | 8150 0 3 [] 10 [[3,10,0]]
|
| | | 8160 0 8 [42] 1000 [[3,10,0]]
|
| | | 8170 0 1 [1607] 1 [[3,10,0]]
|
| | | 8180 0 4 [41] 35 [[3,10,0]]
|
| | | 8190 0 7 [] 10 [[3,10,0]]
|
| | | 8200 0 3 [] 10 [[3,10,0]]
|
| | | 8210 0 8 [42] 1000 [[3,10,0]]
|
| | | 8220 0 1 [1608] 1 [[3,10,0]]
|
| | | 8230 0 4 [41] 35 [[3,10,0]]
|
| | | 8240 0 7 [] 10 [[3,10,0]]
|
| | | 8250 0 3 [] 10 [[3,10,0]]
|
| | | 8260 0 8 [42] 1000 [[3,10,0]]
|
| | | 8270 0 1 [1609] 1 [[3,10,0]]
|
| | | 8280 0 4 [41] 35 [[3,10,0]]
|
| | | 8290 0 7 [] 10 [[3,10,0]]
|
| | | 8300 0 3 [] 10 [[3,10,0]]
|
| | | 8310 0 8 [42] 1000 [[3,10,0]]
|
| | | 8320 0 1 [1610] 1 [[3,10,0]]
|
| | | 8330 0 4 [41] 35 [[3,10,0]]
|
| | | 8340 0 7 [] 10 [[3,10,0]]
|
| | | 8350 0 3 [] 10 [[3,10,0]]
|
| | | 8360 0 8 [42] 1000 [[3,10,0]]
|
| | | 8370 0 1 [1701] 1 [[3,10,0]]
|
| | | 8380 0 4 [41] 35 [[3,10,0]]
|
| | | 8390 0 7 [] 10 [[3,10,0]]
|
| | | 8400 0 3 [] 10 [[3,10,0]]
|
| | | 8410 0 8 [42] 1000 [[3,10,0]]
|
| | | 8420 0 1 [1702] 1 [[3,10,0]]
|
| | | 8430 0 4 [41] 35 [[3,10,0]]
|
| | | 8440 0 7 [] 10 [[3,10,0]]
|
| | | 8450 0 3 [] 10 [[3,10,0]]
|
| | | 8460 0 8 [42] 1000 [[3,10,0]]
|
| | | 8470 0 1 [1703] 1 [[3,10,0]]
|
| | | 8480 0 4 [41] 35 [[3,10,0]]
|
| | | 8490 0 7 [] 10 [[3,10,0]]
|
| | | 8500 0 3 [] 10 [[3,10,0]]
|
| | | 8510 0 8 [42] 1000 [[3,10,0]]
|
| | | 8520 0 1 [1704] 1 [[3,10,0]]
|
| | | 8530 0 4 [41] 35 [[3,10,0]]
|
| | | 8540 0 7 [] 10 [[3,10,0]]
|
| | | 8550 0 3 [] 10 [[3,10,0]]
|
| | | 8560 0 8 [42] 1000 [[3,10,0]]
|
| | | 8570 0 1 [1705] 1 [[3,10,0]]
|
| | | 8580 0 4 [41] 35 [[3,10,0]]
|
| | | 8590 0 7 [] 10 [[3,10,0]]
|
| | | 8600 0 3 [] 10 [[3,10,0]]
|
| | | 8610 0 8 [42] 1000 [[3,10,0]]
|
| | | 8620 0 1 [1706] 1 [[3,10,0]]
|
| | | 8630 0 4 [41] 35 [[3,10,0]]
|
| | | 8640 0 7 [] 10 [[3,10,0]]
|
| | | 8650 0 3 [] 10 [[3,10,0]]
|
| | | 8660 0 8 [42] 1000 [[3,10,0]]
|
| | | 8670 0 1 [1707] 1 [[3,10,0]]
|
| | | 8680 0 4 [41] 35 [[3,10,0]]
|
| | | 8690 0 7 [] 10 [[3,10,0]]
|
| | | 8700 0 3 [] 10 [[3,10,0]]
|
| | | 8710 0 8 [42] 1000 [[3,10,0]]
|
| | | 8720 0 1 [1708] 1 [[3,10,0]]
|
| | | 8730 0 4 [41] 35 [[3,10,0]]
|
| | | 8740 0 7 [] 10 [[3,10,0]]
|
| | | 8750 0 3 [] 10 [[3,10,0]]
|
| | | 8760 0 8 [42] 1000 [[3,10,0]]
|
| | | 8770 0 1 [1709] 1 [[3,10,0]]
|
| | | 8780 0 4 [41] 35 [[3,10,0]]
|
| | | 8790 0 7 [] 10 [[3,10,0]]
|
| | | 8800 0 3 [] 10 [[3,10,0]]
|
| | | 8810 0 8 [42] 1000 [[3,10,0]]
|
| | | 8820 0 1 [1710] 1 [[3,10,0]]
|
| | | 8830 0 4 [41] 35 [[3,10,0]]
|
| | | 8840 0 7 [] 10 [[3,10,0]]
|
| | | 8850 0 3 [] 10 [[3,10,0]]
|
| | | 8860 0 8 [42] 1000 [[3,10,0]]
|
| | | 8870 0 1 [1801] 1 [[3,10,0]]
|
| | | 8880 0 4 [41] 35 [[3,10,0]]
|
| | | 8890 0 7 [] 10 [[3,10,0]]
|
| | | 8900 0 3 [] 10 [[3,10,0]]
|
| | | 8910 0 8 [42] 1000 [[3,10,0]]
|
| | | 8920 0 1 [1802] 1 [[3,10,0]]
|
| | | 8930 0 4 [41] 35 [[3,10,0]]
|
| | | 8940 0 7 [] 10 [[3,10,0]]
|
| | | 8950 0 3 [] 10 [[3,10,0]]
|
| | | 8960 0 8 [42] 1000 [[3,10,0]]
|
| | | 8970 0 1 [1803] 1 [[3,10,0]]
|
| | | 8980 0 4 [41] 35 [[3,10,0]]
|
| | | 8990 0 7 [] 10 [[3,10,0]]
|
| | | 9000 0 3 [] 10 [[3,10,0]]
|
| | | 9010 0 8 [42] 1000 [[3,10,0]]
|
| | | 9020 0 1 [1804] 1 [[3,10,0]]
|
| | | 9030 0 4 [41] 35 [[3,10,0]]
|
| | | 9040 0 7 [] 10 [[3,10,0]]
|
| | | 9050 0 3 [] 10 [[3,10,0]]
|
| | | 9060 0 8 [42] 1000 [[3,10,0]]
|
| | | 9070 0 1 [1805] 1 [[3,10,0]]
|
| | | 9080 0 4 [41] 35 [[3,10,0]]
|
| | | 9090 0 7 [] 10 [[3,10,0]]
|
| | | 9100 0 3 [] 10 [[3,10,0]]
|
| | | 9110 0 8 [42] 1000 [[3,10,0]]
|
| | | 9120 0 1 [1806] 1 [[3,10,0]]
|
| | | 9130 0 4 [41] 35 [[3,10,0]]
|
| | | 9140 0 7 [] 10 [[3,10,0]]
|
| | | 9150 0 3 [] 10 [[3,10,0]]
|
| | | 9160 0 8 [42] 1000 [[3,10,0]]
|
| | | 9170 0 1 [1807] 1 [[3,10,0]]
|
| | | 9180 0 4 [41] 35 [[3,10,0]]
|
| | | 9190 0 7 [] 10 [[3,10,0]]
|
| | | 9200 0 3 [] 10 [[3,10,0]]
|
| | | 9210 0 8 [42] 1000 [[3,10,0]]
|
| | | 9220 0 1 [1808] 1 [[3,10,0]]
|
| | | 9230 0 4 [41] 35 [[3,10,0]]
|
| | | 9240 0 7 [] 10 [[3,10,0]]
|
| | | 9250 0 3 [] 10 [[3,10,0]]
|
| | | 9260 0 8 [42] 1000 [[3,10,0]]
|
| | | 9270 0 1 [1809] 1 [[3,10,0]]
|
| | | 9280 0 4 [41] 35 [[3,10,0]]
|
| | | 9290 0 7 [] 10 [[3,10,0]]
|
| | | 9300 0 3 [] 10 [[3,10,0]]
|
| | | 9310 0 8 [42] 1000 [[3,10,0]]
|
| | | 9320 0 1 [1810] 1 [[3,10,0]]
|
| | | 9330 0 4 [41] 35 [[3,10,0]]
|
| | | 9340 0 7 [] 10 [[3,10,0]]
|
| | | 9350 0 3 [] 10 [[3,10,0]]
|
| | | 9360 0 8 [42] 1000 [[3,10,0]]
|
| | | 9370 0 1 [1901] 1 [[3,10,0]]
|
| | | 9380 0 4 [41] 35 [[3,10,0]]
|
| | | 9390 0 7 [] 10 [[3,10,0]]
|
| | | 9400 0 3 [] 10 [[3,10,0]]
|
| | | 9410 0 8 [42] 1000 [[3,10,0]]
|
| | | 9420 0 1 [1902] 1 [[3,10,0]]
|
| | | 9430 0 4 [41] 35 [[3,10,0]]
|
| | | 9440 0 7 [] 10 [[3,10,0]]
|
| | | 9450 0 3 [] 10 [[3,10,0]]
|
| | | 9460 0 8 [42] 1000 [[3,10,0]]
|
| | | 9470 0 1 [1903] 1 [[3,10,0]]
|
| | | 9480 0 4 [41] 35 [[3,10,0]]
|
| | | 9490 0 7 [] 10 [[3,10,0]]
|
| | | 9500 0 3 [] 10 [[3,10,0]]
|
| | | 9510 0 8 [42] 1000 [[3,10,0]]
|
| | | 9520 0 1 [1904] 1 [[3,10,0]]
|
| | | 9530 0 4 [41] 35 [[3,10,0]]
|
| | | 9540 0 7 [] 10 [[3,10,0]]
|
| | | 9550 0 3 [] 10 [[3,10,0]]
|
| | | 9560 0 8 [42] 1000 [[3,10,0]]
|
| | | 9570 0 1 [1905] 1 [[3,10,0]]
|
| | | 9580 0 4 [41] 35 [[3,10,0]]
|
| | | 9590 0 7 [] 10 [[3,10,0]]
|
| | | 9600 0 3 [] 10 [[3,10,0]]
|
| | | 9610 0 8 [42] 1000 [[3,10,0]]
|
| | | 9620 0 1 [1906] 1 [[3,10,0]]
|
| | | 9630 0 4 [41] 35 [[3,10,0]]
|
| | | 9640 0 7 [] 10 [[3,10,0]]
|
| | | 9650 0 3 [] 10 [[3,10,0]]
|
| | | 9660 0 8 [42] 1000 [[3,10,0]]
|
| | | 9670 0 1 [1907] 1 [[3,10,0]]
|
| | | 9680 0 4 [41] 35 [[3,10,0]]
|
| | | 9690 0 7 [] 10 [[3,10,0]]
|
| | | 9700 0 3 [] 10 [[3,10,0]]
|
| | | 9710 0 8 [42] 1000 [[3,10,0]]
|
| | | 9720 0 1 [1908] 1 [[3,10,0]]
|
| | | 9730 0 4 [41] 35 [[3,10,0]]
|
| | | 9740 0 7 [] 10 [[3,10,0]]
|
| | | 9750 0 3 [] 10 [[3,10,0]]
|
| | | 9760 0 8 [42] 1000 [[3,10,0]]
|
| | | 9770 0 1 [1909] 1 [[3,10,0]]
|
| | | 9780 0 4 [41] 35 [[3,10,0]]
|
| | | 9790 0 7 [] 10 [[3,10,0]]
|
| | | 9800 0 3 [] 10 [[3,10,0]]
|
| | | 9810 0 8 [42] 1000 [[3,10,0]]
|
| | | 9820 0 1 [1910] 1 [[3,10,0]]
|
| | | 9830 0 4 [41] 35 [[3,10,0]]
|
| | | 9840 0 7 [] 10 [[3,10,0]]
|
| | | 9850 0 3 [] 10 [[3,10,0]]
|
| | | 9860 0 8 [42] 1000 [[3,10,0]]
|
| | | 9870 0 1 [2001] 1 [[3,10,0]]
|
| | | 9880 0 4 [41] 35 [[3,10,0]]
|
| | | 9890 0 7 [] 10 [[3,10,0]]
|
| | | 9900 0 3 [] 10 [[3,10,0]]
|
| | | 9910 0 8 [42] 1000 [[3,10,0]]
|
| | | 9920 0 1 [2002] 1 [[3,10,0]]
|
| | | 9930 0 4 [41] 35 [[3,10,0]]
|
| | | 9940 0 7 [] 10 [[3,10,0]]
|
| | | 9950 0 3 [] 10 [[3,10,0]]
|
| | | 9960 0 8 [42] 1000 [[3,10,0]]
|
| | | 9970 0 1 [2003] 1 [[3,10,0]]
|
| | | 9980 0 4 [41] 35 [[3,10,0]]
|
| | | 9990 0 7 [] 10 [[3,10,0]]
|
| | | 10000 0 3 [] 10 [[3,10,0]]
|
| | | 10010 0 8 [42] 1000 [[3,10,0]]
|
| | | 10020 0 1 [2004] 1 [[3,10,0]]
|
| | | 10030 0 4 [41] 35 [[3,10,0]]
|
| | | 10040 0 7 [] 10 [[3,10,0]]
|
| | | 10050 0 3 [] 10 [[3,10,0]]
|
| | | 10060 0 8 [42] 1000 [[3,10,0]]
|
| | | 10070 0 1 [2005] 1 [[3,10,0]]
|
| | | 10080 0 4 [41] 35 [[3,10,0]]
|
| | | 10090 0 7 [] 10 [[3,10,0]]
|
| | | 10100 0 3 [] 10 [[3,10,0]]
|
| | | 10110 0 8 [42] 1000 [[3,10,0]]
|
| | | 10120 0 1 [2006] 1 [[3,10,0]]
|
| | | 10130 0 4 [41] 35 [[3,10,0]]
|
| | | 10140 0 7 [] 10 [[3,10,0]]
|
| | | 10150 0 3 [] 10 [[3,10,0]]
|
| | | 10160 0 8 [42] 1000 [[3,10,0]]
|
| | | 10170 0 1 [2007] 1 [[3,10,0]]
|
| | | 10180 0 4 [41] 35 [[3,10,0]]
|
| | | 10190 0 7 [] 10 [[3,10,0]]
|
| | | 10200 0 3 [] 10 [[3,10,0]]
|
| | | 10210 0 8 [42] 1000 [[3,10,0]]
|
| | | 10220 0 1 [2008] 1 [[3,10,0]]
|
| | | 10230 0 4 [41] 35 [[3,10,0]]
|
| | | 10240 0 7 [] 10 [[3,10,0]]
|
| | | 10250 0 3 [] 10 [[3,10,0]]
|
| | | 10260 0 8 [42] 1000 [[3,10,0]]
|
| | | 10270 0 1 [2009] 1 [[3,10,0]]
|
| | | 10280 0 4 [41] 35 [[3,10,0]]
|
| | | 10290 0 7 [] 10 [[3,10,0]]
|
| | | 10300 0 3 [] 10 [[3,10,0]]
|
| | | 10310 0 8 [42] 1000 [[3,10,0]]
|
| | | 10320 0 1 [2010] 1 [[3,10,0]]
|
| | | 10330 0 4 [41] 35 [[3,10,0]]
|
