| | |
| | | 8 2 2 601 [[1,100,0]]
|
| | | 8 3 4 7 [[1,100,0]]
|
| | | 9 1 1 69 [[1,200,0]]
|
| | | 9 2 2 802 [[1,200,0]]
|
| | | 9 2 2 701 [[1,200,0]]
|
| | | 9 3 3 250 [[1,200,0]]
|
| | | 10 1 1 83 [[1,200,0]]
|
| | | 10 2 2 1003 [[1,200,0]]
|
| | | 10 2 2 805 [[1,200,0]]
|
| | | 10 3 4 8 [[1,200,0]]
|
| | | 11 1 1 95 [[1,200,0]]
|
| | | 11 2 2 1201 [[1,200,0]]
|
| | | 11 2 2 910 [[1,200,0]]
|
| | | 11 3 3 350 [[1,200,0]]
|
| | | 12 1 1 115 [[1,300,0]]
|
| | | 12 2 2 1501 [[1,300,0]]
|
| | | 12 2 2 1110 [[1,300,0]]
|
| | | 12 3 4 9 [[1,300,0]]
|
| | | 13 1 1 135 [[1,300,0]]
|
| | | 13 2 2 1801 [[1,300,0]]
|
| | | 13 2 2 1310 [[1,300,0]]
|
| | | 13 3 3 400 [[1,300,0]]
|
| | | 14 1 1 155 [[1,300,0]]
|
| | | 14 2 2 2101 [[1,300,0]]
|
| | | 14 2 2 1510 [[1,300,0]]
|
| | | 14 3 4 10 [[1,200,0]]
|
| | | 15 1 1 182 [[1,400,0]]
|
| | | 15 2 2 2501 [[1,400,0]]
|
| | | 15 2 2 1810 [[1,400,0]]
|
| | | 15 3 4 11 [[1,400,0]]
|
| | | 16 1 1 209 [[1,400,0]]
|
| | | 16 2 2 2902 [[1,400,0]]
|
| | | 16 2 2 2110 [[1,400,0]]
|
| | | 16 3 4 12 [[1,400,0]]
|
| | | 17 1 1 235 [[1,400,0]]
|
| | | 17 2 2 3301 [[1,400,0]]
|
| | | 17 2 2 2410 [[1,400,0]]
|
| | | 17 3 4 13 [[1,400,0]]
|
| | | 18 1 1 269 [[1,500,0]]
|
| | | 18 2 2 3802 [[1,500,0]]
|
| | | 18 2 2 2805 [[1,500,0]]
|
| | | 18 3 4 14 [[1,500,0]]
|
| | | 19 1 1 303 [[1,500,0]]
|
| | | 19 2 2 4303 [[1,500,0]]
|
| | | 19 2 2 3310 [[1,500,0]]
|
| | | 19 3 4 15 [[1,500,0]]
|
| | | 20 1 1 335 [[1,500,0]]
|
| | | 20 2 2 4801 [[1,500,0]]
|
| | | 20 2 2 3710 [[1,500,0]]
|
| | | 20 3 4 16 [[1,500,0]]
|
| | | 21 1 1 375 [[1,500,0]]
|
| | | 21 2 2 5401 [[1,500,0]]
|
| | | 21 2 2 4110 [[1,500,0]]
|
| | | 21 3 4 17 [[1,500,0]]
|
| | | 22 1 1 415 [[1,600,0]]
|
| | | 22 2 2 6001 [[1,600,0]]
|
| | | 22 2 2 4510 [[1,600,0]]
|
| | | 22 3 4 18 [[1,600,0]]
|
| | | 23 1 1 455 [[1,600,0]]
|
| | | 23 2 2 6601 [[1,600,0]]
|
| | | 23 2 2 4910 [[1,600,0]]
|
| | | 23 3 4 19 [[1,600,0]]
|
| | | 24 1 1 502 [[1,600,0]]
|
| | | 24 2 2 7301 [[1,600,0]]
|
| | | 24 2 2 5410 [[1,600,0]]
|
| | | 24 3 4 20 [[1,600,0]]
|
| | | 25 1 1 549 [[1,600,0]]
|
| | | 25 2 2 8002 [[1,600,0]]
|
| | | 25 2 2 5910 [[1,600,0]]
|
| | | 25 3 4 21 [[1,600,0]]
|
| | | 26 1 1 595 [[1,600,0]]
|
| | | 26 2 2 8701 [[1,600,0]]
|
| | | 26 2 2 6410 [[1,600,0]]
|
| | | 26 3 4 22 [[1,600,0]]
|
| | | 27 1 1 649 [[1,600,0]]
|
| | | 27 2 2 9502 [[1,600,0]]
|
| | | 27 2 2 6910 [[1,600,0]]
|
| | | 27 3 4 23 [[1,600,0]]
|
