| | |
| | | ItemColor MoneyBase AtkStep DefStep HPStep AttrLibCntList AttrRange AttrRangeDict
|
| | | 1 10 67 13 533 [0,0,0] {}
|
| | | 2 12 101 20 800 [0,0,0] {}
|
| | | 3 14 152 30 1200 [1,0,0] {}
|
| | | 4 16 228 45 1800 [1,0,0] 50|130 {21:[40,104],31:[60,156]}
|
| | | 5 18 342 68 2700 [1,0,0] 60|150 {21:[48,120],31:[72,180]}
|
| | | 6 20 513 102 4050 [1,1,0] 70|170 {21:[56,136],31:[84,204]}
|
| | | 7 22 770 153 6075 [1,1,1] 80|190 {21:[64,152],31:[96,228]}
|
| | | 8 24 1155 230 9113 [2,1,1] 90|210 {21:[72,168],31:[108,252]}
|
| | | 9 26 1733 345 13670 [2,1,1] 100|230 {21:[80,184],31:[120,276]}
|
| | | 10 28 2600 518 20505 [2,1,1] 110|250 {21:[88,200],31:[132,300]}
|
| | | 11 30 3900 777 30758 [2,1,1] 120|270 {21:[96,216],31:[144,324]}
|
| | | 12 32 5850 1166 46137 [2,1,1] 130|290 {21:[104,232],31:[156,348]}
|
| | | 13 34 8775 1749 69206 [2,1,1] 140|310 {21:[112,248],31:[168,372]}
|
| | | 14 36 13163 2624 103809 [2,1,1] 150|330 {21:[120,264],31:[180,396]}
|
| | | 15 38 19745 3936 155714 [2,1,1] 160|350 {21:[128,280],31:[192,420]}
|
| | | 16 40 29618 5904 233571 [2,1,1] 170|370 {21:[136,296],31:[204,444]}
|
| | | 17 42 44427 8856 350357 [2,1,1] 180|390 {21:[144,312],31:[216,468]}
|
| | | 18 44 66641 13284 525536 [2,1,1] 190|410 {21:[152,328],31:[228,492]}
|
| | | 19 46 99962 19926 788304 [2,1,1] 200|430 {21:[160,344],31:[240,516]}
|
| | | 20 48 149943 29889 1182456 [2,1,1] 210|450 {21:[168,360],31:[252,540]}
|
| | | 21 50 224915 44834 1773684 [2,1,1] 220|470 {21:[176,376],31:[264,564]}
|
| | | 22 52 337373 67251 2660526 [2,1,1] 230|490 {21:[184,392],31:[276,588]}
|
| | | 23 54 506060 100877 3990789 [2,1,1] 240|510 {21:[192,408],31:[288,612]}
|
| | | 24 56 759090 151316 5986184 [2,1,1] 250|530 {21:[200,424],31:[300,636]}
|
| | | 1 30 42 8 333 [0,0,0] {}
|
| | | 2 30 63 12 500 [0,0,0] {}
|
| | | 3 30 95 18 750 [1,0,0] {}
|
| | | 4 30 143 27 1125 [1,0,0] 50|130 {21:[40,104],31:[60,156]}
|
| | | 5 30 215 41 1688 [1,0,0] 60|150 {21:[48,120],31:[72,180]}
|
| | | 6 30 323 62 2532 [1,1,0] 70|170 {21:[56,136],31:[84,204]}
|
| | | 7 30 485 93 3798 [1,1,1] 80|190 {21:[64,152],31:[96,228]}
|
| | | 8 30 728 140 5697 [2,1,1] 90|210 {21:[72,168],31:[108,252]}
|
| | | 9 30 1092 210 8546 [2,1,1] 100|230 {21:[80,184],31:[120,276]}
|
| | | 10 30 1638 315 12819 [2,1,1] 110|250 {21:[88,200],31:[132,300]}
|
| | | 11 30 2457 473 19229 [2,1,1] 120|270 {21:[96,216],31:[144,324]}
|
| | | 12 30 3686 710 28844 [2,1,1] 130|290 {21:[104,232],31:[156,348]}
|
| | | 13 30 5529 1065 43266 [2,1,1] 140|310 {21:[112,248],31:[168,372]}
|
| | | 14 30 8294 1598 64899 [2,1,1] 150|330 {21:[120,264],31:[180,396]}
|
| | | 15 30 12441 2397 97349 [2,1,1] 160|350 {21:[128,280],31:[192,420]}
|
| | | 16 30 17417 3356 136289 [2,1,1] 170|370 {21:[136,296],31:[204,444]}
|
| | | 17 30 24384 4698 190805 [2,1,1] 180|390 {21:[144,312],31:[216,468]}
|
| | | 18 30 34138 6577 267127 [2,1,1] 190|410 {21:[152,328],31:[228,492]}
|
| | | 19 30 47793 9208 373978 [2,1,1] 200|430 {21:[160,344],31:[240,516]}
|
| | | 20 30 66910 12891 523569 [2,1,1] 210|450 {21:[168,360],31:[252,540]}
|
| | | 21 30 93674 18047 732997 [2,1,1] 220|470 {21:[176,376],31:[264,564]}
|
| | | 22 30 131144 25266 1026196 [2,1,1] 230|490 {21:[184,392],31:[276,588]}
|
| | | 23 30 183602 35372 1436674 [2,1,1] 240|510 {21:[192,408],31:[288,612]}
|
| | | 24 30 257043 49521 2011344 [2,1,1] 250|530 {21:[200,424],31:[300,636]}
|
| | |