| | | 10340 0 7 [] 10 [[3,10,0]]
|
| | | 10350 0 3 [] 10 [[3,10,0]]
|
| | | 10360 0 8 [42] 1000 [[3,10,0]]
|
| | | 10370 0 1 [2101] 1 [[3,10,0]]
|
| | | 10380 0 4 [41] 35 [[3,10,0]]
|
| | | 10390 0 7 [] 10 [[3,10,0]]
|
| | | 10400 0 3 [] 10 [[3,10,0]]
|
| | | 10410 0 8 [42] 1000 [[3,10,0]]
|
| | | 10420 0 1 [2102] 1 [[3,10,0]]
|
| | | 10430 0 4 [41] 35 [[3,10,0]]
|
| | | 10440 0 7 [] 10 [[3,10,0]]
|
| | | 10450 0 3 [] 10 [[3,10,0]]
|
| | | 10460 0 8 [42] 1000 [[3,10,0]]
|
| | | 10470 0 1 [2103] 1 [[3,10,0]]
|
| | | 10480 0 4 [41] 35 [[3,10,0]]
|
| | | 10490 0 7 [] 10 [[3,10,0]]
|
| | | 10500 0 3 [] 10 [[3,10,0]]
|
| | | 10510 0 8 [42] 1000 [[3,10,0]]
|
| | | 10520 0 1 [2104] 1 [[3,10,0]]
|
| | | 10530 0 4 [41] 35 [[3,10,0]]
|
| | | 10540 0 7 [] 10 [[3,10,0]]
|
| | | 10550 0 3 [] 10 [[3,10,0]]
|
| | | 10560 0 8 [42] 1000 [[3,10,0]]
|
| | | 10570 0 1 [2105] 1 [[3,10,0]]
|
| | | 10580 0 4 [41] 35 [[3,10,0]]
|
| | | 10590 0 7 [] 10 [[3,10,0]]
|
| | | 10600 0 3 [] 10 [[3,10,0]]
|
| | | 10610 0 8 [42] 1000 [[3,10,0]]
|
| | | 10620 0 1 [2106] 1 [[3,10,0]]
|
| | | 10630 0 4 [41] 35 [[3,10,0]]
|
| | | 10640 0 7 [] 10 [[3,10,0]]
|
| | | 10650 0 3 [] 10 [[3,10,0]]
|
| | | 10660 0 8 [42] 1000 [[3,10,0]]
|
| | | 10670 0 1 [2107] 1 [[3,10,0]]
|
| | | 10680 0 4 [41] 35 [[3,10,0]]
|
| | | 10690 0 7 [] 10 [[3,10,0]]
|
| | | 10700 0 3 [] 10 [[3,10,0]]
|
| | | 10710 0 8 [42] 1000 [[3,10,0]]
|
| | | 10720 0 1 [2108] 1 [[3,10,0]]
|
| | | 10730 0 4 [41] 35 [[3,10,0]]
|
| | | 10740 0 7 [] 10 [[3,10,0]]
|
| | | 10750 0 3 [] 10 [[3,10,0]]
|
| | | 10760 0 8 [42] 1000 [[3,10,0]]
|
| | | 10770 0 1 [2109] 1 [[3,10,0]]
|
| | | 10780 0 4 [41] 35 [[3,10,0]]
|
| | | 10790 0 7 [] 10 [[3,10,0]]
|
| | | 10800 0 3 [] 10 [[3,10,0]]
|
| | | 10810 0 8 [42] 1000 [[3,10,0]]
|
| | | 10820 0 1 [2110] 1 [[3,10,0]]
|
| | | 10830 0 4 [41] 35 [[3,10,0]]
|
| | | 10840 0 7 [] 10 [[3,10,0]]
|
| | | 10850 0 3 [] 10 [[3,10,0]]
|
| | | 10860 0 8 [42] 1000 [[3,10,0]]
|
| | | 10870 0 1 [2201] 1 [[3,10,0]]
|
| | | 10880 0 4 [41] 35 [[3,10,0]]
|
| | | 10890 0 7 [] 10 [[3,10,0]]
|
| | | 10900 0 3 [] 10 [[3,10,0]]
|
| | | 10910 0 8 [42] 1000 [[3,10,0]]
|
| | | 10920 0 1 [2202] 1 [[3,10,0]]
|
| | | 10930 0 4 [41] 35 [[3,10,0]]
|
| | | 10940 0 7 [] 10 [[3,10,0]]
|
| | | 10950 0 3 [] 10 [[3,10,0]]
|
| | | 10960 0 8 [42] 1000 [[3,10,0]]
|
| | | 10970 0 1 [2203] 1 [[3,10,0]]
|
| | | 10980 0 4 [41] 35 [[3,10,0]]
|
| | | 10990 0 7 [] 10 [[3,10,0]]
|
| | | 11000 0 3 [] 10 [[3,10,0]]
|
| | | 11010 0 8 [42] 1000 [[3,10,0]]
|
| | | 11020 0 1 [2204] 1 [[3,10,0]]
|
| | | 11030 0 4 [41] 35 [[3,10,0]]
|
| | | 11040 0 7 [] 10 [[3,10,0]]
|
| | | 11050 0 3 [] 10 [[3,10,0]]
|
| | | 11060 0 8 [42] 1000 [[3,10,0]]
|
| | | 11070 0 1 [2205] 1 [[3,10,0]]
|
| | | 11080 0 4 [41] 35 [[3,10,0]]
|
| | | 11090 0 7 [] 10 [[3,10,0]]
|
| | | 11100 0 3 [] 10 [[3,10,0]]
|
| | | 11110 0 8 [42] 1000 [[3,10,0]]
|
| | | 11120 0 1 [2206] 1 [[3,10,0]]
|
| | | 11130 0 4 [41] 35 [[3,10,0]]
|
| | | 11140 0 7 [] 10 [[3,10,0]]
|
| | | 11150 0 3 [] 10 [[3,10,0]]
|
| | | 11160 0 8 [42] 1000 [[3,10,0]]
|
| | | 11170 0 1 [2207] 1 [[3,10,0]]
|
| | | 11180 0 4 [41] 35 [[3,10,0]]
|
| | | 11190 0 7 [] 10 [[3,10,0]]
|
| | | 11200 0 3 [] 10 [[3,10,0]]
|
| | | 11210 0 8 [42] 1000 [[3,10,0]]
|
| | | 11220 0 1 [2208] 1 [[3,10,0]]
|
| | | 11230 0 4 [41] 35 [[3,10,0]]
|
| | | 11240 0 7 [] 10 [[3,10,0]]
|
| | | 11250 0 3 [] 10 [[3,10,0]]
|
| | | 11260 0 8 [42] 1000 [[3,10,0]]
|
| | | 11270 0 1 [2209] 1 [[3,10,0]]
|
| | | 11280 0 4 [41] 35 [[3,10,0]]
|
| | | 11290 0 7 [] 10 [[3,10,0]]
|
| | | 11300 0 3 [] 10 [[3,10,0]]
|
| | | 11310 0 8 [42] 1000 [[3,10,0]]
|
| | | 11320 0 1 [2210] 1 [[3,10,0]]
|
| | | 11330 0 4 [41] 35 [[3,10,0]]
|
| | | 11340 0 7 [] 10 [[3,10,0]]
|
| | | 11350 0 3 [] 10 [[3,10,0]]
|
| | | 11360 0 8 [42] 1000 [[3,10,0]]
|
| | | 11370 0 1 [2301] 1 [[3,10,0]]
|
| | | 11380 0 4 [41] 35 [[3,10,0]]
|
| | | 11390 0 7 [] 10 [[3,10,0]]
|
| | | 11400 0 3 [] 10 [[3,10,0]]
|
| | | 11410 0 8 [42] 1000 [[3,10,0]]
|
| | | 11420 0 1 [2302] 1 [[3,10,0]]
|
| | | 11430 0 4 [41] 35 [[3,10,0]]
|
| | | 11440 0 7 [] 10 [[3,10,0]]
|
| | | 11450 0 3 [] 10 [[3,10,0]]
|
| | | 11460 0 8 [42] 1000 [[3,10,0]]
|
| | | 11470 0 1 [2303] 1 [[3,10,0]]
|
| | | 11480 0 4 [41] 35 [[3,10,0]]
|
| | | 11490 0 7 [] 10 [[3,10,0]]
|
| | | 11500 0 3 [] 10 [[3,10,0]]
|
| | | 11510 0 8 [42] 1000 [[3,10,0]]
|
| | | 11520 0 1 [2304] 1 [[3,10,0]]
|
| | | 11530 0 4 [41] 35 [[3,10,0]]
|
| | | 11540 0 7 [] 10 [[3,10,0]]
|
| | | 11550 0 3 [] 10 [[3,10,0]]
|
| | | 11560 0 8 [42] 1000 [[3,10,0]]
|
| | | 11570 0 1 [2305] 1 [[3,10,0]]
|
| | | 11580 0 4 [41] 35 [[3,10,0]]
|
| | | 11590 0 7 [] 10 [[3,10,0]]
|
| | | 11600 0 3 [] 10 [[3,10,0]]
|
| | | 11610 0 8 [42] 1000 [[3,10,0]]
|
| | | 11620 0 1 [2306] 1 [[3,10,0]]
|
| | | 11630 0 4 [41] 35 [[3,10,0]]
|
| | | 11640 0 7 [] 10 [[3,10,0]]
|
| | | 11650 0 3 [] 10 [[3,10,0]]
|
| | | 11660 0 8 [42] 1000 [[3,10,0]]
|
| | | 11670 0 1 [2307] 1 [[3,10,0]]
|
| | | 11680 0 4 [41] 35 [[3,10,0]]
|
| | | 11690 0 7 [] 10 [[3,10,0]]
|
| | | 11700 0 3 [] 10 [[3,10,0]]
|
| | | 11710 0 8 [42] 1000 [[3,10,0]]
|
| | | 11720 0 1 [2308] 1 [[3,10,0]]
|
| | | 11730 0 4 [41] 35 [[3,10,0]]
|
| | | 11740 0 7 [] 10 [[3,10,0]]
|
| | | 11750 0 3 [] 10 [[3,10,0]]
|
| | | 11760 0 8 [42] 1000 [[3,10,0]]
|
| | | 11770 0 1 [2309] 1 [[3,10,0]]
|
| | | 11780 0 4 [41] 35 [[3,10,0]]
|
| | | 11790 0 7 [] 10 [[3,10,0]]
|
| | | 11800 0 3 [] 10 [[3,10,0]]
|
| | | 11810 0 8 [42] 1000 [[3,10,0]]
|
| | | 11820 0 1 [2310] 1 [[3,10,0]]
|
| | | 11830 0 4 [41] 35 [[3,10,0]]
|
| | | 11840 0 7 [] 10 [[3,10,0]]
|
| | | 11850 0 3 [] 10 [[3,10,0]]
|
| | | 11860 0 8 [42] 1000 [[3,10,0]]
|
| | | 11870 0 1 [2401] 1 [[3,10,0]]
|
| | | 11880 0 4 [41] 35 [[3,10,0]]
|
| | | 11890 0 7 [] 10 [[3,10,0]]
|
| | | 11900 0 3 [] 10 [[3,10,0]]
|
| | | 11910 0 8 [42] 1000 [[3,10,0]]
|
| | | 11920 0 1 [2402] 1 [[3,10,0]]
|
| | | 11930 0 4 [41] 35 [[3,10,0]]
|
| | | 11940 0 7 [] 10 [[3,10,0]]
|
| | | 11950 0 3 [] 10 [[3,10,0]]
|
| | | 11960 0 8 [42] 1000 [[3,10,0]]
|
| | | 11970 0 1 [2403] 1 [[3,10,0]]
|
| | | 11980 0 4 [41] 35 [[3,10,0]]
|
| | | 11990 0 7 [] 10 [[3,10,0]]
|
| | | 12000 0 3 [] 10 [[3,10,0]]
|
| | | 12010 0 8 [42] 1000 [[3,10,0]]
|
| | | 12020 0 1 [2404] 1 [[3,10,0]]
|
| | | 12030 0 4 [41] 35 [[3,10,0]]
|
| | | 12040 0 7 [] 10 [[3,10,0]]
|
| | | 12050 0 3 [] 10 [[3,10,0]]
|
| | | 12060 0 8 [42] 1000 [[3,10,0]]
|
| | | 12070 0 1 [2405] 1 [[3,10,0]]
|
| | | 12080 0 4 [41] 35 [[3,10,0]]
|
| | | 12090 0 7 [] 10 [[3,10,0]]
|
| | | 12100 0 3 [] 10 [[3,10,0]]
|
| | | 12110 0 8 [42] 1000 [[3,10,0]]
|
| | | 12120 0 1 [2406] 1 [[3,10,0]]
|
| | | 12130 0 4 [41] 35 [[3,10,0]]
|
| | | 12140 0 7 [] 10 [[3,10,0]]
|
| | | 12150 0 3 [] 10 [[3,10,0]]
|
| | | 12160 0 8 [42] 1000 [[3,10,0]]
|
| | | 12170 0 1 [2407] 1 [[3,10,0]]
|
| | | 12180 0 4 [41] 35 [[3,10,0]]
|
| | | 12190 0 7 [] 10 [[3,10,0]]
|
| | | 12200 0 3 [] 10 [[3,10,0]]
|
| | | 12210 0 8 [42] 1000 [[3,10,0]]
|
| | | 12220 0 1 [2408] 1 [[3,10,0]]
|
| | | 12230 0 4 [41] 35 [[3,10,0]]
|
| | | 12240 0 7 [] 10 [[3,10,0]]
|
| | | 12250 0 3 [] 10 [[3,10,0]]
|
| | | 12260 0 8 [42] 1000 [[3,10,0]]
|
| | | 12270 0 1 [2409] 1 [[3,10,0]]
|
| | | 12280 0 4 [41] 35 [[3,10,0]]
|
| | | 12290 0 7 [] 10 [[3,10,0]]
|
| | | 12300 0 3 [] 10 [[3,10,0]]
|
| | | 12310 0 8 [42] 1000 [[3,10,0]]
|
| | | 12320 0 1 [2410] 1 [[3,10,0]]
|
| | | 12330 0 4 [41] 35 [[3,10,0]]
|
| | | 12340 0 7 [] 10 [[3,10,0]]
|
| | | 12350 0 3 [] 10 [[3,10,0]]
|
| | | 12360 0 8 [42] 1000 [[3,10,0]]
|
| | | 12370 0 1 [2501] 1 [[3,10,0]]
|
| | | 12380 0 4 [41] 35 [[3,10,0]]
|
| | | 12390 0 7 [] 10 [[3,10,0]]
|
| | | 12400 0 3 [] 10 [[3,10,0]]
|
| | | 12410 0 8 [42] 1000 [[3,10,0]]
|
| | | 12420 0 1 [2502] 1 [[3,10,0]]
|
| | | 12430 0 4 [41] 35 [[3,10,0]]
|
| | | 12440 0 7 [] 10 [[3,10,0]]
|
| | | 12450 0 3 [] 10 [[3,10,0]]
|
| | | 12460 0 8 [42] 1000 [[3,10,0]]
|
| | | 12470 0 1 [2503] 1 [[3,10,0]]
|
