| | |
| | | 4 8 1040801 1040802 1040803 1040804 1040805 1040811 [[5,2],[3,20]] 38 1
|
| | | 4 9 1040901 1040902 1040903 1040904 1040905 1040911 [[5,2],[3,20]] 40 1
|
| | | 4 10 1041001 1041002 1041003 1041004 1041005 1041011 [[5,2],[3,20],[4,25]] 42 1
|
| | | 5 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 43 1
|
| | | 5 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 44 1
|
| | | 5 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 45 1
|
| | | 5 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 47 1
|
| | | 5 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 49 1
|
| | | 5 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 50 1
|
| | | 5 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 51 1
|
| | | 5 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 52 1
|
| | | 5 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 53 1
|
| | | 5 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 43 0.8
|
| | | 5 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 44 0.8
|
| | | 5 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 45 0.8
|
| | | 5 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 47 0.8
|
| | | 5 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 49 0.8
|
| | | 5 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 50 0.8
|
| | | 5 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 51 0.8
|
| | | 5 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 52 0.8
|
| | | 5 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 53 0.8
|
| | | 5 10 1051001 1051002 1051003 1051004 1051005 1051006 1051013 [[5,2],[3,20],[4,30]] 54 1
|
| | | 6 1 1060101 1060102 1060103 1060104 1060105 1060106 1060113 [[5,2],[3,20]] 55 1
|
| | | 6 2 1060201 1060202 1060203 1060204 1060205 1060206 1060213 [[5,2],[3,20]] 56 0.96
|
| | | 6 3 1060301 1060302 1060303 1060304 1060305 1060306 1060313 [[5,2],[3,20]] 56 1
|
| | | 6 4 1060401 1060402 1060403 1060404 1060405 1060406 1060413 [[5,2],[3,20]] 57 1
|
| | | 6 5 1060501 1060502 1060503 1060504 1060505 1060506 1060513 [[5,2],[3,20]] 58 0.97
|
| | | 6 6 1060601 1060602 1060603 1060604 1060605 1060606 1060613 [[5,2],[3,20]] 58 1
|
| | | 6 7 1060701 1060702 1060703 1060704 1060705 1060706 1060713 [[5,2],[3,20]] 59 1
|
| | | 6 8 1060801 1060802 1060803 1060804 1060805 1060806 1060813 [[5,2],[3,20]] 60 0.97
|
| | | 6 9 1060901 1060902 1060903 1060904 1060905 1060906 1060913 [[5,2],[3,20]] 60 1
|
| | | 6 1 1060101 1060102 1060103 1060104 1060105 1060106 1060113 [[5,2],[3,20]] 55 0.85
|
| | | 6 2 1060201 1060202 1060203 1060204 1060205 1060206 1060213 [[5,2],[3,20]] 56 0.85
|
| | | 6 3 1060301 1060302 1060303 1060304 1060305 1060306 1060313 [[5,2],[3,20]] 56 0.85
|
| | | 6 4 1060401 1060402 1060403 1060404 1060405 1060406 1060413 [[5,2],[3,20]] 57 0.85
|
| | | 6 5 1060501 1060502 1060503 1060504 1060505 1060506 1060513 [[5,2],[3,20]] 58 0.85
|
| | | 6 6 1060601 1060602 1060603 1060604 1060605 1060606 1060613 [[5,2],[3,20]] 58 0.85
|
| | | 6 7 1060701 1060702 1060703 1060704 1060705 1060706 1060713 [[5,2],[3,20]] 59 0.85
|
| | | 6 8 1060801 1060802 1060803 1060804 1060805 1060806 1060813 [[5,2],[3,20]] 60 0.85
|
| | | 6 9 1060901 1060902 1060903 1060904 1060905 1060906 1060913 [[5,2],[3,20]] 60 0.85
|
| | | 6 10 1061001 1061002 1061003 1061004 1061005 1061006 1061013 [[5,2],[3,20],[4,35]] 61 1
|
| | | 7 1 1070101 1070102 1070103 1070104 1070105 1070106 1070113 [[5,2],[3,20]] 62 0.98