| | | LV AtkRatio MaxHPRatio DefRatio StunRateRatio SuperHitRateRatio ComboRateRatio MissRateRatio ParryRateRatio SuckHPPerRatio StunRateDefRatio SuperHitRateDefRatio ComboRateDefRatio MissRateDefRatio ParryRateDefRatio SuckHPPerDefRatio FinalDamPerRatio FinalDamPerDefRatio PhyDamPerRatio PhyDamPerDefRatio MagDamPerRatio MagDamPerDefRatio NormalSkillPerRatio NormalSkillPerDefRatio AngerSkillPerRatio AngerSkillPerDefRatio SuperDamPerRatio SuperDamPerDefRatio CurePerRatio CurePerDefRatio ShieldPerRatio ShieldPerDefRatio DOTPerRatio DOTPerDefRatio WeiFinalDamPerRatio WeiFinalDamPerDefRatio ShuFinalDamPerRatio ShuFinalDamPerDefRatio WuFinalDamPerRatio WuFinalDamPerDefRatio QunFinalDamPerRatio QunFinalDamPerDefRatio
|
| | | 1 20 4 100 3625 3625 3625 3625 3625 3625 2416 2416 2416 2416 2416 2416 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625
|
| | | 2 20 4 100 3625 3625 3625 3625 3625 3625 2416 2416 2416 2416 2416 2416 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625
|
| | | 3 19.9 3.95 100 3697 3697 3697 3697 3697 3697 2464 2464 2464 2464 2464 2464 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697
|
| | | 4 19.8 3.9 100 3770 3770 3770 3770 3770 3770 2513 2513 2513 2513 2513 2513 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770
|
| | | 5 19.7 3.85 100 3845 3845 3845 3845 3845 3845 2563 2563 2563 2563 2563 2563 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845
|
| | | 6 19.6 3.8 100 3921 3921 3921 3921 3921 3921 2614 2614 2614 2614 2614 2614 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921
|
| | | 7 19.5 3.75 100 3999 3999 3999 3999 3999 3999 2666 2666 2666 2666 2666 2666 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999
|
| | | 8 19.4 3.7 100 4078 4078 4078 4078 4078 4078 2718 2718 2718 2718 2718 2718 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078
|
| | | 9 19.3 3.65 100 4159 4159 4159 4159 4159 4159 2772 2772 2772 2772 2772 2772 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159
|
| | | 10 19.2 3.6 100 4242 4242 4242 4242 4242 4242 2828 2828 2828 2828 2828 2828 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242
|
| | | 11 19.1 3.68 100 4326 4326 4326 4326 4326 4326 2884 2884 2884 2884 2884 2884 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326
|
| | | 12 17.57 3.58 90 5969 5969 5969 5969 5969 5969 3979 3979 3979 3979 3979 3979 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969
|
| | | 13 16.16 3.48 81 8237 8237 8237 8237 8237 8237 5491 5491 5491 5491 5491 5491 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237
|
| | | 14 14.87 3.38 72.9 11367 11367 11367 11367 11367 11367 7578 7578 7578 7578 7578 7578 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367
|
| | | 15 13.68 3.28 65.61 15686 15686 15686 15686 15686 15686 10457 10457 10457 10457 10457 10457 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686
|
| | | 16 12.59 3.18 59.05 21646 21646 21646 21646 21646 21646 14430 14430 14430 14430 14430 14430 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646
|
| | | 17 11.58 3.08 53.15 29871 29871 29871 29871 29871 29871 19914 19914 19914 19914 19914 19914 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871
|
| | | 18 10.65 2.98 47.84 41221 41221 41221 41221 41221 41221 27480 27480 27480 27480 27480 27480 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221
|
| | | 19 9.8 2.88 43.06 56884 56884 56884 56884 56884 56884 37922 37922 37922 37922 37922 37922 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884
|
| | | 20 9.02 2.78 38.75 78499 78499 78499 78499 78499 78499 52332 52332 52332 52332 52332 52332 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499
|
| | | 21 8.3 2.68 34.88 108328 108328 108328 108328 108328 108328 72218 72218 72218 72218 72218 72218 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328
|
| | | 22 7.64 2.58 31.39 149492 149492 149492 149492 149492 149492 99661 99661 99661 99661 99661 99661 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492
|