| | | 12480 0 4 [41] 35 [[3,10,0]]
|
| | | 12490 0 7 [] 10 [[3,10,0]]
|
| | | 12500 0 3 [] 10 [[3,10,0]]
|
| | | 12510 0 8 [42] 1000 [[3,10,0]]
|
| | | 12520 0 1 [2504] 1 [[3,10,0]]
|
| | | 12530 0 4 [41] 35 [[3,10,0]]
|
| | | 12540 0 7 [] 10 [[3,10,0]]
|
| | | 12550 0 3 [] 10 [[3,10,0]]
|
| | | 12560 0 8 [42] 1000 [[3,10,0]]
|
| | | 12570 0 1 [2505] 1 [[3,10,0]]
|
| | | 12580 0 4 [41] 35 [[3,10,0]]
|
| | | 12590 0 7 [] 10 [[3,10,0]]
|
| | | 12600 0 3 [] 10 [[3,10,0]]
|
| | | 12610 0 8 [42] 1000 [[3,10,0]]
|
| | | 12620 0 1 [2506] 1 [[3,10,0]]
|
| | | 12630 0 4 [41] 35 [[3,10,0]]
|
| | | 12640 0 7 [] 10 [[3,10,0]]
|
| | | 12650 0 3 [] 10 [[3,10,0]]
|
| | | 12660 0 8 [42] 1000 [[3,10,0]]
|
| | | 12670 0 1 [2507] 1 [[3,10,0]]
|
| | | 12680 0 4 [41] 35 [[3,10,0]]
|
| | | 12690 0 7 [] 10 [[3,10,0]]
|
| | | 12700 0 3 [] 10 [[3,10,0]]
|
| | | 12710 0 8 [42] 1000 [[3,10,0]]
|
| | | 12720 0 1 [2508] 1 [[3,10,0]]
|
| | | 12730 0 4 [41] 35 [[3,10,0]]
|
| | | 12740 0 7 [] 10 [[3,10,0]]
|
| | | 12750 0 3 [] 10 [[3,10,0]]
|
| | | 12760 0 8 [42] 1000 [[3,10,0]]
|
| | | 12770 0 1 [2509] 1 [[3,10,0]]
|
| | | 12780 0 4 [41] 35 [[3,10,0]]
|
| | | 12790 0 7 [] 10 [[3,10,0]]
|
| | | 12800 0 3 [] 10 [[3,10,0]]
|
| | | 12810 0 8 [42] 1000 [[3,10,0]]
|
| | | 12820 0 1 [2510] 1 [[3,10,0]]
|
| | | 12830 0 4 [41] 35 [[3,10,0]]
|
| | | 12840 0 7 [] 10 [[3,10,0]]
|
| | | 12850 0 3 [] 10 [[3,10,0]]
|
| | | 12860 0 8 [42] 1000 [[3,10,0]]
|
| | | 12870 0 1 [2601] 1 [[3,10,0]]
|
| | | 12880 0 4 [41] 35 [[3,10,0]]
|
| | | 12890 0 7 [] 10 [[3,10,0]]
|
| | | 12900 0 3 [] 10 [[3,10,0]]
|
| | | 12910 0 8 [42] 1000 [[3,10,0]]
|
| | | 12920 0 1 [2602] 1 [[3,10,0]]
|
| | | 12930 0 4 [41] 35 [[3,10,0]]
|
| | | 12940 0 7 [] 10 [[3,10,0]]
|
| | | 12950 0 3 [] 10 [[3,10,0]]
|
| | | 12960 0 8 [42] 1000 [[3,10,0]]
|
| | | 12970 0 1 [2603] 1 [[3,10,0]]
|
| | | 12980 0 4 [41] 35 [[3,10,0]]
|
| | | 12990 0 7 [] 10 [[3,10,0]]
|
| | | 13000 0 3 [] 10 [[3,10,0]]
|
| | | 13010 0 8 [42] 1000 [[3,10,0]]
|
| | | 13020 0 1 [2604] 1 [[3,10,0]]
|
| | | 13030 0 4 [41] 35 [[3,10,0]]
|
| | | 13040 0 7 [] 10 [[3,10,0]]
|
| | | 13050 0 3 [] 10 [[3,10,0]]
|
| | | 13060 0 8 [42] 1000 [[3,10,0]]
|
| | | 13070 0 1 [2605] 1 [[3,10,0]]
|
| | | 13080 0 4 [41] 35 [[3,10,0]]
|
| | | 13090 0 7 [] 10 [[3,10,0]]
|
| | | 13100 0 3 [] 10 [[3,10,0]]
|
| | | 13110 0 8 [42] 1000 [[3,10,0]]
|
| | | 13120 0 1 [2606] 1 [[3,10,0]]
|
| | | 13130 0 4 [41] 35 [[3,10,0]]
|
| | | 13140 0 7 [] 10 [[3,10,0]]
|
| | | 13150 0 3 [] 10 [[3,10,0]]
|
| | | 13160 0 8 [42] 1000 [[3,10,0]]
|
| | | 13170 0 1 [2607] 1 [[3,10,0]]
|
| | | 13180 0 4 [41] 35 [[3,10,0]]
|
| | | 13190 0 7 [] 10 [[3,10,0]]
|
| | | 13200 0 3 [] 10 [[3,10,0]]
|
| | | 13210 0 8 [42] 1000 [[3,10,0]]
|
| | | 13220 0 1 [2608] 1 [[3,10,0]]
|
| | | 13230 0 4 [41] 35 [[3,10,0]]
|
| | | 13240 0 7 [] 10 [[3,10,0]]
|
| | | 13250 0 3 [] 10 [[3,10,0]]
|
| | | 13260 0 8 [42] 1000 [[3,10,0]]
|
| | | 13270 0 1 [2609] 1 [[3,10,0]]
|
| | | 13280 0 4 [41] 35 [[3,10,0]]
|
| | | 13290 0 7 [] 10 [[3,10,0]]
|
| | | 13300 0 3 [] 10 [[3,10,0]]
|
| | | 13310 0 8 [42] 1000 [[3,10,0]]
|
| | | 13320 0 1 [2610] 1 [[3,10,0]]
|
| | | 13330 0 4 [41] 35 [[3,10,0]]
|
| | | 13340 0 7 [] 10 [[3,10,0]]
|
| | | 13350 0 3 [] 10 [[3,10,0]]
|
| | | 13360 0 8 [42] 1000 [[3,10,0]]
|
| | | 13370 0 1 [2701] 1 [[3,10,0]]
|
| | | 13380 0 4 [41] 35 [[3,10,0]]
|
| | | 13390 0 7 [] 10 [[3,10,0]]
|
| | | 13400 0 3 [] 10 [[3,10,0]]
|
| | | 13410 0 8 [42] 1000 [[3,10,0]]
|
| | | 13420 0 1 [2702] 1 [[3,10,0]]
|
| | | 13430 0 4 [41] 35 [[3,10,0]]
|
| | | 13440 0 7 [] 10 [[3,10,0]]
|
| | | 13450 0 3 [] 10 [[3,10,0]]
|
| | | 13460 0 8 [42] 1000 [[3,10,0]]
|
| | | 13470 0 1 [2703] 1 [[3,10,0]]
|
| | | 13480 0 4 [41] 35 [[3,10,0]]
|
| | | 13490 0 7 [] 10 [[3,10,0]]
|
| | | 13500 0 3 [] 10 [[3,10,0]]
|
| | | 13510 0 8 [42] 1000 [[3,10,0]]
|
| | | 13520 0 1 [2704] 1 [[3,10,0]]
|
| | | 13530 0 4 [41] 35 [[3,10,0]]
|
| | | 13540 0 7 [] 10 [[3,10,0]]
|
| | | 13550 0 3 [] 10 [[3,10,0]]
|
| | | 13560 0 8 [42] 1000 [[3,10,0]]
|
| | | 13570 0 1 [2705] 1 [[3,10,0]]
|
| | | 13580 0 4 [41] 35 [[3,10,0]]
|
| | | 13590 0 7 [] 10 [[3,10,0]]
|
| | | 13600 0 3 [] 10 [[3,10,0]]
|
| | | 13610 0 8 [42] 1000 [[3,10,0]]
|
| | | 13620 0 1 [2706] 1 [[3,10,0]]
|
| | | 13630 0 4 [41] 35 [[3,10,0]]
|
| | | 13640 0 7 [] 10 [[3,10,0]]
|
| | | 13650 0 3 [] 10 [[3,10,0]]
|
| | | 13660 0 8 [42] 1000 [[3,10,0]]
|
| | | 13670 0 1 [2707] 1 [[3,10,0]]
|
| | | 13680 0 4 [41] 35 [[3,10,0]]
|
| | | 13690 0 7 [] 10 [[3,10,0]]
|
| | | 13700 0 3 [] 10 [[3,10,0]]
|
| | | 13710 0 8 [42] 1000 [[3,10,0]]
|
| | | 13720 0 1 [2708] 1 [[3,10,0]]
|
| | | 13730 0 4 [41] 35 [[3,10,0]]
|
| | | 13740 0 7 [] 10 [[3,10,0]]
|
| | | 13750 0 3 [] 10 [[3,10,0]]
|
| | | 13760 0 8 [42] 1000 [[3,10,0]]
|
| | | 13770 0 1 [2709] 1 [[3,10,0]]
|
| | | 13780 0 4 [41] 35 [[3,10,0]]
|
| | | 13790 0 7 [] 10 [[3,10,0]]
|
| | | 13800 0 3 [] 10 [[3,10,0]]
|
| | | 13810 0 8 [42] 1000 [[3,10,0]]
|
| | | 13820 0 1 [2710] 1 [[3,10,0]]
|
| | | 13830 0 4 [41] 35 [[3,10,0]]
|
| | | 13840 0 7 [] 10 [[3,10,0]]
|
| | | 13850 0 3 [] 10 [[3,10,0]]
|
| | | 13860 0 8 [42] 1000 [[3,10,0]]
|
| | | 13870 0 1 [2801] 1 [[3,10,0]]
|
| | | 13880 0 4 [41] 35 [[3,10,0]]
|
| | | 13890 0 7 [] 10 [[3,10,0]]
|
| | | 13900 0 3 [] 10 [[3,10,0]]
|
| | | 13910 0 8 [42] 1000 [[3,10,0]]
|
| | | 13920 0 1 [2802] 1 [[3,10,0]]
|
| | | 13930 0 4 [41] 35 [[3,10,0]]
|
| | | 13940 0 7 [] 10 [[3,10,0]]
|
| | | 13950 0 3 [] 10 [[3,10,0]]
|
| | | 13960 0 8 [42] 1000 [[3,10,0]]
|
| | | 13970 0 1 [2803] 1 [[3,10,0]]
|
| | | 13980 0 4 [41] 35 [[3,10,0]]
|
| | | 13990 0 7 [] 10 [[3,10,0]]
|
| | | 14000 0 3 [] 10 [[3,10,0]]
|
| | | 14010 0 8 [42] 1000 [[3,10,0]]
|
| | | 14020 0 1 [2804] 1 [[3,10,0]]
|
| | | 14030 0 4 [41] 35 [[3,10,0]]
|
| | | 14040 0 7 [] 10 [[3,10,0]]
|
| | | 14050 0 3 [] 10 [[3,10,0]]
|
| | | 14060 0 8 [42] 1000 [[3,10,0]]
|
| | | 14070 0 1 [2805] 1 [[3,10,0]]
|
| | | 14080 0 4 [41] 35 [[3,10,0]]
|
| | | 14090 0 7 [] 10 [[3,10,0]]
|
| | | 14100 0 3 [] 10 [[3,10,0]]
|
| | | 14110 0 8 [42] 1000 [[3,10,0]]
|
| | | 14120 0 1 [2806] 1 [[3,10,0]]
|
| | | 14130 0 4 [41] 35 [[3,10,0]]
|
| | | 14140 0 7 [] 10 [[3,10,0]]
|
| | | 14150 0 3 [] 10 [[3,10,0]]
|
| | | 14160 0 8 [42] 1000 [[3,10,0]]
|
| | | 14170 0 1 [2807] 1 [[3,10,0]]
|
| | | 14180 0 4 [41] 35 [[3,10,0]]
|
| | | 14190 0 7 [] 10 [[3,10,0]]
|
| | | 14200 0 3 [] 10 [[3,10,0]]
|
| | | 14210 0 8 [42] 1000 [[3,10,0]]
|
| | | 14220 0 1 [2808] 1 [[3,10,0]]
|
| | | 14230 0 4 [41] 35 [[3,10,0]]
|
| | | 14240 0 7 [] 10 [[3,10,0]]
|
| | | 14250 0 3 [] 10 [[3,10,0]]
|
| | | 14260 0 8 [42] 1000 [[3,10,0]]
|
| | | 14270 0 1 [2809] 1 [[3,10,0]]
|
| | | 14280 0 4 [41] 35 [[3,10,0]]
|
| | | 14290 0 7 [] 10 [[3,10,0]]
|
| | | 14300 0 3 [] 10 [[3,10,0]]
|
| | | 14310 0 8 [42] 1000 [[3,10,0]]
|
| | | 14320 0 1 [2810] 1 [[3,10,0]]
|
| | | 14330 0 4 [41] 35 [[3,10,0]]
|
| | | 14340 0 7 [] 10 [[3,10,0]]
|
| | | 14350 0 3 [] 10 [[3,10,0]]
|
| | | 14360 0 8 [42] 1000 [[3,10,0]]
|
| | | 14370 0 1 [2901] 1 [[3,10,0]]
|
| | | 14380 0 4 [41] 35 [[3,10,0]]
|
| | | 14390 0 7 [] 10 [[3,10,0]]
|
| | | 14400 0 3 [] 10 [[3,10,0]]
|
| | | 14410 0 8 [42] 1000 [[3,10,0]]
|
| | | 14420 0 1 [2902] 1 [[3,10,0]]
|
| | | 14430 0 4 [41] 35 [[3,10,0]]
|
| | | 14440 0 7 [] 10 [[3,10,0]]
|
| | | 14450 0 3 [] 10 [[3,10,0]]
|
| | | 14460 0 8 [42] 1000 [[3,10,0]]
|
| | | 14470 0 1 [2903] 1 [[3,10,0]]
|
| | | 14480 0 4 [41] 35 [[3,10,0]]
|
| | | 14490 0 7 [] 10 [[3,10,0]]
|
| | | 14500 0 3 [] 10 [[3,10,0]]
|
| | | 14510 0 8 [42] 1000 [[3,10,0]]
|
| | | 14520 0 1 [2904] 1 [[3,10,0]]
|
| | | 14530 0 4 [41] 35 [[3,10,0]]
|
| | | 14540 0 7 [] 10 [[3,10,0]]
|
| | | 14550 0 3 [] 10 [[3,10,0]]
|
| | | 14560 0 8 [42] 1000 [[3,10,0]]
|
| | | 14570 0 1 [2905] 1 [[3,10,0]]
|
| | | 14580 0 4 [41] 35 [[3,10,0]]
|
| | | 14590 0 7 [] 10 [[3,10,0]]
|
| | | 14600 0 3 [] 10 [[3,10,0]]
|
| | | 14610 0 8 [42] 1000 [[3,10,0]]
|