|
| | | 7 2 1070201 1070202 1070203 1070204 1070205 1070206 1070213 [[5,2],[3,20]] 62 1
|
| | | 7 3 1070301 1070302 1070303 1070304 1070305 1070306 1070313 [[5,2],[3,20]] 63 1
|
| | | 7 4 1070401 1070402 1070403 1070404 1070405 1070406 1070413 [[5,2],[3,20]] 64 0.98
|
| | | 7 5 1070501 1070502 1070503 1070504 1070505 1070506 1070513 [[5,2],[3,20]] 64 1
|
| | | 7 6 1070601 1070602 1070603 1070604 1070605 1070606 1070613 [[5,2],[3,20]] 65 1
|
| | | 7 7 1070701 1070702 1070703 1070704 1070705 1070706 1070713 [[5,2],[3,20]] 66 0.99
|
| | | 7 8 1070801 1070802 1070803 1070804 1070805 1070806 1070813 [[5,2],[3,20]] 66 1
|
| | | 7 9 1070901 1070902 1070903 1070904 1070905 1070906 1070913 [[5,2],[3,20]] 67 1
|
| | | 7 10 1071001 1071002 1071003 1071004 1071005 1071006 1071013 [[5,2],[3,20],[4,40]] 68 0.96
|
| | | 8 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 68 1
|
| | | 8 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 69 1
|
| | | 8 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 70 0.99
|
| | | 8 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 70 1
|
| | | 8 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 71 1
|
| | | 8 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 72 0.99
|
| | | 8 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 72 1
|
| | | 8 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 73 1
|
| | | 8 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 74 0.99
|
| | | 7 1 1070101 1070102 1070103 1070104 1070105 1070106 1070113 [[5,2],[3,20]] 62 0.9
|
| | | 7 2 1070201 1070202 1070203 1070204 1070205 1070206 1070213 [[5,2],[3,20]] 62 0.9
|
| | | 7 3 1070301 1070302 1070303 1070304 1070305 1070306 1070313 [[5,2],[3,20]] 63 0.9
|
| | | 7 4 1070401 1070402 1070403 1070404 1070405 1070406 1070413 [[5,2],[3,20]] 64 0.9
|
| | | 7 5 1070501 1070502 1070503 1070504 1070505 1070506 1070513 [[5,2],[3,20]] 64 0.9
|
| | | 7 6 1070601 1070602 1070603 1070604 1070605 1070606 1070613 [[5,2],[3,20]] 65 0.9
|
| | | 7 7 1070701 1070702 1070703 1070704 1070705 1070706 1070713 [[5,2],[3,20]] 66 0.9
|
| | | 7 8 1070801 1070802 1070803 1070804 1070805 1070806 1070813 [[5,2],[3,20]] 66 0.9
|
| | | 7 9 1070901 1070902 1070903 1070904 1070905 1070906 1070913 [[5,2],[3,20]] 67 0.9
|
| | | 7 10 1071001 1071002 1071003 1071004 1071005 1071006 1071013 [[5,2],[3,20],[4,40]] 68 1
|
| | | 8 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 68 0.95
|
| | | 8 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 69 0.95
|
| | | 8 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 70 0.95
|
| | | 8 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 70 0.95
|
| | | 8 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 71 0.95
|
| | | 8 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 72 0.95
|
| | | 8 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 72 0.95
|
| | | 8 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 73 0.95
|
| | | 8 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 74 0.95
|
| | | 8 10 1051001 1051002 1051003 1051004 1051005 1051006 1051013 [[5,2],[3,20],[4,45]] 74 1
|
| | | 9 1 1060101 1060102 1060103 1060104 1060105 1060106 1060113 [[5,2],[3,20]] 75 1
|
| | | 9 2 1060201 1060202 1060203 1060204 1060205 1060206 1060213 [[5,2],[3,20]] 76 0.99
|
| | |
| | | 4 8 1040801 1040802 1040803 1040804 1040805 1040811 [[5,2],[3,20]] 38 1