| | | 23 7.03 2.48 28.25 206298 206298 206298 206298 206298 206298 137532 137532 137532 137532 137532 137532 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298
|
| | | 24 6.47 2.38 25.43 284691 284691 284691 284691 284691 284691 189794 189794 189794 189794 189794 189794 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691
|
| | | 25 5.95 2.28 22.89 392873 392873 392873 392873 392873 392873 261915 261915 261915 261915 261915 261915 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873
|
| | | 26 5.47 2.18 20.6 542164 542164 542164 542164 542164 542164 361442 361442 361442 361442 361442 361442 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164
|
| | | 27 5.03 2.08 18.54 748186 748186 748186 748186 748186 748186 498790 498790 498790 498790 498790 498790 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186
|
| | | 28 4.63 1.98 16.69 1032496 1032496 1032496 1032496 1032496 1032496 688330 688330 688330 688330 688330 688330 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496
|
| | | 29 4.26 1.88 15.02 1424844 1424844 1424844 1424844 1424844 1424844 949896 949896 949896 949896 949896 949896 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844
|
| | | 30 3.41 1.5 12.02 1966284 1966284 1966284 1966284 1966284 1966284 1310856 1310856 1310856 1310856 1310856 1310856 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284
|
| | | 31 2.73 1.2 9.62 2713471 2713471 2713471 2713471 2713471 2713471 1808980 1808980 1808980 1808980 1808980 1808980 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471
|
| | | 32 2.18 0.96 7.7 3744589 3744589 3744589 3744589 3744589 3744589 2496392 2496392 2496392 2496392 2496392 2496392 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589
|
| | | 33 1.74 0.77 6.16 5167532 5167532 5167532 5167532 5167532 5167532 3445021 3445021 3445021 3445021 3445021 3445021 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532
|
| | | 34 1.39 0.62 4.93 7131194 7131194 7131194 7131194 7131194 7131194 4754129 4754129 4754129 4754129 4754129 4754129 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194
|
| | | 35 1.11 0.5 3.94 9841047 9841047 9841047 9841047 9841047 9841047 6560698 6560698 6560698 6560698 6560698 6560698 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047
|
| | | 3 20 4 100 3697 3697 3697 3697 3697 3697 2464 2464 2464 2464 2464 2464 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697
|
| | | 4 20 4 100 3770 3770 3770 3770 3770 3770 2513 2513 2513 2513 2513 2513 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770
|
| | | 5 20 4 100 3845 3845 3845 3845 3845 3845 2563 2563 2563 2563 2563 2563 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845
|
| | | 6 20 4 100 4037 4037 4037 4037 4037 4037 2691 2691 2691 2691 2691 2691 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037
|
| | | 7 20 4 100 4440 4440 4440 4440 4440 4440 2960 2960 2960 2960 2960 2960 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440
|
| | | 8 20 4 100 4884 4884 4884 4884 4884 4884 3256 3256 3256 3256 3256 3256 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884
|
| | | 9 20 4 100 5616 5616 5616 5616 5616 5616 3744 3744 3744 3744 3744 3744 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616
|
| | | 10 20 4 100 6458 6458 6458 6458 6458 6458 4305 4305 4305 4305 4305 4305 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458
|
| | | 11 20 4 100 7426 7426 7426 7426 7426 7426 4950 4950 4950 4950 4950 4950 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426
|
| | | 12 20 4 100 8539 8539 8539 8539 8539 8539 5692 5692 5692 5692 5692 5692 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539
|
| | | 13 20 4 100 9819 9819 9819 9819 9819 9819 6546 6546 6546 6546 6546 6546 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819