| | | 14620 0 1 [2906] 1 [[3,10,0]]
|
| | | 14630 0 4 [41] 35 [[3,10,0]]
|
| | | 14640 0 7 [] 10 [[3,10,0]]
|
| | | 14650 0 3 [] 10 [[3,10,0]]
|
| | | 14660 0 8 [42] 1000 [[3,10,0]]
|
| | | 14670 0 1 [2907] 1 [[3,10,0]]
|
| | | 14680 0 4 [41] 35 [[3,10,0]]
|
| | | 14690 0 7 [] 10 [[3,10,0]]
|
| | | 14700 0 3 [] 10 [[3,10,0]]
|
| | | 14710 0 8 [42] 1000 [[3,10,0]]
|
| | | 14720 0 1 [2908] 1 [[3,10,0]]
|
| | | 14730 0 4 [41] 35 [[3,10,0]]
|
| | | 14740 0 7 [] 10 [[3,10,0]]
|
| | | 14750 0 3 [] 10 [[3,10,0]]
|
| | | 14760 0 8 [42] 1000 [[3,10,0]]
|
| | | 14770 0 1 [2909] 1 [[3,10,0]]
|
| | | 14780 0 4 [41] 35 [[3,10,0]]
|
| | | 14790 0 7 [] 10 [[3,10,0]]
|
| | | 14800 0 3 [] 10 [[3,10,0]]
|
| | | 14810 0 8 [42] 1000 [[3,10,0]]
|
| | | 14820 0 1 [2910] 1 [[3,10,0]]
|
| | | 14830 0 4 [41] 35 [[3,10,0]]
|
| | | 14840 0 7 [] 10 [[3,10,0]]
|
| | | 14850 0 3 [] 10 [[3,10,0]]
|
| | | 14860 0 8 [42] 1000 [[3,10,0]]
|
| | | 14870 0 1 [3001] 1 [[3,10,0]]
|
| | | 14880 0 4 [41] 35 [[3,10,0]]
|
| | | 14890 0 7 [] 10 [[3,10,0]]
|
| | | 14900 0 3 [] 10 [[3,10,0]]
|
| | | 14910 0 8 [42] 1000 [[3,10,0]]
|
| | | 14920 0 1 [3002] 1 [[3,10,0]]
|
| | | 14930 0 4 [41] 35 [[3,10,0]]
|
| | | 14940 0 7 [] 10 [[3,10,0]]
|
| | | 14950 0 3 [] 10 [[3,10,0]]
|
| | | 14960 0 8 [42] 1000 [[3,10,0]]
|
| | | 14970 0 1 [3003] 1 [[3,10,0]]
|
| | | 14980 0 4 [41] 35 [[3,10,0]]
|
| | | 14990 0 7 [] 10 [[3,10,0]]
|
| | | 15000 0 3 [] 10 [[3,10,0]]
|
| | | 15010 0 8 [42] 1000 [[3,10,0]]
|
| | | 15020 0 1 [3004] 1 [[3,10,0]]
|
| | | 15030 0 4 [41] 35 [[3,10,0]]
|
| | | 15040 0 7 [] 10 [[3,10,0]]
|
| | | 15050 0 3 [] 10 [[3,10,0]]
|
| | | 15060 0 8 [42] 1000 [[3,10,0]]
|
| | | 15070 0 1 [3005] 1 [[3,10,0]]
|
| | | 15080 0 4 [41] 35 [[3,10,0]]
|
| | | 15090 0 7 [] 10 [[3,10,0]]
|
| | | 15100 0 3 [] 10 [[3,10,0]]
|
| | | 15110 0 8 [42] 1000 [[3,10,0]]
|
| | | 15120 0 1 [3006] 1 [[3,10,0]]
|
| | | 15130 0 4 [41] 35 [[3,10,0]]
|
| | | 15140 0 7 [] 10 [[3,10,0]]
|
| | | 15150 0 3 [] 10 [[3,10,0]]
|
| | | 15160 0 8 [42] 1000 [[3,10,0]]
|
| | | 15170 0 1 [3007] 1 [[3,10,0]]
|
| | | 15180 0 4 [41] 35 [[3,10,0]]
|
| | | 15190 0 7 [] 10 [[3,10,0]]
|
| | | 15200 0 3 [] 10 [[3,10,0]]
|
| | | 15210 0 8 [42] 1000 [[3,10,0]]
|
| | | 15220 0 1 [3008] 1 [[3,10,0]]
|
| | | 15230 0 4 [41] 35 [[3,10,0]]
|
| | | 15240 0 7 [] 10 [[3,10,0]]
|
| | | 15250 0 3 [] 10 [[3,10,0]]
|
| | | 15260 0 8 [42] 1000 [[3,10,0]]
|
| | | 15270 0 1 [3009] 1 [[3,10,0]]
|
| | | 15280 0 4 [41] 35 [[3,10,0]]
|
| | | 15290 0 7 [] 10 [[3,10,0]]
|
| | | 15300 0 3 [] 10 [[3,10,0]]
|
| | | 15310 0 8 [42] 1000 [[3,10,0]]
|
| | | 15320 0 1 [3010] 1 [[3,10,0]]
|
| | | 15330 0 4 [41] 35 [[3,10,0]]
|
| | | 15340 0 7 [] 10 [[3,10,0]]
|
| | | 15350 0 3 [] 10 [[3,10,0]]
|
| | | 15360 0 8 [42] 1000 [[3,10,0]]
|
| | | 15370 0 1 [3101] 1 [[3,10,0]]
|
| | | 15380 0 4 [41] 35 [[3,10,0]]
|
| | | 15390 0 7 [] 10 [[3,10,0]]
|
| | | 15400 0 3 [] 10 [[3,10,0]]
|
| | | 15410 0 8 [42] 1000 [[3,10,0]]
|
| | | 15420 0 1 [3102] 1 [[3,10,0]]
|
| | | 15430 0 4 [41] 35 [[3,10,0]]
|
| | | 15440 0 7 [] 10 [[3,10,0]]
|
| | | 15450 0 3 [] 10 [[3,10,0]]
|
| | | 15460 0 8 [42] 1000 [[3,10,0]]
|
| | | 15470 0 1 [3103] 1 [[3,10,0]]
|
| | | 15480 0 4 [41] 35 [[3,10,0]]
|
| | | 15490 0 7 [] 10 [[3,10,0]]
|
| | | 15500 0 3 [] 10 [[3,10,0]]
|
| | | 15510 0 8 [42] 1000 [[3,10,0]]
|
| | | 15520 0 1 [3104] 1 [[3,10,0]]
|
| | | 15530 0 4 [41] 35 [[3,10,0]]
|
| | | 15540 0 7 [] 10 [[3,10,0]]
|
| | | 15550 0 3 [] 10 [[3,10,0]]
|
| | | 15560 0 8 [42] 1000 [[3,10,0]]
|
| | | 15570 0 1 [3105] 1 [[3,10,0]]
|
| | | 15580 0 4 [41] 35 [[3,10,0]]
|
| | | 15590 0 7 [] 10 [[3,10,0]]
|
| | | 15600 0 3 [] 10 [[3,10,0]]
|
| | | 15610 0 8 [42] 1000 [[3,10,0]]
|
| | | 15620 0 1 [3106] 1 [[3,10,0]]
|
| | | 15630 0 4 [41] 35 [[3,10,0]]
|
| | | 15640 0 7 [] 10 [[3,10,0]]
|
| | | 15650 0 3 [] 10 [[3,10,0]]
|
| | | 15660 0 8 [42] 1000 [[3,10,0]]
|
| | | 15670 0 1 [3107] 1 [[3,10,0]]
|
| | | 15680 0 4 [41] 35 [[3,10,0]]
|
| | | 15690 0 7 [] 10 [[3,10,0]]
|
| | | 15700 0 3 [] 10 [[3,10,0]]
|
| | | 15710 0 8 [42] 1000 [[3,10,0]]
|
| | | 15720 0 1 [3108] 1 [[3,10,0]]
|
| | | 15730 0 4 [41] 35 [[3,10,0]]
|
| | | 15740 0 7 [] 10 [[3,10,0]]
|
| | | 15750 0 3 [] 10 [[3,10,0]]
|
| | | 15760 0 8 [42] 1000 [[3,10,0]]
|
| | | 15770 0 1 [3109] 1 [[3,10,0]]
|
| | | 15780 0 4 [41] 35 [[3,10,0]]
|
| | | 15790 0 7 [] 10 [[3,10,0]]
|
| | | 15800 0 3 [] 10 [[3,10,0]]
|
| | | 15810 0 8 [42] 1000 [[3,10,0]]
|
| | | 15820 0 1 [3110] 1 [[3,10,0]]
|
| | | 15830 0 4 [41] 35 [[3,10,0]]
|
| | | 15840 0 7 [] 10 [[3,10,0]]
|
| | | 15850 0 3 [] 10 [[3,10,0]]
|
| | | 15860 0 8 [42] 1000 [[3,10,0]]
|
| | | 15870 0 1 [3201] 1 [[3,10,0]]
|
| | | 15880 0 4 [41] 35 [[3,10,0]]
|
| | | 15890 0 7 [] 10 [[3,10,0]]
|
| | | 15900 0 3 [] 10 [[3,10,0]]
|
| | | 15910 0 8 [42] 1000 [[3,10,0]]
|
| | | 15920 0 1 [3202] 1 [[3,10,0]]
|
| | | 15930 0 4 [41] 35 [[3,10,0]]
|
| | | 15940 0 7 [] 10 [[3,10,0]]
|
| | | 15950 0 3 [] 10 [[3,10,0]]
|
| | | 15960 0 8 [42] 1000 [[3,10,0]]
|
| | | 15970 0 1 [3203] 1 [[3,10,0]]
|
| | | 15980 0 4 [41] 35 [[3,10,0]]
|
| | | 15990 0 7 [] 10 [[3,10,0]]
|
| | | 16000 0 3 [] 10 [[3,10,0]]
|
| | | 16010 0 8 [42] 1000 [[3,10,0]]
|
| | | 16020 0 1 [3204] 1 [[3,10,0]]
|
| | | 16030 0 4 [41] 35 [[3,10,0]]
|
| | | 16040 0 7 [] 10 [[3,10,0]]
|
| | | 16050 0 3 [] 10 [[3,10,0]]
|
| | | 16060 0 8 [42] 1000 [[3,10,0]]
|
| | | 16070 0 1 [3205] 1 [[3,10,0]]
|
| | | 16080 0 4 [41] 35 [[3,10,0]]
|
| | | 16090 0 7 [] 10 [[3,10,0]]
|
| | | 16100 0 3 [] 10 [[3,10,0]]
|
| | | 16110 0 8 [42] 1000 [[3,10,0]]
|
| | | 16120 0 1 [3206] 1 [[3,10,0]]
|
| | | 16130 0 4 [41] 35 [[3,10,0]]
|
| | | 16140 0 7 [] 10 [[3,10,0]]
|
| | | 16150 0 3 [] 10 [[3,10,0]]
|
| | | 16160 0 8 [42] 1000 [[3,10,0]]
|
| | | 16170 0 1 [3207] 1 [[3,10,0]]
|
| | | 16180 0 4 [41] 35 [[3,10,0]]
|
| | | 16190 0 7 [] 10 [[3,10,0]]
|
| | | 16200 0 3 [] 10 [[3,10,0]]
|
| | | 16210 0 8 [42] 1000 [[3,10,0]]
|
| | | 16220 0 1 [3208] 1 [[3,10,0]]
|
| | | 16230 0 4 [41] 35 [[3,10,0]]
|
| | | 16240 0 7 [] 10 [[3,10,0]]
|
| | | 16250 0 3 [] 10 [[3,10,0]]
|
| | | 16260 0 8 [42] 1000 [[3,10,0]]
|
| | | 16270 0 1 [3209] 1 [[3,10,0]]
|
| | | 16280 0 4 [41] 35 [[3,10,0]]
|
| | | 16290 0 7 [] 10 [[3,10,0]]
|
| | | 16300 0 3 [] 10 [[3,10,0]]
|
| | | 16310 0 8 [42] 1000 [[3,10,0]]
|
| | | 16320 0 1 [3210] 1 [[3,10,0]]
|
| | | 16330 0 4 [41] 35 [[3,10,0]]
|
| | | 16340 0 7 [] 10 [[3,10,0]]
|
| | | 16350 0 3 [] 10 [[3,10,0]]
|
| | | 16360 0 8 [42] 1000 [[3,10,0]]
|
| | | 16370 0 1 [3301] 1 [[3,10,0]]
|
| | | 16380 0 4 [41] 35 [[3,10,0]]
|
| | | 16390 0 7 [] 10 [[3,10,0]]
|
| | | 16400 0 3 [] 10 [[3,10,0]]
|
| | | 16410 0 8 [42] 1000 [[3,10,0]]
|
| | | 16420 0 1 [3302] 1 [[3,10,0]]
|
| | | 16430 0 4 [41] 35 [[3,10,0]]
|
| | | 16440 0 7 [] 10 [[3,10,0]]
|
| | | 16450 0 3 [] 10 [[3,10,0]]
|
| | | 16460 0 8 [42] 1000 [[3,10,0]]
|
| | | 16470 0 1 [3303] 1 [[3,10,0]]
|
| | | 16480 0 4 [41] 35 [[3,10,0]]
|
| | | 16490 0 7 [] 10 [[3,10,0]]
|
| | | 16500 0 3 [] 10 [[3,10,0]]
|
| | | 16510 0 8 [42] 1000 [[3,10,0]]
|
| | | 16520 0 1 [3304] 1 [[3,10,0]]
|
| | | 16530 0 4 [41] 35 [[3,10,0]]
|
| | | 16540 0 7 [] 10 [[3,10,0]]
|
| | | 16550 0 3 [] 10 [[3,10,0]]
|
| | | 16560 0 8 [42] 1000 [[3,10,0]]
|
| | | 16570 0 1 [3305] 1 [[3,10,0]]
|
| | | 16580 0 4 [41] 35 [[3,10,0]]
|
| | | 16590 0 7 [] 10 [[3,10,0]]
|
| | | 16600 0 3 [] 10 [[3,10,0]]
|
| | | 16610 0 8 [42] 1000 [[3,10,0]]
|
| | | 16620 0 1 [3306] 1 [[3,10,0]]
|
| | | 16630 0 4 [41] 35 [[3,10,0]]
|
| | | 16640 0 7 [] 10 [[3,10,0]]
|
| | | 16650 0 3 [] 10 [[3,10,0]]
|
| | | 16660 0 8 [42] 1000 [[3,10,0]]
|
| | | 16670 0 1 [3307] 1 [[3,10,0]]
|
| | | 16680 0 4 [41] 35 [[3,10,0]]
|
| | | 16690 0 7 [] 10 [[3,10,0]]
|
| | | 16700 0 3 [] 10 [[3,10,0]]
|
| | | 16710 0 8 [42] 1000 [[3,10,0]]
|
| | | 16720 0 1 [3308] 1 [[3,10,0]]
|
| | | 16730 0 4 [41] 35 [[3,10,0]]
|
| | | 16740 0 7 [] 10 [[3,10,0]]
|
| | | 16750 0 3 [] 10 [[3,10,0]]
|
| | | 16760 0 8 [42] 1000 [[3,10,0]]