|
| | | 4 9 1040901 1040902 1040903 1040904 1040905 1040911 [[5,2],[3,20]] 40 1
|
| | | 4 10 1041001 1041002 1041003 1041004 1041005 1041011 [[5,2],[3,20],[4,25]] 42 1
|
| | | 5 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 43 1
|
| | | 5 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 44 1
|
| | | 5 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 45 1
|
| | | 5 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 47 1
|
| | | 5 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 49 1
|
| | | 5 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 50 1
|
| | | 5 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 51 1
|
| | | 5 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 52 1
|
| | | 5 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 53 1
|
| | | 5 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 43 0.8
|
| | | 5 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 44 0.8
|
| | | 5 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 45 0.8
|
| | | 5 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 47 0.8
|
| | | 5 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 49 0.8
|
| | | 5 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 50 0.8
|
| | | 5 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 51 0.8
|
| | | 5 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 52 0.8
|
| | | 5 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 53 0.8
|
| | | 5 10 1051001 1051002 1051003 1051004 1051005 1051006 1051013 [[5,2],[3,20],[4,30]] 54 1
|
| | | 6 1 1060101 1060102 1060103 1060104 1060105 1060106 1060113 [[5,2],[3,20]] 55 1
|
| | | 6 2 1060201 1060202 1060203 1060204 1060205 1060206 1060213 [[5,2],[3,20]] 56 0.96
|
| | | 6 3 1060301 1060302 1060303 1060304 1060305 1060306 1060313 [[5,2],[3,20]] 56 1
|
| | | 6 4 1060401 1060402 1060403 1060404 1060405 1060406 1060413 [[5,2],[3,20]] 57 1
|
| | | 6 5 1060501 1060502 1060503 1060504 1060505 1060506 1060513 [[5,2],[3,20]] 58 0.97
|
| | | 6 6 1060601 1060602 1060603 1060604 1060605 1060606 1060613 [[5,2],[3,20]] 58 1
|
| | | 6 7 1060701 1060702 1060703 1060704 1060705 1060706 1060713 [[5,2],[3,20]] 59 1
|
| | | 6 8 1060801 1060802 1060803 1060804 1060805 1060806 1060813 [[5,2],[3,20]] 60 0.97
|
| | | 6 9 1060901 1060902 1060903 1060904 1060905 1060906 1060913 [[5,2],[3,20]] 60 1
|
| | | 6 1 1060101 1060102 1060103 1060104 1060105 1060106 1060113 [[5,2],[3,20]] 55 0.85
|
| | | 6 2 1060201 1060202 1060203 1060204 1060205 1060206 1060213 [[5,2],[3,20]] 56 0.85
|
| | | 6 3 1060301 1060302 1060303 1060304 1060305 1060306 1060313 [[5,2],[3,20]] 56 0.85
|
| | | 6 4 1060401 1060402 1060403 1060404 1060405 1060406 1060413 [[5,2],[3,20]] 57 0.85
|
| | | 6 5 1060501 1060502 1060503 1060504 1060505 1060506 1060513 [[5,2],[3,20]] 58 0.85
|
| | | 6 6 1060601 1060602 1060603 1060604 1060605 1060606 1060613 [[5,2],[3,20]] 58 0.85
|
| | | 6 7 1060701 1060702 1060703 1060704 1060705 1060706 1060713 [[5,2],[3,20]] 59 0.85
|
| | | 6 8 1060801 1060802 1060803 1060804 1060805 1060806 1060813 [[5,2],[3,20]] 60 0.85
|
| | | 6 9 1060901 1060902 1060903 1060904 1060905 1060906 1060913 [[5,2],[3,20]] 60 0.85
|
| | | 6 10 1061001 1061002 1061003 1061004 1061005 1061006 1061013 [[5,2],[3,20],[4,35]] 61 1
|
| | | 7 1 1070101 1070102 1070103 1070104 1070105 1070106 1070113 [[5,2],[3,20]] 62 0.98
|
| | | 7 2 1070201 1070202 1070203 1070204 1070205 1070206 1070213 [[5,2],[3,20]] 62 1