|
| | | 14 20 4 100 12764 12764 12764 12764 12764 12764 8509 8509 8509 8509 8509 8509 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764
|
| | | 15 20 4 100 16593 16593 16593 16593 16593 16593 11062 11062 11062 11062 11062 11062 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593
|
| | | 16 20 4 100 21570 21570 21570 21570 21570 21570 14380 14380 14380 14380 14380 14380 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570
|
| | | 17 20 4 100 30198 30198 30198 30198 30198 30198 20132 20132 20132 20132 20132 20132 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198
|
| | | 18 20 4 100 42277 42277 42277 42277 42277 42277 28184 28184 28184 28184 28184 28184 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277
|
| | | 19 20 4 100 59187 59187 59187 59187 59187 59187 39458 39458 39458 39458 39458 39458 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187
|
| | | 20 20 4 100 88780 88780 88780 88780 88780 88780 59186 59186 59186 59186 59186 59186 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780
|
| | | 21 20 4 100 159804 159804 159804 159804 159804 159804 106536 106536 106536 106536 106536 106536 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804
|
| | | 22 20 4 100 287647 287647 287647 287647 287647 287647 191764 191764 191764 191764 191764 191764 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647
|
| | | 23 20 4 100 517764 517764 517764 517764 517764 517764 345176 345176 345176 345176 345176 345176 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764
|
| | | 24 20 4 100 931975 931975 931975 931975 931975 931975 621316 621316 621316 621316 621316 621316 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975
|
| | | 25 20 4 100 1677555 1677555 1677555 1677555 1677555 1677555 1118370 1118370 1118370 1118370 1118370 1118370 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555
|
| | | 26 20 4 100 3019599 3019599 3019599 3019599 3019599 3019599 2013066 2013066 2013066 2013066 2013066 2013066 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599
|
| | | 27 20 4 100 5435278 5435278 5435278 5435278 5435278 5435278 3623518 3623518 3623518 3623518 3623518 3623518 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278
|
| | | 28 20 4 100 9783500 9783500 9783500 9783500 9783500 9783500 6522333 6522333 6522333 6522333 6522333 6522333 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500
|
| | | 29 20 4 100 17610300 17610300 17610300 17610300 17610300 17610300 11740200 11740200 11740200 11740200 11740200 11740200 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300
|
| | |
| | | Lv LvLarge LVMax AddAttrType AddAttrNum
|
| | | 0 0 5
|
| | | 1 1 10 6|7|8 470|58|11
|
| | | 2 1 15 6|7|8 1108|138|27
|
| | | 3 1 22 6|7|8 1774|221|44
|
| | | 4 4 29 6|7|8 3496|437|87
|
| | | 5 4 35 6|7|8 4560|570|114
|
| | | 6 4 42 6|7|8 5472|684|136
|
| | | 7 7 49 6|7|8 6536|817|163
|
| | | 8 7 55 6|7|8 7600|950|190
|
| | | 9 7 69 6|7|8 8891|1111|222
|
| | | 10 10 83 6|7|8 16016|2002|400
|
| | | 11 10 95 6|7|8 19219|2402|480
|
| | | 12 10 115 6|7|8 21964|2745|549
|
| | | 13 13 135 6|7|8 26540|3317|663
|
| | | 14 13 155 6|7|8 32009|4001|800
|
| | | 15 13 182 6|7|8 53664|6708|1341
|
| | | 16 16 209 6|7|8 64289|8036|1607
|
| | | 17 16 235 6|7|8 110870|13858|2771
|
| | | 18 16 269 6|7|8 186212|23276|4655
|
| | | 19 19 303 6|7|8 319686|39960|7992
|
| | | 20 19 335 6|7|8 554012|69251|13850
|
| | | 21 19 375 6|7|8 1339318|167414|33483
|
| | | 22 22 415 6|7|8 2248091|281011|56202
|
| | | 23 22 455 6|7|8 3730425|466303|93260
|
| | | 24 22 502 6|7|8 6122171|765271|153054
|
| | | 25 25 549 6|7|8 10105515|1263189|252637
|
| | | 26 25 595 6|7|8 15460612|1932576|386515