|
| | | 16770 0 1 [3309] 1 [[3,10,0]]
|
| | | 16780 0 4 [41] 35 [[3,10,0]]
|
| | | 16790 0 7 [] 10 [[3,10,0]]
|
| | | 16800 0 3 [] 10 [[3,10,0]]
|
| | | 16810 0 8 [42] 1000 [[3,10,0]]
|
| | | 16820 0 1 [3310] 1 [[3,10,0]]
|
| | | 16830 0 4 [41] 35 [[3,10,0]]
|
| | | 16840 0 7 [] 10 [[3,10,0]]
|
| | | 16850 0 3 [] 10 [[3,10,0]]
|
| | | 16860 0 8 [42] 1000 [[3,10,0]]
|
| | | 16870 0 1 [3401] 1 [[3,10,0]]
|
| | | 16880 0 4 [41] 35 [[3,10,0]]
|
| | | 16890 0 7 [] 10 [[3,10,0]]
|
| | | 16900 0 3 [] 10 [[3,10,0]]
|
| | | 16910 0 8 [42] 1000 [[3,10,0]]
|
| | | 16920 0 1 [3402] 1 [[3,10,0]]
|
| | | 16930 0 4 [41] 35 [[3,10,0]]
|
| | | 16940 0 7 [] 10 [[3,10,0]]
|
| | | 16950 0 3 [] 10 [[3,10,0]]
|
| | | 16960 0 8 [42] 1000 [[3,10,0]]
|
| | | 16970 0 1 [3403] 1 [[3,10,0]]
|
| | | 16980 0 4 [41] 35 [[3,10,0]]
|
| | | 16990 0 7 [] 10 [[3,10,0]]
|
| | | 17000 0 3 [] 10 [[3,10,0]]
|
| | | 17010 0 8 [42] 1000 [[3,10,0]]
|
| | | 17020 0 1 [3404] 1 [[3,10,0]]
|
| | | 17030 0 4 [41] 35 [[3,10,0]]
|
| | | 17040 0 7 [] 10 [[3,10,0]]
|
| | | 17050 0 3 [] 10 [[3,10,0]]
|
| | | 17060 0 8 [42] 1000 [[3,10,0]]
|
| | | 17070 0 1 [3405] 1 [[3,10,0]]
|
| | | 17080 0 4 [41] 35 [[3,10,0]]
|
| | | 17090 0 7 [] 10 [[3,10,0]]
|
| | | 17100 0 3 [] 10 [[3,10,0]]
|
| | | 17110 0 8 [42] 1000 [[3,10,0]]
|
| | | 17120 0 1 [3406] 1 [[3,10,0]]
|
| | | 17130 0 4 [41] 35 [[3,10,0]]
|
| | | 17140 0 7 [] 10 [[3,10,0]]
|
| | | 17150 0 3 [] 10 [[3,10,0]]
|
| | | 17160 0 8 [42] 1000 [[3,10,0]]
|
| | | 17170 0 1 [3407] 1 [[3,10,0]]
|
| | | 17180 0 4 [41] 35 [[3,10,0]]
|
| | | 17190 0 7 [] 10 [[3,10,0]]
|
| | | 17200 0 3 [] 10 [[3,10,0]]
|
| | | 17210 0 8 [42] 1000 [[3,10,0]]
|
| | | 17220 0 1 [3408] 1 [[3,10,0]]
|
| | | 17230 0 4 [41] 35 [[3,10,0]]
|
| | | 17240 0 7 [] 10 [[3,10,0]]
|
| | | 17250 0 3 [] 10 [[3,10,0]]
|
| | | 17260 0 8 [42] 1000 [[3,10,0]]
|
| | | 17270 0 1 [3409] 1 [[3,10,0]]
|
| | | 17280 0 4 [41] 35 [[3,10,0]]
|
| | | 17290 0 7 [] 10 [[3,10,0]]
|
| | | 17300 0 3 [] 10 [[3,10,0]]
|
| | | 17310 0 8 [42] 1000 [[3,10,0]]
|
| | | 17320 0 1 [3410] 1 [[3,10,0]]
|
| | | 17330 0 4 [41] 35 [[3,10,0]]
|
| | | 17340 0 7 [] 10 [[3,10,0]]
|
| | | 17350 0 3 [] 10 [[3,10,0]]
|
| | | 17360 0 8 [42] 1000 [[3,10,0]]
|
| | | 17370 0 1 [3501] 1 [[3,10,0]]
|
| | | 17380 0 4 [41] 35 [[3,10,0]]
|
| | | 17390 0 7 [] 10 [[3,10,0]]
|
| | | 17400 0 3 [] 10 [[3,10,0]]
|
| | | 17410 0 8 [42] 1000 [[3,10,0]]
|
| | | 17420 0 1 [3502] 1 [[3,10,0]]
|
| | | 17430 0 4 [41] 35 [[3,10,0]]
|
| | | 17440 0 7 [] 10 [[3,10,0]]
|
| | | 17450 0 3 [] 10 [[3,10,0]]
|
| | | 17460 0 8 [42] 1000 [[3,10,0]]
|
| | | 17470 0 1 [3503] 1 [[3,10,0]]
|
| | | 17480 0 4 [41] 35 [[3,10,0]]
|
| | | 17490 0 7 [] 10 [[3,10,0]]
|
| | | 17500 0 3 [] 10 [[3,10,0]]
|
| | | 17510 0 8 [42] 1000 [[3,10,0]]
|
| | | 17520 0 1 [3504] 1 [[3,10,0]]
|
| | | 17530 0 4 [41] 35 [[3,10,0]]
|
| | | 17540 0 7 [] 10 [[3,10,0]]
|
| | | 17550 0 3 [] 10 [[3,10,0]]
|
| | | 17560 0 8 [42] 1000 [[3,10,0]]
|
| | | 17570 0 1 [3505] 1 [[3,10,0]]
|
| | | 17580 0 4 [41] 35 [[3,10,0]]
|
| | | 17590 0 7 [] 10 [[3,10,0]]
|
| | | 17600 0 3 [] 10 [[3,10,0]]
|
| | | 17610 0 8 [42] 1000 [[3,10,0]]
|
| | | 17620 0 1 [3506] 1 [[3,10,0]]
|
| | | 17630 0 4 [41] 35 [[3,10,0]]
|
| | | 17640 0 7 [] 10 [[3,10,0]]
|
| | | 17650 0 3 [] 10 [[3,10,0]]
|
| | | 17660 0 8 [42] 1000 [[3,10,0]]
|
| | | 17670 0 1 [3507] 1 [[3,10,0]]
|
| | | 17680 0 4 [41] 35 [[3,10,0]]
|
| | | 17690 0 7 [] 10 [[3,10,0]]
|
| | | 17700 0 3 [] 10 [[3,10,0]]
|
| | | 17710 0 8 [42] 1000 [[3,10,0]]
|
| | | 17720 0 1 [3508] 1 [[3,10,0]]
|
| | | 17730 0 4 [41] 35 [[3,10,0]]
|
| | | 17740 0 7 [] 10 [[3,10,0]]
|
| | | 17750 0 3 [] 10 [[3,10,0]]
|
| | | 17760 0 8 [42] 1000 [[3,10,0]]
|
| | | 17770 0 1 [3509] 1 [[3,10,0]]
|
| | | 17780 0 4 [41] 35 [[3,10,0]]
|
| | | 17790 0 7 [] 10 [[3,10,0]]
|
| | | 17800 0 3 [] 10 [[3,10,0]]
|
| | | 17810 0 8 [42] 1000 [[3,10,0]]
|
| | | 17820 0 1 [3510] 1 [[3,10,0]]
|
| | | 17830 0 4 [41] 35 [[3,10,0]]
|
| | | 17840 0 7 [] 10 [[3,10,0]]
|
| | | 17850 0 3 [] 10 [[3,10,0]]
|
| | | 17860 0 8 [42] 1000 [[3,10,0]]
|
| | | 17870 0 1 [3601] 1 [[3,10,0]]
|
| | | 17880 0 4 [41] 35 [[3,10,0]]
|
| | | 17890 0 7 [] 10 [[3,10,0]]
|
| | | 17900 0 3 [] 10 [[3,10,0]]
|
| | | 17910 0 8 [42] 1000 [[3,10,0]]
|
| | | 17920 0 1 [3602] 1 [[3,10,0]]
|
| | | 17930 0 4 [41] 35 [[3,10,0]]
|
| | | 17940 0 7 [] 10 [[3,10,0]]
|
| | | 17950 0 3 [] 10 [[3,10,0]]
|
| | | 17960 0 8 [42] 1000 [[3,10,0]]
|
| | | 17970 0 1 [3603] 1 [[3,10,0]]
|
| | | 17980 0 4 [41] 35 [[3,10,0]]
|
| | | 17990 0 7 [] 10 [[3,10,0]]
|
| | | 18000 0 3 [] 10 [[3,10,0]]
|
| | | 18010 0 8 [42] 1000 [[3,10,0]]
|
| | | 18020 0 1 [3604] 1 [[3,10,0]]
|
| | | 18030 0 4 [41] 35 [[3,10,0]]
|
| | | 18040 0 7 [] 10 [[3,10,0]]
|
| | | 18050 0 3 [] 10 [[3,10,0]]
|
| | | 18060 0 8 [42] 1000 [[3,10,0]]
|
| | | 18070 0 1 [3605] 1 [[3,10,0]]
|
| | | 18080 0 4 [41] 35 [[3,10,0]]
|
| | | 18090 0 7 [] 10 [[3,10,0]]
|
| | | 18100 0 3 [] 10 [[3,10,0]]
|
| | | 18110 0 8 [42] 1000 [[3,10,0]]
|
| | | 18120 0 1 [3606] 1 [[3,10,0]]
|
| | | 18130 0 4 [41] 35 [[3,10,0]]
|
| | | 18140 0 7 [] 10 [[3,10,0]]
|
| | | 18150 0 3 [] 10 [[3,10,0]]
|
| | | 18160 0 8 [42] 1000 [[3,10,0]]
|
| | | 18170 0 1 [3607] 1 [[3,10,0]]
|
| | | 18180 0 4 [41] 35 [[3,10,0]]
|
| | | 18190 0 7 [] 10 [[3,10,0]]
|
| | | 18200 0 3 [] 10 [[3,10,0]]
|
| | | 18210 0 8 [42] 1000 [[3,10,0]]
|
| | | 18220 0 1 [3608] 1 [[3,10,0]]
|
| | | 18230 0 4 [41] 35 [[3,10,0]]
|
| | | 18240 0 7 [] 10 [[3,10,0]]
|
| | | 18250 0 3 [] 10 [[3,10,0]]
|
| | | 18260 0 8 [42] 1000 [[3,10,0]]
|
| | | 18270 0 1 [3609] 1 [[3,10,0]]
|
| | | 18280 0 4 [41] 35 [[3,10,0]]
|
| | | 18290 0 7 [] 10 [[3,10,0]]
|
| | | 18300 0 3 [] 10 [[3,10,0]]
|
| | | 18310 0 8 [42] 1000 [[3,10,0]]
|
| | | 18320 0 1 [3610] 1 [[3,10,0]]
|
| | | 18330 0 4 [41] 35 [[3,10,0]]
|
| | | 18340 0 7 [] 10 [[3,10,0]]
|
| | | 18350 0 3 [] 10 [[3,10,0]]
|
| | | 18360 0 8 [42] 1000 [[3,10,0]]
|
| | | 18370 0 1 [3701] 1 [[3,10,0]]
|
| | | 18380 0 4 [41] 35 [[3,10,0]]
|
| | | 18390 0 7 [] 10 [[3,10,0]]
|
| | | 18400 0 3 [] 10 [[3,10,0]]
|
| | | 18410 0 8 [42] 1000 [[3,10,0]]
|
| | | 18420 0 1 [3702] 1 [[3,10,0]]
|
| | | 18430 0 4 [41] 35 [[3,10,0]]
|
| | | 18440 0 7 [] 10 [[3,10,0]]
|
| | | 18450 0 3 [] 10 [[3,10,0]]
|
| | | 18460 0 8 [42] 1000 [[3,10,0]]
|
| | | 18470 0 1 [3703] 1 [[3,10,0]]
|
| | | 18480 0 4 [41] 35 [[3,10,0]]
|
| | | 18490 0 7 [] 10 [[3,10,0]]
|
| | | 18500 0 3 [] 10 [[3,10,0]]
|
| | | 18510 0 8 [42] 1000 [[3,10,0]]
|
| | | 18520 0 1 [3704] 1 [[3,10,0]]
|
| | | 18530 0 4 [41] 35 [[3,10,0]]
|
| | | 18540 0 7 [] 10 [[3,10,0]]
|
| | | 18550 0 3 [] 10 [[3,10,0]]
|
| | | 18560 0 8 [42] 1000 [[3,10,0]]
|
| | | 18570 0 1 [3705] 1 [[3,10,0]]
|
| | | 18580 0 4 [41] 35 [[3,10,0]]
|
| | | 18590 0 7 [] 10 [[3,10,0]]
|
| | | 18600 0 3 [] 10 [[3,10,0]]
|
| | | 18610 0 8 [42] 1000 [[3,10,0]]
|
| | | 18620 0 1 [3706] 1 [[3,10,0]]
|
| | | 18630 0 4 [41] 35 [[3,10,0]]
|
| | | 18640 0 7 [] 10 [[3,10,0]]
|
| | | 18650 0 3 [] 10 [[3,10,0]]
|
| | | 18660 0 8 [42] 1000 [[3,10,0]]
|
| | | 18670 0 1 [3707] 1 [[3,10,0]]
|
| | | 18680 0 4 [41] 35 [[3,10,0]]
|
| | | 18690 0 7 [] 10 [[3,10,0]]
|
| | | 18700 0 3 [] 10 [[3,10,0]]
|
| | | 18710 0 8 [42] 1000 [[3,10,0]]
|
| | | 18720 0 1 [3708] 1 [[3,10,0]]
|
| | | 18730 0 4 [41] 35 [[3,10,0]]
|
| | | 18740 0 7 [] 10 [[3,10,0]]
|
| | | 18750 0 3 [] 10 [[3,10,0]]
|
| | | 18760 0 8 [42] 1000 [[3,10,0]]
|
| | | 18770 0 1 [3709] 1 [[3,10,0]]
|
| | | 18780 0 4 [41] 35 [[3,10,0]]
|
| | | 18790 0 7 [] 10 [[3,10,0]]
|
| | | 18800 0 3 [] 10 [[3,10,0]]
|
| | | 18810 0 8 [42] 1000 [[3,10,0]]
|
| | | 18820 0 1 [3710] 1 [[3,10,0]]
|
| | | 18830 0 4 [41] 35 [[3,10,0]]
|
| | | 18840 0 7 [] 10 [[3,10,0]]
|
| | | 18850 0 3 [] 10 [[3,10,0]]
|
| | | 18860 0 8 [42] 1000 [[3,10,0]]
|
| | | 18870 0 1 [3801] 1 [[3,10,0]]
|
| | | 18880 0 4 [41] 35 [[3,10,0]]
|
| | | 18890 0 7 [] 10 [[3,10,0]]
|
| | | 18900 0 3 [] 10 [[3,10,0]]