|
| | | 7 3 1070301 1070302 1070303 1070304 1070305 1070306 1070313 [[5,2],[3,20]] 63 1
|
| | | 7 4 1070401 1070402 1070403 1070404 1070405 1070406 1070413 [[5,2],[3,20]] 64 0.98
|
| | | 7 5 1070501 1070502 1070503 1070504 1070505 1070506 1070513 [[5,2],[3,20]] 64 1
|
| | | 7 6 1070601 1070602 1070603 1070604 1070605 1070606 1070613 [[5,2],[3,20]] 65 1
|
| | | 7 7 1070701 1070702 1070703 1070704 1070705 1070706 1070713 [[5,2],[3,20]] 66 0.99
|
| | | 7 8 1070801 1070802 1070803 1070804 1070805 1070806 1070813 [[5,2],[3,20]] 66 1
|
| | | 7 9 1070901 1070902 1070903 1070904 1070905 1070906 1070913 [[5,2],[3,20]] 67 1
|
| | | 7 10 1071001 1071002 1071003 1071004 1071005 1071006 1071013 [[5,2],[3,20],[4,40]] 68 0.96
|
| | | 8 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 68 1
|
| | | 8 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 69 1
|
| | | 8 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 70 0.99
|
| | | 8 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 70 1
|
| | | 8 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 71 1
|
| | | 8 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 72 0.99
|
| | | 8 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 72 1
|
| | | 8 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 73 1
|
| | | 8 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 74 0.99
|
| | | 7 1 1070101 1070102 1070103 1070104 1070105 1070106 1070113 [[5,2],[3,20]] 62 0.9
|
| | | 7 2 1070201 1070202 1070203 1070204 1070205 1070206 1070213 [[5,2],[3,20]] 62 0.9
|
| | | 7 3 1070301 1070302 1070303 1070304 1070305 1070306 1070313 [[5,2],[3,20]] 63 0.9
|
| | | 7 4 1070401 1070402 1070403 1070404 1070405 1070406 1070413 [[5,2],[3,20]] 64 0.9
|
| | | 7 5 1070501 1070502 1070503 1070504 1070505 1070506 1070513 [[5,2],[3,20]] 64 0.9
|
| | | 7 6 1070601 1070602 1070603 1070604 1070605 1070606 1070613 [[5,2],[3,20]] 65 0.9
|
| | | 7 7 1070701 1070702 1070703 1070704 1070705 1070706 1070713 [[5,2],[3,20]] 66 0.9
|
| | | 7 8 1070801 1070802 1070803 1070804 1070805 1070806 1070813 [[5,2],[3,20]] 66 0.9
|
| | | 7 9 1070901 1070902 1070903 1070904 1070905 1070906 1070913 [[5,2],[3,20]] 67 0.9
|
| | | 7 10 1071001 1071002 1071003 1071004 1071005 1071006 1071013 [[5,2],[3,20],[4,40]] 68 1
|
| | | 8 1 1050101 1050102 1050103 1050104 1050105 1050106 1050113 [[5,2],[3,20]] 68 0.95
|
| | | 8 2 1050201 1050202 1050203 1050204 1050205 1050206 1050213 [[5,2],[3,20]] 69 0.95
|
| | | 8 3 1050301 1050302 1050303 1050304 1050305 1050306 1050313 [[5,2],[3,20]] 70 0.95
|
| | | 8 4 1050401 1050402 1050403 1050404 1050405 1050406 1050413 [[5,2],[3,20]] 70 0.95
|
| | | 8 5 1050501 1050502 1050503 1050504 1050505 1050506 1050513 [[5,2],[3,20]] 71 0.95
|
| | | 8 6 1050601 1050602 1050603 1050604 1050605 1050606 1050613 [[5,2],[3,20]] 72 0.95
|
| | | 8 7 1050701 1050702 1050703 1050704 1050705 1050706 1050713 [[5,2],[3,20]] 72 0.95
|
| | | 8 8 1050801 1050802 1050803 1050804 1050805 1050806 1050813 [[5,2],[3,20]] 73 0.95
|
| | | 8 9 1050901 1050902 1050903 1050904 1050905 1050906 1050913 [[5,2],[3,20]] 74 0.95
|
| | | 8 10 1051001 1051002 1051003 1051004 1051005 1051006 1051013 [[5,2],[3,20],[4,45]] 74 1
|
| | | 9 1 1060101 1060102 1060103 1060104 1060105 1060106 1060113 [[5,2],[3,20]] 75 1
|
| | | 9 2 1060201 1060202 1060203 1060204 1060205 1060206 1060213 [[5,2],[3,20]] 76 0.99
|