|
| | | 27 25 649 6|7|8 23731502|2966437|593287
|
| | | 28 28 703 6|7|8 50660404|6332550|1266510
|
| | | 29 28 755 6|7|8 103338275|12917284|2583456
|
| | | 1 1 10 6|7|8 235|29|5
|
| | | 2 1 15 6|7|8 554|69|13
|
| | | 3 1 22 6|7|8 887|110|22
|
| | | 4 4 29 6|7|8 1748|218|43
|
| | | 5 4 35 6|7|8 2280|285|57
|
| | | 6 4 42 6|7|8 2736|342|68
|
| | | 7 7 49 6|7|8 3268|408|81
|
| | | 8 7 55 6|7|8 3800|475|95
|
| | | 9 7 69 6|7|8 4445|555|111
|
| | | 10 10 83 6|7|8 8008|1001|200
|
| | | 11 10 95 6|7|8 9609|1201|240
|
| | | 12 10 115 6|7|8 10982|1372|274
|
| | | 13 13 135 6|7|8 13659|1707|341
|
| | | 14 13 155 6|7|8 23392|2924|584
|
| | | 15 13 182 6|7|8 27414|3426|685
|
| | | 16 16 209 6|7|8 48290|6036|1207
|
| | | 17 16 235 6|7|8 83236|10404|2080
|
| | | 18 16 269 6|7|8 139750|17468|3493
|
| | | 19 19 303 6|7|8 245604|30700|6140
|
| | | 20 19 335 6|7|8 607835|75979|15195
|
| | | 21 19 375 6|7|8 1004619|125577|25115
|
| | | 22 22 415 6|7|8 1686072|210759|42151
|
| | | 23 22 455 6|7|8 2797980|349747|69949
|
| | | 24 22 502 6|7|8 4580995|572624|114524
|
| | | 25 25 549 6|7|8 7073704|884213|176842
|
| | | 26 25 595 6|7|8 10822519|1352814|270563
|
| | | 27 25 649 6|7|8 16417618|2052202|410440
|
| | | 28 28 703 6|7|8 25330202|3166275|633255
|
| | | 29 28 755 6|7|8 51669137|6458642|1291728
|
| | |
| | | 8 2 2 505 [[1,100,0]]
|
| | | 8 3 4 7 [[1,100,0]]
|
| | | 9 1 1 69 [[1,200,0]]
|
| | | 9 2 2 803 [[1,200,0]]
|
| | | 9 2 2 706 [[1,200,0]]
|
| | | 9 3 3 250 [[1,200,0]]
|
| | | 10 1 1 83 [[1,200,0]]
|
| | | 10 2 2 1101 [[1,200,0]]
|
| | | 10 3 3 300 [[1,200,0]]
|
| | | 10 2 2 907 [[1,200,0]]
|
| | | 10 3 4 8 [[1,200,0]]
|
| | | 11 1 1 95 [[1,200,0]]
|
| | | 11 2 2 1305 [[1,200,0]]
|
| | | 11 3 4 8 [[1,200,0]]
|
| | | 11 2 2 1105 [[1,200,0]]
|
| | | 11 3 3 350 [[1,200,0]]
|
| | | 12 1 1 115 [[1,300,0]]
|
| | | 12 2 2 1705 [[1,300,0]]
|
| | | 12 3 3 350 [[1,300,0]]
|
| | | 12 2 2 1405 [[1,300,0]]
|
| | | 12 3 4 9 [[1,300,0]]
|
| | | 13 1 1 135 [[1,300,0]]
|
| | | 13 2 2 2105 [[1,300,0]]
|
| | | 13 3 4 9 [[1,300,0]]
|
| | | 13 2 2 1705 [[1,300,0]]
|
| | | 13 3 3 400 [[1,300,0]]
|
| | | 14 1 1 155 [[1,300,0]]
|
| | | 14 2 2 2505 [[1,300,0]]
|
| | | 14 3 3 400 [[1,200,0]]
|
| | | 14 2 2 2005 [[1,300,0]]
|
| | | 14 3 4 10 [[1,200,0]]
|
| | | 15 1 1 182 [[1,400,0]]
|
| | | 15 2 2 3009 [[1,400,0]]
|
| | | 15 3 4 10 [[1,400,0]]
|
| | | 15 2 2 2405 [[1,400,0]]
|
| | | 15 3 4 11 [[1,400,0]]
|
| | | 16 1 1 209 [[1,400,0]]
|
| | | 16 2 2 3603 [[1,400,0]]
|
| | | 16 3 4 11 [[1,400,0]]
|
| | | 16 2 2 2805 [[1,400,0]]
|
| | | 16 3 4 12 [[1,400,0]]
|
| | | 17 1 1 235 [[1,400,0]]
|
| | | 17 2 2 4105 [[1,400,0]]
|
| | | 17 3 4 12 [[1,400,0]]
|
| | | 17 2 2 3204 [[1,400,0]]
|
| | | 17 3 4 13 [[1,400,0]]
|
| | | 18 1 1 269 [[1,500,0]]
|
| | | 18 2 2 4803 [[1,500,0]]
|
| | | 18 3 4 13 [[1,500,0]]
|
| | | 18 2 2 3705 [[1,500,0]]
|
| | | 18 3 4 14 [[1,500,0]]
|
| | | 19 1 1 303 [[1,500,0]]
|
| | | 19 2 2 5501 [[1,500,0]]
|
| | | 19 3 4 14 [[1,500,0]]
|
| | | 19 2 2 4206 [[1,500,0]]
|
| | | 19 3 4 15 [[1,500,0]]
|
| | | 20 1 1 335 [[1,500,0]]
|
| | | 20 2 2 6105 [[1,500,0]]
|
| | | 20 3 4 15 [[1,500,0]]
|
| | | 20 2 2 4704 [[1,500,0]]
|
| | | 20 3 4 16 [[1,500,0]]
|
| | | 21 1 1 375 [[1,500,0]]
|
| | | 21 2 2 6905 [[1,500,0]]
|
| | | 21 3 4 16 [[1,500,0]]
|
| | | 21 2 2 5304 [[1,500,0]]
|
| | | 21 3 4 17 [[1,500,0]]
|
| | | 22 1 1 415 [[1,600,0]]
|
| | | 22 2 2 7705 [[1,600,0]]
|
| | | 22 3 4 17 [[1,600,0]]
|
| | | 22 2 2 5904 [[1,600,0]]
|
| | | 22 3 4 18 [[1,600,0]]
|
| | | 23 1 1 455 [[1,600,0]]
|
| | | 23 2 2 8505 [[1,600,0]]
|
| | | 23 3 4 18 [[1,600,0]]
|
| | | 23 2 2 6504 [[1,600,0]]
|
| | | 23 3 4 19 [[1,600,0]]
|
| | | 24 1 1 502 [[1,600,0]]