|
| | | 18910 0 8 [42] 1000 [[3,10,0]]
|
| | | 18920 0 1 [3802] 1 [[3,10,0]]
|
| | | 18930 0 4 [41] 35 [[3,10,0]]
|
| | | 18940 0 7 [] 10 [[3,10,0]]
|
| | | 18950 0 3 [] 10 [[3,10,0]]
|
| | | 18960 0 8 [42] 1000 [[3,10,0]]
|
| | | 18970 0 1 [3803] 1 [[3,10,0]]
|
| | | 18980 0 4 [41] 35 [[3,10,0]]
|
| | | 18990 0 7 [] 10 [[3,10,0]]
|
| | | 19000 0 3 [] 10 [[3,10,0]]
|
| | | 19010 0 8 [42] 1000 [[3,10,0]]
|
| | | 19020 0 1 [3804] 1 [[3,10,0]]
|
| | | 19030 0 4 [41] 35 [[3,10,0]]
|
| | | 19040 0 7 [] 10 [[3,10,0]]
|
| | | 19050 0 3 [] 10 [[3,10,0]]
|
| | | 19060 0 8 [42] 1000 [[3,10,0]]
|
| | | 19070 0 1 [3805] 1 [[3,10,0]]
|
| | | 19080 0 4 [41] 35 [[3,10,0]]
|
| | | 19090 0 7 [] 10 [[3,10,0]]
|
| | | 19100 0 3 [] 10 [[3,10,0]]
|
| | | 19110 0 8 [42] 1000 [[3,10,0]]
|
| | | 19120 0 1 [3806] 1 [[3,10,0]]
|
| | | 19130 0 4 [41] 35 [[3,10,0]]
|
| | | 19140 0 7 [] 10 [[3,10,0]]
|
| | | 19150 0 3 [] 10 [[3,10,0]]
|
| | | 19160 0 8 [42] 1000 [[3,10,0]]
|
| | | 19170 0 1 [3807] 1 [[3,10,0]]
|
| | | 19180 0 4 [41] 35 [[3,10,0]]
|
| | | 19190 0 7 [] 10 [[3,10,0]]
|
| | | 19200 0 3 [] 10 [[3,10,0]]
|
| | | 19210 0 8 [42] 1000 [[3,10,0]]
|
| | | 19220 0 1 [3808] 1 [[3,10,0]]
|
| | | 19230 0 4 [41] 35 [[3,10,0]]
|
| | | 19240 0 7 [] 10 [[3,10,0]]
|
| | | 19250 0 3 [] 10 [[3,10,0]]
|
| | | 19260 0 8 [42] 1000 [[3,10,0]]
|
| | | 19270 0 1 [3809] 1 [[3,10,0]]
|
| | | 19280 0 4 [41] 35 [[3,10,0]]
|
| | | 19290 0 7 [] 10 [[3,10,0]]
|
| | | 19300 0 3 [] 10 [[3,10,0]]
|
| | | 19310 0 8 [42] 1000 [[3,10,0]]
|
| | | 19320 0 1 [3810] 1 [[3,10,0]]
|
| | | 19330 0 4 [41] 35 [[3,10,0]]
|
| | | 19340 0 7 [] 10 [[3,10,0]]
|
| | | 19350 0 3 [] 10 [[3,10,0]]
|
| | | 19360 0 8 [42] 1000 [[3,10,0]]
|
| | | 19370 0 1 [3901] 1 [[3,10,0]]
|
| | | 19380 0 4 [41] 35 [[3,10,0]]
|
| | | 19390 0 7 [] 10 [[3,10,0]]
|
| | | 19400 0 3 [] 10 [[3,10,0]]
|
| | | 19410 0 8 [42] 1000 [[3,10,0]]
|
| | | 19420 0 1 [3902] 1 [[3,10,0]]
|
| | | 19430 0 4 [41] 35 [[3,10,0]]
|
| | | 19440 0 7 [] 10 [[3,10,0]]
|
| | | 19450 0 3 [] 10 [[3,10,0]]
|
| | | 19460 0 8 [42] 1000 [[3,10,0]]
|
| | | 19470 0 1 [3903] 1 [[3,10,0]]
|
| | | 19480 0 4 [41] 35 [[3,10,0]]
|
| | | 19490 0 7 [] 10 [[3,10,0]]
|
| | | 19500 0 3 [] 10 [[3,10,0]]
|
| | | 19510 0 8 [42] 1000 [[3,10,0]]
|
| | | 19520 0 1 [3904] 1 [[3,10,0]]
|
| | | 19530 0 4 [41] 35 [[3,10,0]]
|
| | | 19540 0 7 [] 10 [[3,10,0]]
|
| | | 19550 0 3 [] 10 [[3,10,0]]
|
| | | 19560 0 8 [42] 1000 [[3,10,0]]
|
| | | 19570 0 1 [3905] 1 [[3,10,0]]
|
| | | 19580 0 4 [41] 35 [[3,10,0]]
|
| | | 19590 0 7 [] 10 [[3,10,0]]
|
| | | 19600 0 3 [] 10 [[3,10,0]]
|
| | | 19610 0 8 [42] 1000 [[3,10,0]]
|
| | | 19620 0 1 [3906] 1 [[3,10,0]]
|
| | | 19630 0 4 [41] 35 [[3,10,0]]
|
| | | 19640 0 7 [] 10 [[3,10,0]]
|
| | | 19650 0 3 [] 10 [[3,10,0]]
|
| | | 19660 0 8 [42] 1000 [[3,10,0]]
|
| | | 19670 0 1 [3907] 1 [[3,10,0]]
|
| | | 19680 0 4 [41] 35 [[3,10,0]]
|
| | | 19690 0 7 [] 10 [[3,10,0]]
|
| | | 19700 0 3 [] 10 [[3,10,0]]
|
| | | 19710 0 8 [42] 1000 [[3,10,0]]
|
| | | 19720 0 1 [3908] 1 [[3,10,0]]
|
| | | 19730 0 4 [41] 35 [[3,10,0]]
|
| | | 19740 0 7 [] 10 [[3,10,0]]
|
| | | 19750 0 3 [] 10 [[3,10,0]]
|
| | | 19760 0 8 [42] 1000 [[3,10,0]]
|
| | | 19770 0 1 [3909] 1 [[3,10,0]]
|
| | | 19780 0 4 [41] 35 [[3,10,0]]
|
| | | 19790 0 7 [] 10 [[3,10,0]]
|
| | | 19800 0 3 [] 10 [[3,10,0]]
|
| | | 19810 0 8 [42] 1000 [[3,10,0]]
|
| | | 19820 0 1 [3910] 1 [[3,10,0]]
|
| | | 19830 0 4 [41] 35 [[3,10,0]]
|
| | | 19840 0 7 [] 10 [[3,10,0]]
|
| | | 19850 0 3 [] 10 [[3,10,0]]
|
| | | 19860 0 8 [42] 1000 [[3,10,0]]
|
| | | 19870 0 1 [4001] 1 [[3,10,0]]
|
| | | 19880 0 4 [41] 35 [[3,10,0]]
|
| | | 19890 0 7 [] 10 [[3,10,0]]
|
| | | 19900 0 3 [] 10 [[3,10,0]]
|
| | | 19910 0 8 [42] 1000 [[3,10,0]]
|
| | | 19920 0 1 [4002] 1 [[3,10,0]]
|
| | | 19930 0 4 [41] 35 [[3,10,0]]
|
| | | 19940 0 7 [] 10 [[3,10,0]]
|
| | | 19950 0 3 [] 10 [[3,10,0]]
|
| | | 19960 0 8 [42] 1000 [[3,10,0]]
|
| | | 19970 0 1 [4003] 1 [[3,10,0]]
|
| | | 19980 0 4 [41] 35 [[3,10,0]]
|
| | | 19990 0 7 [] 10 [[3,10,0]]
|
| | | 20000 0 3 [] 10 [[3,10,0]]
|
| | | 20010 0 8 [42] 1000 [[3,10,0]]
|
| | | 20020 0 1 [4004] 1 [[3,10,0]]
|
| | | 20030 0 4 [41] 35 [[3,10,0]]
|
| | | 20040 0 7 [] 10 [[3,10,0]]
|
| | | 20050 0 3 [] 10 [[3,10,0]]
|
| | | 20060 0 8 [42] 1000 [[3,10,0]]
|
| | | 20070 0 1 [4005] 1 [[3,10,0]]
|
| | | 20080 0 4 [41] 35 [[3,10,0]]
|
| | | 20090 0 7 [] 10 [[3,10,0]]
|
| | | 20100 0 3 [] 10 [[3,10,0]]
|
| | | 20110 0 8 [42] 1000 [[3,10,0]]
|
| | | 20120 0 1 [4006] 1 [[3,10,0]]
|
| | | 20130 0 4 [41] 35 [[3,10,0]]
|
| | | 20140 0 7 [] 10 [[3,10,0]]
|
| | | 20150 0 3 [] 10 [[3,10,0]]
|
| | | 20160 0 8 [42] 1000 [[3,10,0]]
|
| | | 20170 0 1 [4007] 1 [[3,10,0]]
|
| | | 20180 0 4 [41] 35 [[3,10,0]]
|
| | | 20190 0 7 [] 10 [[3,10,0]]
|
| | | 20200 0 3 [] 10 [[3,10,0]]
|
| | | 20210 0 8 [42] 1000 [[3,10,0]]
|
| | | 20220 0 1 [4008] 1 [[3,10,0]]
|
| | | 20230 0 4 [41] 35 [[3,10,0]]
|
| | | 20240 0 7 [] 10 [[3,10,0]]
|
| | | 20250 0 3 [] 10 [[3,10,0]]
|
| | | 20260 0 8 [42] 1000 [[3,10,0]]
|
| | | 20270 0 1 [4009] 1 [[3,10,0]]
|
| | | 20280 0 4 [41] 35 [[3,10,0]]
|
| | | 20290 0 7 [] 10 [[3,10,0]]
|
| | | 20300 0 3 [] 10 [[3,10,0]]
|
| | | 20310 0 8 [42] 1000 [[3,10,0]]
|
| | | 20320 0 1 [4010] 1 [[3,10,0]]
|
| | | 20330 0 4 [41] 35 [[3,10,0]]
|
| | | 20340 0 7 [] 10 [[3,10,0]]
|
| | | 20350 0 3 [] 10 [[3,10,0]]
|
| | | 20360 0 8 [42] 1000 [[3,10,0]]
|
| | | 20370 0 1 [4101] 1 [[3,10,0]]
|
| | | 20380 0 4 [41] 35 [[3,10,0]]
|
| | | 20390 0 7 [] 10 [[3,10,0]]
|
| | | 20400 0 3 [] 10 [[3,10,0]]
|
| | | 20410 0 8 [42] 1000 [[3,10,0]]
|
| | | 20420 0 1 [4102] 1 [[3,10,0]]
|
| | | 20430 0 4 [41] 35 [[3,10,0]]
|
| | | 20440 0 7 [] 10 [[3,10,0]]
|
| | | 20450 0 3 [] 10 [[3,10,0]]
|
| | | 20460 0 8 [42] 1000 [[3,10,0]]
|
| | | 20470 0 1 [4103] 1 [[3,10,0]]
|
| | | 20480 0 4 [41] 35 [[3,10,0]]
|
| | | 20490 0 7 [] 10 [[3,10,0]]
|
| | | 20500 0 3 [] 10 [[3,10,0]]
|
| | | 20510 0 8 [42] 1000 [[3,10,0]]
|
| | | 20520 0 1 [4104] 1 [[3,10,0]]
|
| | | 20530 0 4 [41] 35 [[3,10,0]]
|
| | | 20540 0 7 [] 10 [[3,10,0]]
|
| | | 20550 0 3 [] 10 [[3,10,0]]
|
| | | 20560 0 8 [42] 1000 [[3,10,0]]
|
| | | 20570 0 1 [4105] 1 [[3,10,0]]
|
| | | 20580 0 4 [41] 35 [[3,10,0]]
|
| | | 20590 0 7 [] 10 [[3,10,0]]
|
| | | 20600 0 3 [] 10 [[3,10,0]]
|
| | | 20610 0 8 [42] 1000 [[3,10,0]]
|
| | | 20620 0 1 [4106] 1 [[3,10,0]]
|
| | | 20630 0 4 [41] 35 [[3,10,0]]
|
| | | 20640 0 7 [] 10 [[3,10,0]]
|
| | | 20650 0 3 [] 10 [[3,10,0]]
|
| | | 20660 0 8 [42] 1000 [[3,10,0]]
|
| | | 20670 0 1 [4107] 1 [[3,10,0]]
|
| | | 20680 0 4 [41] 35 [[3,10,0]]
|
| | | 20690 0 7 [] 10 [[3,10,0]]
|
| | | 20700 0 3 [] 10 [[3,10,0]]
|
| | | 20710 0 8 [42] 1000 [[3,10,0]]
|
| | | 20720 0 1 [4108] 1 [[3,10,0]]
|
| | | 20730 0 4 [41] 35 [[3,10,0]]
|
| | | 20740 0 7 [] 10 [[3,10,0]]
|
| | | 20750 0 3 [] 10 [[3,10,0]]
|
| | | 20760 0 8 [42] 1000 [[3,10,0]]
|
| | | 20770 0 1 [4109] 1 [[3,10,0]]
|
| | | 20780 0 4 [41] 35 [[3,10,0]]
|
| | | 20790 0 7 [] 10 [[3,10,0]]
|
| | | 20800 0 3 [] 10 [[3,10,0]]
|
| | | 20810 0 8 [42] 1000 [[3,10,0]]
|
| | | 20820 0 1 [4110] 1 [[3,10,0]]
|
| | | 20830 0 4 [41] 35 [[3,10,0]]
|
| | | 20840 0 7 [] 10 [[3,10,0]]
|
| | | 20850 0 3 [] 10 [[3,10,0]]
|
| | | 20860 0 8 [42] 1000 [[3,10,0]]
|
| | | 20870 0 1 [4201] 1 [[3,10,0]]
|
| | | 20880 0 4 [41] 35 [[3,10,0]]
|
| | | 20890 0 7 [] 10 [[3,10,0]]
|
| | | 20900 0 3 [] 10 [[3,10,0]]
|
| | | 20910 0 8 [42] 1000 [[3,10,0]]
|
| | | 20920 0 1 [4202] 1 [[3,10,0]]
|
| | | 20930 0 4 [41] 35 [[3,10,0]]
|
| | | 20940 0 7 [] 10 [[3,10,0]]
|
| | | 20950 0 3 [] 10 [[3,10,0]]
|
| | | 20960 0 8 [42] 1000 [[3,10,0]]
|
| | | 20970 0 1 [4203] 1 [[3,10,0]]
|
| | | 20980 0 4 [41] 35 [[3,10,0]]
|
| | | 20990 0 7 [] 10 [[3,10,0]]
|
| | | 21000 0 3 [] 10 [[3,10,0]]
|
| | | 21010 0 8 [42] 1000 [[3,10,0]]
|
| | | 21020 0 1 [4204] 1 [[3,10,0]]
|
| | | 21030 0 4 [41] 35 [[3,10,0]]
|
| | | 21040 0 7 [] 10 [[3,10,0]]