| | |
| | | 8 2 2 601 [[1,100,0]]
|
| | | 8 3 4 7 [[1,100,0]]
|
| | | 9 1 1 69 [[1,200,0]]
|
| | | 9 2 2 802 [[1,200,0]]
|
| | | 9 2 2 701 [[1,200,0]]
|
| | | 9 3 3 250 [[1,200,0]]
|
| | | 10 1 1 83 [[1,200,0]]
|
| | | 10 2 2 1003 [[1,200,0]]
|
| | | 10 2 2 805 [[1,200,0]]
|
| | | 10 3 4 8 [[1,200,0]]
|
| | | 11 1 1 95 [[1,200,0]]
|
| | | 11 2 2 1201 [[1,200,0]]
|
| | | 11 2 2 910 [[1,200,0]]
|
| | | 11 3 3 350 [[1,200,0]]
|
| | | 12 1 1 115 [[1,300,0]]
|
| | | 12 2 2 1501 [[1,300,0]]
|
| | | 12 2 2 1110 [[1,300,0]]
|
| | | 12 3 4 9 [[1,300,0]]
|
| | | 13 1 1 135 [[1,300,0]]
|
| | | 13 2 2 1801 [[1,300,0]]
|
| | | 13 2 2 1310 [[1,300,0]]
|
| | | 13 3 3 400 [[1,300,0]]
|
| | | 14 1 1 155 [[1,300,0]]
|
| | | 14 2 2 2101 [[1,300,0]]
|
| | | 14 2 2 1510 [[1,300,0]]
|
| | | 14 3 4 10 [[1,200,0]]
|
| | | 15 1 1 182 [[1,400,0]]
|
| | | 15 2 2 2501 [[1,400,0]]
|
| | | 15 2 2 1810 [[1,400,0]]
|
| | | 15 3 4 11 [[1,400,0]]
|
| | | 16 1 1 209 [[1,400,0]]
|
| | | 16 2 2 2902 [[1,400,0]]
|
| | | 16 2 2 2110 [[1,400,0]]
|
| | | 16 3 4 12 [[1,400,0]]
|
| | | 17 1 1 235 [[1,400,0]]
|
| | | 17 2 2 3301 [[1,400,0]]
|
| | | 17 2 2 2410 [[1,400,0]]
|
| | | 17 3 4 13 [[1,400,0]]
|
| | | 18 1 1 269 [[1,500,0]]
|
| | | 18 2 2 3802 [[1,500,0]]
|
| | | 18 2 2 2805 [[1,500,0]]
|
| | | 18 3 4 14 [[1,500,0]]
|
| | | 19 1 1 303 [[1,500,0]]
|
| | | 19 2 2 4303 [[1,500,0]]
|
| | | 19 2 2 3310 [[1,500,0]]
|
| | | 19 3 4 15 [[1,500,0]]
|
| | | 20 1 1 335 [[1,500,0]]
|
| | | 20 2 2 4801 [[1,500,0]]
|
| | | 20 2 2 3710 [[1,500,0]]
|
| | | 20 3 4 16 [[1,500,0]]
|
| | | 21 1 1 375 [[1,500,0]]
|
| | | 21 2 2 5401 [[1,500,0]]
|
| | | 21 2 2 4110 [[1,500,0]]
|
| | | 21 3 4 17 [[1,500,0]]
|
| | | 22 1 1 415 [[1,600,0]]
|
| | | 22 2 2 6001 [[1,600,0]]
|
| | | 22 2 2 4510 [[1,600,0]]
|
| | | 22 3 4 18 [[1,600,0]]
|
| | | 23 1 1 455 [[1,600,0]]
|
| | | 23 2 2 6601 [[1,600,0]]
|
| | | 23 2 2 4910 [[1,600,0]]
|
| | | 23 3 4 19 [[1,600,0]]
|
| | | 24 1 1 502 [[1,600,0]]
|
| | | 24 2 2 7301 [[1,600,0]]
|
| | | 24 2 2 5410 [[1,600,0]]
|
| | | 24 3 4 20 [[1,600,0]]
|
| | | 25 1 1 549 [[1,600,0]]
|
| | | 25 2 2 8002 [[1,600,0]]
|
| | | 25 2 2 5910 [[1,600,0]]
|
| | | 25 3 4 21 [[1,600,0]]
|
| | | 26 1 1 595 [[1,600,0]]
|
| | | 26 2 2 8701 [[1,600,0]]
|
| | | 26 2 2 6410 [[1,600,0]]
|
| | | 26 3 4 22 [[1,600,0]]
|
| | | 27 1 1 649 [[1,600,0]]
|
| | | 27 2 2 9502 [[1,600,0]]
|
| | | 27 2 2 6910 [[1,600,0]]
|
| | | 27 3 4 23 [[1,600,0]]
|