|
| | | 24 2 2 9409 [[1,600,0]]
|
| | | 24 3 4 19 [[1,600,0]]
|
| | | 24 2 2 7205 [[1,600,0]]
|
| | | 24 3 4 20 [[1,600,0]]
|
| | | 25 1 1 549 [[1,600,0]]
|
| | | 25 2 2 10403 [[1,600,0]]
|
| | | 25 3 4 20 [[1,600,0]]
|
| | | 25 2 2 7905 [[1,600,0]]
|
| | | 25 3 4 21 [[1,600,0]]
|
| | | 26 1 1 595 [[1,600,0]]
|
| | | 26 2 2 11305 [[1,600,0]]
|
| | | 26 3 4 21 [[1,600,0]]
|
| | | 26 2 2 8604 [[1,600,0]]
|
| | | 26 3 4 22 [[1,600,0]]
|
| | | 27 1 1 649 [[1,600,0]]
|
| | | 27 2 2 12403 [[1,600,0]]
|
| | | 27 2 2 9405 [[1,600,0]]
|
| | | 27 3 4 23 [[1,600,0]]
|
| | | 28 1 1 703 [[1,600,0]]
|
| | | 28 2 2 13501 [[1,600,0]]
|
| | | 28 2 2 10206 [[1,600,0]]
|
| | | 28 3 4 25 [[1,600,0]]
|
| | | 29 1 1 755 [[1,600,0]]
|
| | | 29 2 2 14505 [[1,600,0]]
|
| | | 29 2 2 11004 [[1,600,0]]
|
| | | 29 3 4 27 [[1,600,0]]
|
| | |
| | | TaskID TaskGroup TaskType TaskConds NeedValue AwardItemList
|
| | | 1001 0 8 [42] 300 [[30,5,0]]
|
| | | 1002 0 2 [] 2 [[30,5,0]]
|
| | | 1003 0 5 [] 5 [[30,5,0]]
|
| | | 1004 0 6 [] 2 [[30,5,0]]
|
| | | 1005 0 8 [42] 500 [[30,5,0]]
|
| | | 1006 0 2 [] 3 [[30,5,0]]
|
| | | 1007 0 5 [] 10 [[30,5,0]]
|
| | | 1008 0 6 [] 3 [[30,5,0]]
|
| | | 1009 0 8 [42] 500 [[30,5,0]]
|
| | | 1010 0 2 [] 4 [[30,5,0]]
|
| | | 1011 0 5 [] 15 [[30,5,0]]
|
| | | 1012 0 6 [] 4 [[30,5,0]]
|
| | | 1013 0 8 [42] 1000 [[30,5,0]]
|
| | | 1014 0 2 [] 5 [[30,5,0]]
|
| | | 1015 0 5 [] 20 [[30,5,0]]
|
| | | 1016 0 6 [] 5 [[30,5,0]]
|
| | | 1001 0 4 [41] 5 [[3,5,0]]
|
| | | 1002 0 7 [] 5 [[3,5,0]]
|
| | | 1003 0 9 [1] 5 [[3,5,0]]
|
| | | 1004 0 5 [] 2 [[3,5,0]]
|
| | | 1005 0 1 [101] 1 [[3,5,0]]
|
| | | 1006 0 4 [41] 5 [[3,5,0]]
|
| | | 1007 0 7 [] 5 [[3,5,0]]
|
| | | 1008 0 8 [42] 1000 [[3,5,0]]
|
| | | 1009 0 1 [102] 1 [[3,5,0]]
|
| | | 1010 0 5 [] 3 [[3,5,0]]
|
| | | 1011 0 4 [41] 5 [[3,5,0]]
|
| | | 1012 0 7 [] 5 [[3,5,0]]
|
| | | 1013 0 3 [] 5 [[3,5,0]]
|
| | | 1014 0 1 [103] 1 [[3,5,0]]
|
| | | 1015 0 5 [] 5 [[3,5,0]]
|
| | | 1016 0 6 [] 1 [[3,5,0]]
|
| | | 1017 0 1 [104] 1 [[3,5,0]]
|
| | | 1018 0 4 [41] 10 [[3,5,0]]
|
| | | 1019 0 7 [] 10 [[3,5,0]]
|
| | | 1020 0 3 [] 5 [[3,5,0]]
|
| | | 1021 0 1 [105] 1 [[3,5,0]]
|
| | | 1022 0 4 [41] 10 [[3,5,0]]
|
| | | 1023 0 7 [] 10 [[3,5,0]]
|
| | | 1024 0 3 [] 5 [[3,5,0]]
|
| | | 1025 0 1 [201] 1 [[3,5,0]]
|
| | | 1026 0 5 [] 10 [[3,5,0]]
|
| | | 1027 0 4 [41] 10 [[3,5,0]]
|
| | | 1028 0 7 [] 10 [[3,5,0]]
|
| | | 1029 0 9 [3] 2 [[3,5,0]]
|
| | | 1030 0 1 [202] 1 [[3,5,0]]
|
| | | 1031 0 5 [] 1 [[3,5,0]]
|
| | | 1032 0 4 [41] 15 [[3,5,0]]
|
| | | 1033 0 7 [] 10 [[3,5,0]]
|
| | | 1034 0 3 [] 10 [[3,5,0]]
|
| | | 1035 0 1 [203] 1 [[3,5,0]]
|
| | | 1036 0 5 [] 13 [[3,5,0]]
|
| | | 1037 0 4 [41] 20 [[3,5,0]]
|
| | | 1038 0 7 [] 10 [[3,5,0]]
|
| | | 1039 0 3 [] 10 [[3,5,0]]
|
| | | 1040 0 1 [204] 1 [[3,5,0]]
|
| | | 1041 0 5 [] 15 [[3,5,0]]
|
| | | 1042 0 4 [41] 20 [[3,5,0]]
|
| | | 1043 0 7 [] 10 [[3,5,0]]
|
| | | 1044 0 1 [205] 1 [[3,5,0]]
|
| | | 1045 0 7 [] 10 [[3,5,0]]
|
| | | 1046 0 3 [] 10 [[3,5,0]]
|
| | | 1047 0 1 [301] 1 [[3,10,0]]
|
| | | 1048 0 4 [41] 20 [[3,10,0]]
|
| | | 1049 0 3 [] 10 [[3,10,0]]
|
| | | 1050 0 7 [] 10 [[3,10,0]]
|
| | | 1051 0 3 [] 10 [[3,10,0]]
|
| | | 1052 0 1 [302] 1 [[3,10,0]]
|
| | | 1053 0 3 [] 10 [[3,10,0]]
|
| | | 1054 0 4 [41] 20 [[3,10,0]]
|
| | | 1055 0 7 [] 10 [[3,10,0]]
|
| | | 1056 0 3 [] 10 [[3,10,0]]
|
| | | 1057 0 1 [303] 1 [[3,10,0]]
|
| | | 1058 0 3 [] 10 [[3,10,0]]
|
| | | 1059 0 4 [41] 20 [[3,10,0]]
|
| | | 1060 0 7 [] 10 [[3,10,0]]
|
| | | 1061 0 3 [] 10 [[3,10,0]]
|
| | | 1062 0 1 [304] 1 [[3,10,0]]
|
| | | 1063 0 5 [] 21 [[3,10,0]]
|
| | | 1064 0 4 [41] 20 [[3,10,0]]
|
| | | 1065 0 7 [] 10 [[3,10,0]]
|
| | | 1066 0 3 [] 10 [[3,10,0]]
|