|
| | | 21050 0 3 [] 10 [[3,10,0]]
|
| | | 21060 0 8 [42] 1000 [[3,10,0]]
|
| | | 21070 0 1 [4205] 1 [[3,10,0]]
|
| | | 21080 0 4 [41] 35 [[3,10,0]]
|
| | | 21090 0 7 [] 10 [[3,10,0]]
|
| | | 21100 0 3 [] 10 [[3,10,0]]
|
| | | 21110 0 8 [42] 1000 [[3,10,0]]
|
| | | 21120 0 1 [4206] 1 [[3,10,0]]
|
| | | 21130 0 4 [41] 35 [[3,10,0]]
|
| | | 21140 0 7 [] 10 [[3,10,0]]
|
| | | 21150 0 3 [] 10 [[3,10,0]]
|
| | | 21160 0 8 [42] 1000 [[3,10,0]]
|
| | | 21170 0 1 [4207] 1 [[3,10,0]]
|
| | | 21180 0 4 [41] 35 [[3,10,0]]
|
| | | 21190 0 7 [] 10 [[3,10,0]]
|
| | | 21200 0 3 [] 10 [[3,10,0]]
|
| | | 21210 0 8 [42] 1000 [[3,10,0]]
|
| | | 21220 0 1 [4208] 1 [[3,10,0]]
|
| | | 21230 0 4 [41] 35 [[3,10,0]]
|
| | | 21240 0 7 [] 10 [[3,10,0]]
|
| | | 21250 0 3 [] 10 [[3,10,0]]
|
| | | 21260 0 8 [42] 1000 [[3,10,0]]
|
| | | 21270 0 1 [4209] 1 [[3,10,0]]
|
| | | 21280 0 4 [41] 35 [[3,10,0]]
|
| | | 21290 0 7 [] 10 [[3,10,0]]
|
| | | 21300 0 3 [] 10 [[3,10,0]]
|
| | | 21310 0 8 [42] 1000 [[3,10,0]]
|
| | | 21320 0 1 [4210] 1 [[3,10,0]]
|
| | | 21330 0 4 [41] 35 [[3,10,0]]
|
| | | 21340 0 7 [] 10 [[3,10,0]]
|
| | | 21350 0 3 [] 10 [[3,10,0]]
|
| | | 21360 0 8 [42] 1000 [[3,10,0]]
|
| | | 21370 0 1 [4301] 1 [[3,10,0]]
|
| | | 21380 0 4 [41] 35 [[3,10,0]]
|
| | | 21390 0 7 [] 10 [[3,10,0]]
|
| | | 21400 0 3 [] 10 [[3,10,0]]
|
| | | 21410 0 8 [42] 1000 [[3,10,0]]
|
| | | 21420 0 1 [4302] 1 [[3,10,0]]
|
| | | 21430 0 4 [41] 35 [[3,10,0]]
|
| | | 21440 0 7 [] 10 [[3,10,0]]
|
| | | 21450 0 3 [] 10 [[3,10,0]]
|
| | | 21460 0 8 [42] 1000 [[3,10,0]]
|
| | | 21470 0 1 [4303] 1 [[3,10,0]]
|
| | | 21480 0 4 [41] 35 [[3,10,0]]
|
| | | 21490 0 7 [] 10 [[3,10,0]]
|
| | | 21500 0 3 [] 10 [[3,10,0]]
|
| | | 21510 0 8 [42] 1000 [[3,10,0]]
|
| | | 21520 0 1 [4304] 1 [[3,10,0]]
|
| | | 21530 0 4 [41] 35 [[3,10,0]]
|
| | | 21540 0 7 [] 10 [[3,10,0]]
|
| | | 21550 0 3 [] 10 [[3,10,0]]
|
| | | 21560 0 8 [42] 1000 [[3,10,0]]
|
| | | 21570 0 1 [4305] 1 [[3,10,0]]
|
| | | 21580 0 4 [41] 35 [[3,10,0]]
|
| | | 21590 0 7 [] 10 [[3,10,0]]
|
| | | 21600 0 3 [] 10 [[3,10,0]]
|
| | | 21610 0 8 [42] 1000 [[3,10,0]]
|
| | | 21620 0 1 [4306] 1 [[3,10,0]]
|
| | | 21630 0 4 [41] 35 [[3,10,0]]
|
| | | 21640 0 7 [] 10 [[3,10,0]]
|
| | | 21650 0 3 [] 10 [[3,10,0]]
|
| | | 21660 0 8 [42] 1000 [[3,10,0]]
|
| | | 21670 0 1 [4307] 1 [[3,10,0]]
|
| | | 21680 0 4 [41] 35 [[3,10,0]]
|
| | | 21690 0 7 [] 10 [[3,10,0]]
|
| | | 21700 0 3 [] 10 [[3,10,0]]
|
| | | 21710 0 8 [42] 1000 [[3,10,0]]
|
| | | 21720 0 1 [4308] 1 [[3,10,0]]
|
| | | 21730 0 4 [41] 35 [[3,10,0]]
|
| | | 21740 0 7 [] 10 [[3,10,0]]
|
| | | 21750 0 3 [] 10 [[3,10,0]]
|
| | | 21760 0 8 [42] 1000 [[3,10,0]]
|
| | | 21770 0 1 [4309] 1 [[3,10,0]]
|
| | | 21780 0 4 [41] 35 [[3,10,0]]
|
| | | 21790 0 7 [] 10 [[3,10,0]]
|
| | | 21800 0 3 [] 10 [[3,10,0]]
|
| | | 21810 0 8 [42] 1000 [[3,10,0]]
|
| | | 21820 0 1 [4310] 1 [[3,10,0]]
|
| | | 21830 0 4 [41] 35 [[3,10,0]]
|
| | | 21840 0 7 [] 10 [[3,10,0]]
|
| | | 21850 0 3 [] 10 [[3,10,0]]
|
| | | 21860 0 8 [42] 1000 [[3,10,0]]
|
| | | 21870 0 1 [4401] 1 [[3,10,0]]
|
| | | 21880 0 4 [41] 35 [[3,10,0]]
|
| | | 21890 0 7 [] 10 [[3,10,0]]
|
| | | 21900 0 3 [] 10 [[3,10,0]]
|
| | | 21910 0 8 [42] 1000 [[3,10,0]]
|
| | | 21920 0 1 [4402] 1 [[3,10,0]]
|
| | | 21930 0 4 [41] 35 [[3,10,0]]
|
| | | 21940 0 7 [] 10 [[3,10,0]]
|
| | | 21950 0 3 [] 10 [[3,10,0]]
|
| | | 21960 0 8 [42] 1000 [[3,10,0]]
|
| | | 21970 0 1 [4403] 1 [[3,10,0]]
|
| | | 21980 0 4 [41] 35 [[3,10,0]]
|
| | | 21990 0 7 [] 10 [[3,10,0]]
|
| | | 22000 0 3 [] 10 [[3,10,0]]
|
| | | 22010 0 8 [42] 1000 [[3,10,0]]
|
| | | 22020 0 1 [4404] 1 [[3,10,0]]
|
| | | 22030 0 4 [41] 35 [[3,10,0]]
|
| | | 22040 0 7 [] 10 [[3,10,0]]
|
| | | 22050 0 3 [] 10 [[3,10,0]]
|
| | | 22060 0 8 [42] 1000 [[3,10,0]]
|
| | | 22070 0 1 [4405] 1 [[3,10,0]]
|
| | | 22080 0 4 [41] 35 [[3,10,0]]
|
| | | 22090 0 7 [] 10 [[3,10,0]]
|
| | | 22100 0 3 [] 10 [[3,10,0]]
|
| | | 22110 0 8 [42] 1000 [[3,10,0]]
|
| | | 22120 0 1 [4406] 1 [[3,10,0]]
|
| | | 22130 0 4 [41] 35 [[3,10,0]]
|
| | | 22140 0 7 [] 10 [[3,10,0]]
|
| | | 22150 0 3 [] 10 [[3,10,0]]
|
| | | 22160 0 8 [42] 1000 [[3,10,0]]
|
| | | 22170 0 1 [4407] 1 [[3,10,0]]
|
| | | 22180 0 4 [41] 35 [[3,10,0]]
|
| | | 22190 0 7 [] 10 [[3,10,0]]
|
| | | 22200 0 3 [] 10 [[3,10,0]]
|
| | | 22210 0 8 [42] 1000 [[3,10,0]]
|
| | | 22220 0 1 [4408] 1 [[3,10,0]]
|
| | | 22230 0 4 [41] 35 [[3,10,0]]
|
| | | 22240 0 7 [] 10 [[3,10,0]]
|
| | | 22250 0 3 [] 10 [[3,10,0]]
|
| | | 22260 0 8 [42] 1000 [[3,10,0]]
|
| | | 22270 0 1 [4409] 1 [[3,10,0]]
|
| | | 22280 0 4 [41] 35 [[3,10,0]]
|
| | | 22290 0 7 [] 10 [[3,10,0]]
|
| | | 22300 0 3 [] 10 [[3,10,0]]
|
| | | 22310 0 8 [42] 1000 [[3,10,0]]
|
| | | 22320 0 1 [4410] 1 [[3,10,0]]
|
| | | 22330 0 4 [41] 35 [[3,10,0]]
|
| | | 22340 0 7 [] 10 [[3,10,0]]
|
| | | 22350 0 3 [] 10 [[3,10,0]]
|
| | | 22360 0 8 [42] 1000 [[3,10,0]]
|
| | | 22370 0 1 [4501] 1 [[3,10,0]]
|
| | | 22380 0 4 [41] 35 [[3,10,0]]
|
| | | 22390 0 7 [] 10 [[3,10,0]]
|
| | | 22400 0 3 [] 10 [[3,10,0]]
|
| | | 22410 0 8 [42] 1000 [[3,10,0]]
|
| | | 22420 0 1 [4502] 1 [[3,10,0]]
|
| | | 22430 0 4 [41] 35 [[3,10,0]]
|
| | | 22440 0 7 [] 10 [[3,10,0]]
|
| | | 22450 0 3 [] 10 [[3,10,0]]
|
| | | 22460 0 8 [42] 1000 [[3,10,0]]
|
| | | 22470 0 1 [4503] 1 [[3,10,0]]
|
| | | 22480 0 4 [41] 35 [[3,10,0]]
|
| | | 22490 0 7 [] 10 [[3,10,0]]
|
| | | 22500 0 3 [] 10 [[3,10,0]]
|
| | | 22510 0 8 [42] 1000 [[3,10,0]]
|
| | | 22520 0 1 [4504] 1 [[3,10,0]]
|
| | | 22530 0 4 [41] 35 [[3,10,0]]
|
| | | 22540 0 7 [] 10 [[3,10,0]]
|
| | | 22550 0 3 [] 10 [[3,10,0]]
|
| | | 22560 0 8 [42] 1000 [[3,10,0]]
|
| | | 22570 0 1 [4505] 1 [[3,10,0]]
|
| | | 22580 0 4 [41] 35 [[3,10,0]]
|
| | | 22590 0 7 [] 10 [[3,10,0]]
|
| | | 22600 0 3 [] 10 [[3,10,0]]
|
| | | 22610 0 8 [42] 1000 [[3,10,0]]
|
| | | 22620 0 1 [4506] 1 [[3,10,0]]
|
| | | 22630 0 4 [41] 35 [[3,10,0]]
|
| | | 22640 0 7 [] 10 [[3,10,0]]
|
| | | 22650 0 3 [] 10 [[3,10,0]]
|
| | | 22660 0 8 [42] 1000 [[3,10,0]]
|
| | | 22670 0 1 [4507] 1 [[3,10,0]]
|
| | | 22680 0 4 [41] 35 [[3,10,0]]
|
| | | 22690 0 7 [] 10 [[3,10,0]]
|
| | | 22700 0 3 [] 10 [[3,10,0]]
|
| | | 22710 0 8 [42] 1000 [[3,10,0]]
|
| | | 22720 0 1 [4508] 1 [[3,10,0]]
|
| | | 22730 0 4 [41] 35 [[3,10,0]]
|
| | | 22740 0 7 [] 10 [[3,10,0]]
|
| | | 22750 0 3 [] 10 [[3,10,0]]
|
| | | 22760 0 8 [42] 1000 [[3,10,0]]
|
| | | 22770 0 1 [4509] 1 [[3,10,0]]
|
| | | 22780 0 4 [41] 35 [[3,10,0]]
|
| | | 22790 0 7 [] 10 [[3,10,0]]
|
| | | 22800 0 3 [] 10 [[3,10,0]]
|
| | | 22810 0 8 [42] 1000 [[3,10,0]]
|
| | | 22820 0 1 [4510] 1 [[3,10,0]]
|
| | | 22830 0 4 [41] 35 [[3,10,0]]
|
| | | 22840 0 7 [] 10 [[3,10,0]]
|
| | | 22850 0 3 [] 10 [[3,10,0]]
|
| | | 22860 0 8 [42] 1000 [[3,10,0]]
|
| | | 22870 0 1 [4601] 1 [[3,10,0]]
|
| | | 22880 0 4 [41] 35 [[3,10,0]]
|
| | | 22890 0 7 [] 10 [[3,10,0]]
|
| | | 22900 0 3 [] 10 [[3,10,0]]
|
| | | 22910 0 8 [42] 1000 [[3,10,0]]
|
| | | 22920 0 1 [4602] 1 [[3,10,0]]
|
| | | 22930 0 4 [41] 35 [[3,10,0]]
|
| | | 22940 0 7 [] 10 [[3,10,0]]
|
| | | 22950 0 3 [] 10 [[3,10,0]]
|
| | | 22960 0 8 [42] 1000 [[3,10,0]]
|
| | | 22970 0 1 [4603] 1 [[3,10,0]]
|
| | | 22980 0 4 [41] 35 [[3,10,0]]
|
| | | 22990 0 7 [] 10 [[3,10,0]]
|
| | | 23000 0 3 [] 10 [[3,10,0]]
|
| | | 23010 0 8 [42] 1000 [[3,10,0]]
|
| | | 23020 0 1 [4604] 1 [[3,10,0]]
|
| | | 23030 0 4 [41] 35 [[3,10,0]]
|
| | | 23040 0 7 [] 10 [[3,10,0]]
|
| | | 23050 0 3 [] 10 [[3,10,0]]
|
| | | 23060 0 8 [42] 1000 [[3,10,0]]
|
| | | 23070 0 1 [4605] 1 [[3,10,0]]
|
| | | 23080 0 4 [41] 35 [[3,10,0]]
|
| | | 23090 0 7 [] 10 [[3,10,0]]
|
| | | 23100 0 3 [] 10 [[3,10,0]]
|
| | | 23110 0 8 [42] 1000 [[3,10,0]]
|
| | | 23120 0 1 [4606] 1 [[3,10,0]]
|
| | | 23130 0 4 [41] 35 [[3,10,0]]
|
| | | 23140 0 7 [] 10 [[3,10,0]]
|
| | | 23150 0 3 [] 10 [[3,10,0]]
|
| | | 23160 0 8 [42] 1000 [[3,10,0]]
|
| | | 23170 0 1 [4607] 1 [[3,10,0]]
|
| | | 23180 0 4 [41] 35 [[3,10,0]]
|
| | | 23190 0 7 [] 10 [[3,10,0]]
|
| | | 23200 0 3 [] 10 [[3,10,0]]
|
| | | 23210 0 8 [42] 1000 [[3,10,0]]
|
| | | 23220 0 1 [4608] 1 [[3,10,0]]
|
| | | 23230 0 4 [41] 35 [[3,10,0]]
|
| | | 23240 0 7 [] 10 [[3,10,0]]
|
| | | 23250 0 3 [] 10 [[3,10,0]]
|
| | | 23260 0 8 [42] 1000 [[3,10,0]]
|
| | | 23270 0 1 [4609] 1 [[3,10,0]]
|
| | | 23280 0 4 [41] 35 [[3,10,0]]
|
| | | 23290 0 7 [] 10 [[3,10,0]]
|
| | | 23300 0 3 [] 10 [[3,10,0]]
|
| | | 23310 0 8 [42] 1000 [[3,10,0]]
|
| | | 23320 0 1 [4610] 1 [[3,10,0]]
|
| | | 23330 0 4 [41] 35 [[3,10,0]]
|
| | | 23340 0 7 [] 10 [[3,10,0]]
|
| | | 23350 0 3 [] 10 [[3,10,0]]
|
| | | 23360 0 8 [42] 1000 [[3,10,0]]
|
| | | 23370 0 1 [4701] 1 [[3,10,0]]
|
| | | 23380 0 4 [41] 35 [[3,10,0]]
|
| | | 23390 0 7 [] 10 [[3,10,0]]
|
| | | 23400 0 3 [] 10 [[3,10,0]]
|
| | | 23410 0 8 [42] 1000 [[3,10,0]]
|
| | | 23420 0 1 [4702] 1 [[3,10,0]]
|
| | | 23430 0 4 [41] 35 [[3,10,0]]
|
| | | 23440 0 7 [] 10 [[3,10,0]]
|
| | | 23450 0 3 [] 10 [[3,10,0]]
|
| | | 23460 0 8 [42] 1000 [[3,10,0]]
|
| | | 23470 0 1 [4703] 1 [[3,10,0]]
|
| | | 23480 0 4 [41] 35 [[3,10,0]]
|
| | | 23490 0 7 [] 10 [[3,10,0]]
|
| | | 23500 0 3 [] 10 [[3,10,0]]
|
| | | 23510 0 8 [42] 1000 [[3,10,0]]
|
| | | 23520 0 1 [4704] 1 [[3,10,0]]
|
| | | 23530 0 4 [41] 35 [[3,10,0]]
|
| | | 23540 0 7 [] 10 [[3,10,0]]
|
| | | 23550 0 3 [] 10 [[3,10,0]]
|
| | | 23560 0 8 [42] 1000 [[3,10,0]]
|
| | | 23570 0 1 [4705] 1 [[3,10,0]]
|
| | | 23580 0 4 [41] 35 [[3,10,0]]
|
| | | 23590 0 7 [] 10 [[3,10,0]]
|
| | | 23600 0 3 [] 10 [[3,10,0]]
|
| | | 23610 0 8 [42] 1000 [[3,10,0]]
|
| | | 23620 0 1 [4706] 1 [[3,10,0]]
|
| | | 23630 0 4 [41] 35 [[3,10,0]]
|
| | | 23640 0 7 [] 10 [[3,10,0]]
|
| | | 23650 0 3 [] 10 [[3,10,0]]
|
| | | 23660 0 8 [42] 1000 [[3,10,0]]
|
| | | 23670 0 1 [4707] 1 [[3,10,0]]
|
| | | 23680 0 4 [41] 35 [[3,10,0]]
|
| | | 23690 0 7 [] 10 [[3,10,0]]
|
| | | 23700 0 3 [] 10 [[3,10,0]]
|
| | | 23710 0 8 [42] 1000 [[3,10,0]]
|
| | | 23720 0 1 [4708] 1 [[3,10,0]]
|
| | | 23730 0 4 [41] 35 [[3,10,0]]
|
| | | 23740 0 7 [] 10 [[3,10,0]]
|
| | | 23750 0 3 [] 10 [[3,10,0]]
|
| | | 23760 0 8 [42] 1000 [[3,10,0]]
|
| | | 23770 0 1 [4709] 1 [[3,10,0]]
|
| | | 23780 0 4 [41] 35 [[3,10,0]]
|
| | | 23790 0 7 [] 10 [[3,10,0]]
|
| | | 23800 0 3 [] 10 [[3,10,0]]
|
| | | 23810 0 8 [42] 1000 [[3,10,0]]
|
| | | 23820 0 1 [4710] 1 [[3,10,0]]
|
| | | 23830 0 4 [41] 35 [[3,10,0]]
|
| | | 23840 0 7 [] 10 [[3,10,0]]
|
| | | 23850 0 3 [] 10 [[3,10,0]]
|
| | | 23860 0 8 [42] 1000 [[3,10,0]]
|
| | | 23870 0 1 [4801] 1 [[3,10,0]]
|
| | | 23880 0 4 [41] 35 [[3,10,0]]
|
| | | 23890 0 7 [] 10 [[3,10,0]]
|
| | | 23900 0 3 [] 10 [[3,10,0]]
|
| | | 23910 0 8 [42] 1000 [[3,10,0]]
|
| | | 23920 0 1 [4802] 1 [[3,10,0]]
|
| | | 23930 0 4 [41] 35 [[3,10,0]]
|
| | | 23940 0 7 [] 10 [[3,10,0]]
|
| | | 23950 0 3 [] 10 [[3,10,0]]
|
| | | 23960 0 8 [42] 1000 [[3,10,0]]
|
| | | 23970 0 1 [4803] 1 [[3,10,0]]
|
| | | 23980 0 4 [41] 35 [[3,10,0]]
|
| | | 23990 0 7 [] 10 [[3,10,0]]
|
| | | 24000 0 3 [] 10 [[3,10,0]]
|
| | | 24010 0 8 [42] 1000 [[3,10,0]]
|
| | | 24020 0 1 [4804] 1 [[3,10,0]]
|
| | | 24030 0 4 [41] 35 [[3,10,0]]
|
| | | 24040 0 7 [] 10 [[3,10,0]]
|
| | | 24050 0 3 [] 10 [[3,10,0]]
|
| | | 24060 0 8 [42] 1000 [[3,10,0]]
|
| | | 24070 0 1 [4805] 1 [[3,10,0]]
|
| | | 24080 0 4 [41] 35 [[3,10,0]]
|
| | | 24090 0 7 [] 10 [[3,10,0]]
|
| | | 24100 0 3 [] 10 [[3,10,0]]
|
| | | 24110 0 8 [42] 1000 [[3,10,0]]
|
| | | 24120 0 1 [4806] 1 [[3,10,0]]
|
| | | 24130 0 4 [41] 35 [[3,10,0]]
|
| | | 24140 0 7 [] 10 [[3,10,0]]
|
| | | 24150 0 3 [] 10 [[3,10,0]]
|
| | | 24160 0 8 [42] 1000 [[3,10,0]]
|
| | | 24170 0 1 [4807] 1 [[3,10,0]]
|
| | | 24180 0 4 [41] 35 [[3,10,0]]
|
| | | 24190 0 7 [] 10 [[3,10,0]]
|
| | | 24200 0 3 [] 10 [[3,10,0]]
|
| | | 24210 0 8 [42] 1000 [[3,10,0]]
|
| | | 24220 0 1 [4808] 1 [[3,10,0]]
|
| | | 24230 0 4 [41] 35 [[3,10,0]]
|
| | | 24240 0 7 [] 10 [[3,10,0]]
|
| | | 24250 0 3 [] 10 [[3,10,0]]
|
| | | 24260 0 8 [42] 1000 [[3,10,0]]
|
| | | 24270 0 1 [4809] 1 [[3,10,0]]
|
| | | 24280 0 4 [41] 35 [[3,10,0]]
|
| | | 24290 0 7 [] 10 [[3,10,0]]
|
| | | 24300 0 3 [] 10 [[3,10,0]]
|
| | | 24310 0 8 [42] 1000 [[3,10,0]]
|
| | | 24320 0 1 [4810] 1 [[3,10,0]]
|
| | | 24330 0 4 [41] 35 [[3,10,0]]
|
| | | 24340 0 7 [] 10 [[3,10,0]]
|
| | | 24350 0 3 [] 10 [[3,10,0]]
|
| | | 24360 0 8 [42] 1000 [[3,10,0]]
|
| | | 24370 0 1 [4901] 1 [[3,10,0]]
|
| | | 24380 0 4 [41] 35 [[3,10,0]]
|
| | | 24390 0 7 [] 10 [[3,10,0]]
|
| | | 24400 0 3 [] 10 [[3,10,0]]
|
| | | 24410 0 8 [42] 1000 [[3,10,0]]
|
| | | 24420 0 1 [4902] 1 [[3,10,0]]
|
| | | 24430 0 4 [41] 35 [[3,10,0]]
|
| | | 24440 0 7 [] 10 [[3,10,0]]
|
| | | 24450 0 3 [] 10 [[3,10,0]]
|
| | | 24460 0 8 [42] 1000 [[3,10,0]]
|
| | | 24470 0 1 [4903] 1 [[3,10,0]]
|
| | | 24480 0 4 [41] 35 [[3,10,0]]
|
| | | 24490 0 7 [] 10 [[3,10,0]]
|
| | | 24500 0 3 [] 10 [[3,10,0]]
|
| | | 24510 0 8 [42] 1000 [[3,10,0]]
|
| | | 24520 0 1 [4904] 1 [[3,10,0]]
|
| | | 24530 0 4 [41] 35 [[3,10,0]]
|
| | | 24540 0 7 [] 10 [[3,10,0]]
|
| | | 24550 0 3 [] 10 [[3,10,0]]
|
| | | 24560 0 8 [42] 1000 [[3,10,0]]
|
| | | 24570 0 1 [4905] 1 [[3,10,0]]
|
| | | 24580 0 4 [41] 35 [[3,10,0]]
|
| | | 24590 0 7 [] 10 [[3,10,0]]
|
| | | 24600 0 3 [] 10 [[3,10,0]]
|
| | | 24610 0 8 [42] 1000 [[3,10,0]]
|
| | | 24620 0 1 [4906] 1 [[3,10,0]]
|
| | | 24630 0 4 [41] 35 [[3,10,0]]
|
| | | 24640 0 7 [] 10 [[3,10,0]]
|
| | | 24650 0 3 [] 10 [[3,10,0]]
|
| | | 24660 0 8 [42] 1000 [[3,10,0]]
|
| | | 24670 0 1 [4907] 1 [[3,10,0]]
|
| | | 24680 0 4 [41] 35 [[3,10,0]]
|
| | | 24690 0 7 [] 10 [[3,10,0]]
|
| | | 24700 0 3 [] 10 [[3,10,0]]
|
| | | 24710 0 8 [42] 1000 [[3,10,0]]
|
| | | 24720 0 1 [4908] 1 [[3,10,0]]
|
| | | 24730 0 4 [41] 35 [[3,10,0]]
|
| | | 24740 0 7 [] 10 [[3,10,0]]
|
| | | 24750 0 3 [] 10 [[3,10,0]]
|
| | | 24760 0 8 [42] 1000 [[3,10,0]]
|
| | | 24770 0 1 [4909] 1 [[3,10,0]]
|
| | | 24780 0 4 [41] 35 [[3,10,0]]
|
| | | 24790 0 7 [] 10 [[3,10,0]]
|
| | | 24800 0 3 [] 10 [[3,10,0]]
|
| | | 24810 0 8 [42] 1000 [[3,10,0]]
|
| | | 24820 0 1 [4910] 1 [[3,10,0]]
|
| | | 24830 0 4 [41] 35 [[3,10,0]]
|
| | | 24840 0 7 [] 10 [[3,10,0]]
|
| | | 24850 0 3 [] 10 [[3,10,0]]
|
| | | 24860 0 8 [42] 1000 [[3,10,0]]
|
| | | 24870 0 1 [5001] 1 [[3,10,0]]
|
| | | 24880 0 4 [41] 35 [[3,10,0]]
|
| | | 24890 0 7 [] 10 [[3,10,0]]
|
| | | 24900 0 3 [] 10 [[3,10,0]]
|
| | | 24910 0 8 [42] 1000 [[3,10,0]]
|
| | | 24920 0 1 [5002] 1 [[3,10,0]]
|
| | | 24930 0 4 [41] 35 [[3,10,0]]
|
| | | 24940 0 7 [] 10 [[3,10,0]]
|
| | | 24950 0 3 [] 10 [[3,10,0]]
|
| | | 24960 0 8 [42] 1000 [[3,10,0]]
|
| | | 24970 0 1 [5003] 1 [[3,10,0]]
|
| | | 24980 0 4 [41] 35 [[3,10,0]]
|
| | | 24990 0 7 [] 10 [[3,10,0]]
|
| | | 25000 0 3 [] 10 [[3,10,0]]
|
| | | 25010 0 8 [42] 1000 [[3,10,0]]
|
| | | 25020 0 1 [5004] 1 [[3,10,0]]
|
| | | 25030 0 4 [41] 35 [[3,10,0]]
|
| | | 25040 0 7 [] 10 [[3,10,0]]
|
| | | 25050 0 3 [] 10 [[3,10,0]]
|
| | | 25060 0 8 [42] 1000 [[3,10,0]]
|
| | | 25070 0 1 [5005] 1 [[3,10,0]]
|
| | | 25080 0 4 [41] 35 [[3,10,0]]
|
| | | 25090 0 7 [] 10 [[3,10,0]]
|
| | | 25100 0 3 [] 10 [[3,10,0]]
|
| | | 25110 0 8 [42] 1000 [[3,10,0]]
|
| | | 25120 0 1 [5006] 1 [[3,10,0]]
|
| | | 25130 0 4 [41] 35 [[3,10,0]]
|
| | | 25140 0 7 [] 10 [[3,10,0]]
|
| | | 25150 0 3 [] 10 [[3,10,0]]
|
| | | 25160 0 8 [42] 1000 [[3,10,0]]
|
| | | 25170 0 1 [5007] 1 [[3,10,0]]
|
| | | 25180 0 4 [41] 35 [[3,10,0]]
|
| | | 25190 0 7 [] 10 [[3,10,0]]
|
| | | 25200 0 3 [] 10 [[3,10,0]]
|
| | | 25210 0 8 [42] 1000 [[3,10,0]]
|
| | | 25220 0 1 [5008] 1 [[3,10,0]]
|
| | | 25230 0 4 [41] 35 [[3,10,0]]
|
| | | 25240 0 7 [] 10 [[3,10,0]]
|
| | | 25250 0 3 [] 10 [[3,10,0]]
|
| | | 25260 0 8 [42] 1000 [[3,10,0]]
|
| | | 25270 0 1 [5009] 1 [[3,10,0]]
|
| | | 25280 0 4 [41] 35 [[3,10,0]]
|
| | | 25290 0 7 [] 10 [[3,10,0]]
|
| | | 25300 0 3 [] 10 [[3,10,0]]
|
| | | 25310 0 8 [42] 1000 [[3,10,0]]
|
| | | 25320 0 1 [5010] 1 [[3,10,0]]
|