| | | 1067 0 1 [305] 1 [[3,10,0]]
|
| | | 1068 0 3 [] 10 [[3,10,0]]
|
| | | 1069 0 4 [41] 20 [[3,10,0]]
|
| | | 1070 0 7 [] 10 [[3,10,0]]
|
| | | 1071 0 3 [] 10 [[3,10,0]]
|
| | | 1072 0 1 [306] 1 [[3,10,0]]
|
| | | 1073 0 5 [] 22 [[3,10,0]]
|
| | | 1074 0 4 [41] 30 [[3,10,0]]
|
| | | 1075 0 7 [] 10 [[3,10,0]]
|
| | | 1076 0 1 [307] 1 [[3,10,0]]
|
| | | 1077 0 5 [] 23 [[3,10,0]]
|
| | | 1078 0 4 [41] 30 [[3,10,0]]
|
| | | 1079 0 7 [] 10 [[3,10,0]]
|
| | | 1080 0 3 [] 10 [[3,10,0]]
|
| | | 1081 0 1 [308] 1 [[3,10,0]]
|
| | | 1082 0 8 [42] 1000 [[3,10,0]]
|
| | | 1083 0 4 [41] 30 [[3,10,0]]
|
| | | 1084 0 7 [] 10 [[3,10,0]]
|
| | | 1085 0 3 [] 10 [[3,10,0]]
|
| | | 1086 0 1 [401] 1 [[3,10,0]]
|
| | | 1087 0 4 [41] 35 [[3,10,0]]
|
| | | 1088 0 7 [] 10 [[3,10,0]]
|
| | | 1089 0 3 [] 10 [[3,10,0]]
|
| | | 1090 0 8 [42] 1000 [[3,10,0]]
|
| | | 1091 0 1 [402] 1 [[3,10,0]]
|
| | | 1092 0 4 [41] 35 [[3,10,0]]
|
| | | 1093 0 7 [] 10 [[3,10,0]]
|
| | | 1094 0 3 [] 10 [[3,10,0]]
|
| | | 1095 0 8 [42] 1000 [[3,10,0]]
|
| | | 1096 0 1 [403] 1 [[3,10,0]]
|
| | | 1097 0 4 [41] 35 [[3,10,0]]
|
| | | 1098 0 7 [] 10 [[3,10,0]]
|
| | | 1099 0 3 [] 10 [[3,10,0]]
|
| | | 1100 0 8 [42] 1000 [[3,10,0]]
|
| | | 1101 0 1 [404] 1 [[3,10,0]]
|
| | | 1102 0 4 [41] 35 [[3,10,0]]
|
| | | 1103 0 7 [] 10 [[3,10,0]]
|
| | | 1104 0 3 [] 10 [[3,10,0]]
|
| | | 1105 0 8 [42] 1000 [[3,10,0]]
|
| | | 1106 0 1 [405] 1 [[3,10,0]]
|
| | | 1107 0 4 [41] 35 [[3,10,0]]
|
| | | 1108 0 7 [] 10 [[3,10,0]]
|
| | | 1109 0 3 [] 10 [[3,10,0]]
|
| | | 1110 0 8 [42] 1000 [[3,10,0]]
|
| | | 1111 0 1 [406] 1 [[3,10,0]]
|
| | | 1112 0 4 [41] 35 [[3,10,0]]
|
| | | 1113 0 7 [] 10 [[3,10,0]]
|
| | | 1114 0 3 [] 10 [[3,10,0]]
|
| | | 1115 0 8 [42] 1000 [[3,10,0]]
|
| | | 1116 0 1 [407] 1 [[3,10,0]]
|
| | | 1117 0 4 [41] 35 [[3,10,0]]
|
| | | 1118 0 7 [] 10 [[3,10,0]]
|
| | | 1119 0 3 [] 10 [[3,10,0]]
|
| | | 1120 0 8 [42] 1000 [[3,10,0]]
|
| | | 1121 0 1 [408] 1 [[3,10,0]]
|
| | | 1122 0 4 [41] 35 [[3,10,0]]
|
| | | 1123 0 7 [] 10 [[3,10,0]]
|
| | | 1124 0 3 [] 10 [[3,10,0]]
|
| | | 1125 0 8 [42] 1000 [[3,10,0]]
|
| | | 1126 0 1 [409] 1 [[3,10,0]]
|
| | | 1127 0 4 [41] 35 [[3,10,0]]
|
| | | 1128 0 7 [] 10 [[3,10,0]]
|
| | | 1129 0 3 [] 10 [[3,10,0]]
|
| | | 1130 0 8 [42] 1000 [[3,10,0]]
|
| | | 1131 0 1 [410] 1 [[3,10,0]]
|
| | | 1132 0 4 [41] 35 [[3,10,0]]
|
| | | 1133 0 8 [42] 1000 [[3,10,0]]
|
| | | 1134 0 7 [] 10 [[3,10,0]]
|
| | | 1135 0 3 [] 10 [[3,10,0]]
|
| | | 1136 0 1 [501] 1 [[3,10,0]]
|
| | | 1137 0 4 [41] 35 [[3,10,0]]
|
| | | 1138 0 7 [] 10 [[3,10,0]]
|
| | | 1139 0 3 [] 10 [[3,10,0]]
|
| | | 1140 0 8 [42] 1000 [[3,10,0]]
|
| | | 1141 0 1 [502] 1 [[3,10,0]]
|
| | | 1142 0 4 [41] 35 [[3,10,0]]
|
| | | 1143 0 7 [] 10 [[3,10,0]]
|
| | | 1144 0 3 [] 10 [[3,10,0]]
|
| | | 1145 0 8 [42] 1000 [[3,10,0]]
|
| | | 1146 0 1 [503] 1 [[3,10,0]]
|
| | | 1147 0 4 [41] 35 [[3,10,0]]
|
| | | 1148 0 7 [] 10 [[3,10,0]]
|
| | | 1149 0 3 [] 10 [[3,10,0]]
|
| | | 1150 0 8 [42] 1000 [[3,10,0]]
|
| | | 1151 0 1 [504] 1 [[3,10,0]]
|
| | | 1152 0 4 [41] 35 [[3,10,0]]
|
| | | 1153 0 7 [] 10 [[3,10,0]]
|
| | | 1154 0 3 [] 10 [[3,10,0]]
|
| | | 1155 0 8 [42] 1000 [[3,10,0]]
|
| | | 1156 0 1 [505] 1 [[3,10,0]]
|
| | | 1157 0 4 [41] 35 [[3,10,0]]
|
| | | 1158 0 7 [] 10 [[3,10,0]]
|
| | | 1159 0 3 [] 10 [[3,10,0]]
|
| | | 1160 0 8 [42] 1000 [[3,10,0]]
|
| | | 1161 0 1 [506] 1 [[3,10,0]]
|
| | | 1162 0 4 [41] 35 [[3,10,0]]
|
| | | 1163 0 7 [] 10 [[3,10,0]]
|
| | | 1164 0 3 [] 10 [[3,10,0]]
|
| | | 1165 0 8 [42] 1000 [[3,10,0]]
|
| | | 1166 0 1 [507] 1 [[3,10,0]]
|
| | | 1167 0 4 [41] 35 [[3,10,0]]
|
| | | 1168 0 7 [] 10 [[3,10,0]]
|
| | | 1169 0 3 [] 10 [[3,10,0]]
|
| | | 1170 0 8 [42] 1000 [[3,10,0]]
|
| | | 1171 0 1 [508] 1 [[3,10,0]]
|
| | | 1172 0 4 [41] 35 [[3,10,0]]
|
| | | 1173 0 7 [] 10 [[3,10,0]]
|
| | | 1174 0 3 [] 10 [[3,10,0]]
|
| | | 1175 0 8 [42] 1000 [[3,10,0]]
|
| | | 1176 0 1 [509] 1 [[3,10,0]]
|
| | | 1177 0 4 [41] 35 [[3,10,0]]
|
| | | 1178 0 7 [] 10 [[3,10,0]]
|
| | | 1179 0 3 [] 10 [[3,10,0]]
|
| | | 1180 0 8 [42] 1000 [[3,10,0]]
|
| | | 1181 0 1 [510] 1 [[3,10,0]]
|
| | | 1182 0 4 [41] 35 [[3,10,0]]
|
| | | 1183 0 8 [42] 1000 [[3,10,0]]
|
| | | 1184 0 7 [] 10 [[3,10,0]]
|
| | | 1185 0 3 [] 10 [[3,10,0]]
|
| | | 1186 0 1 [601] 1 [[3,10,0]]
|
| | | 1187 0 4 [41] 35 [[3,10,0]]
|
| | | 1188 0 7 [] 10 [[3,10,0]]
|
| | | 1189 0 3 [] 10 [[3,10,0]]
|
| | | 1190 0 8 [42] 1000 [[3,10,0]]
|
| | | 1191 0 1 [602] 1 [[3,10,0]]
|
| | | 1192 0 4 [41] 35 [[3,10,0]]
|
| | | 1193 0 7 [] 10 [[3,10,0]]
|
| | | 1194 0 3 [] 10 [[3,10,0]]
|
| | | 1195 0 8 [42] 1000 [[3,10,0]]
|
| | | 1196 0 1 [603] 1 [[3,10,0]]
|
| | | 1197 0 4 [41] 35 [[3,10,0]]
|
| | | 1198 0 7 [] 10 [[3,10,0]]
|
| | | 1199 0 3 [] 10 [[3,10,0]]
|
| | | 1200 0 8 [42] 1000 [[3,10,0]]
|
| | | 1201 0 1 [604] 1 [[3,10,0]]
|
| | | 1202 0 4 [41] 35 [[3,10,0]]
|
| | | 1203 0 7 [] 10 [[3,10,0]]
|
| | | 1204 0 3 [] 10 [[3,10,0]]
|
| | | 1205 0 8 [42] 1000 [[3,10,0]]
|
| | | 1206 0 1 [605] 1 [[3,10,0]]
|
| | | 1207 0 4 [41] 35 [[3,10,0]]
|
| | | 1208 0 7 [] 10 [[3,10,0]]
|
| | | 1209 0 3 [] 10 [[3,10,0]]
|
| | | 1210 0 8 [42] 1000 [[3,10,0]]
|
| | | 1211 0 1 [606] 1 [[3,10,0]]
|
| | | 1212 0 4 [41] 35 [[3,10,0]]
|
| | | 1213 0 7 [] 10 [[3,10,0]]
|
| | | 1214 0 3 [] 10 [[3,10,0]]
|
| | | 1215 0 8 [42] 1000 [[3,10,0]]
|
| | | 1216 0 1 [607] 1 [[3,10,0]]
|
| | | 1217 0 4 [41] 35 [[3,10,0]]
|
| | | 1218 0 7 [] 10 [[3,10,0]]
|
| | | 1219 0 3 [] 10 [[3,10,0]]
|
| | | 1220 0 8 [42] 1000 [[3,10,0]]
|
| | | 1221 0 1 [608] 1 [[3,10,0]]
|
| | | 1222 0 4 [41] 35 [[3,10,0]]
|
| | | 1223 0 7 [] 10 [[3,10,0]]
|
| | | 1224 0 3 [] 10 [[3,10,0]]
|
| | | 1225 0 8 [42] 1000 [[3,10,0]]
|
| | | 1226 0 1 [609] 1 [[3,10,0]]
|
| | | 1227 0 4 [41] 35 [[3,10,0]]
|
| | | 1228 0 7 [] 10 [[3,10,0]]
|
| | | 1229 0 3 [] 10 [[3,10,0]]
|
| | | 1230 0 8 [42] 1000 [[3,10,0]]
|
| | | 1231 0 1 [610] 1 [[3,10,0]]
|
| | | 1232 0 4 [41] 35 [[3,10,0]]
|
| | | 1233 0 8 [42] 1000 [[3,10,0]]
|
| | | 1234 0 7 [] 10 [[3,10,0]]
|
| | | 1235 0 3 [] 10 [[3,10,0]]
|
| | | 1236 0 1 [701] 1 [[3,10,0]]
|
| | | 1237 0 4 [41] 35 [[3,10,0]]
|
| | | 1238 0 7 [] 10 [[3,10,0]]
|
| | | 1239 0 3 [] 10 [[3,10,0]]
|
| | | 1240 0 8 [42] 1000 [[3,10,0]]
|
| | | 1241 0 1 [702] 1 [[3,10,0]]
|
| | | 1242 0 4 [41] 35 [[3,10,0]]
|
| | | 1243 0 7 [] 10 [[3,10,0]]
|
| | | 1244 0 3 [] 10 [[3,10,0]]
|
| | | 1245 0 8 [42] 1000 [[3,10,0]]
|
| | | 1246 0 1 [703] 1 [[3,10,0]]
|
| | | 1247 0 4 [41] 35 [[3,10,0]]
|
| | | 1248 0 7 [] 10 [[3,10,0]]
|
| | | 1249 0 3 [] 10 [[3,10,0]]
|
| | | 1250 0 8 [42] 1000 [[3,10,0]]
|
| | | 1251 0 1 [704] 1 [[3,10,0]]
|
| | | 1252 0 4 [41] 35 [[3,10,0]]
|
| | | 1253 0 7 [] 10 [[3,10,0]]
|
| | | 1254 0 3 [] 10 [[3,10,0]]
|
| | | 1255 0 8 [42] 1000 [[3,10,0]]
|
| | | 1256 0 1 [705] 1 [[3,10,0]]
|
| | | 1257 0 4 [41] 35 [[3,10,0]]
|
| | | 1258 0 7 [] 10 [[3,10,0]]
|
| | | 1259 0 3 [] 10 [[3,10,0]]
|
| | | 1260 0 8 [42] 1000 [[3,10,0]]
|
| | | 1261 0 1 [706] 1 [[3,10,0]]
|
| | | 1262 0 4 [41] 35 [[3,10,0]]
|
| | | 1263 0 7 [] 10 [[3,10,0]]
|
| | | 1264 0 3 [] 10 [[3,10,0]]
|
| | | 1265 0 8 [42] 1000 [[3,10,0]]
|
| | | 1266 0 1 [707] 1 [[3,10,0]]
|
| | | 1267 0 4 [41] 35 [[3,10,0]]
|
| | | 1268 0 7 [] 10 [[3,10,0]]
|
| | | 1269 0 3 [] 10 [[3,10,0]]
|
| | | 1270 0 8 [42] 1000 [[3,10,0]]
|
| | | 1271 0 1 [708] 1 [[3,10,0]]
|
| | | 1272 0 4 [41] 35 [[3,10,0]]
|
| | | 1273 0 7 [] 10 [[3,10,0]]
|
| | | 1274 0 3 [] 10 [[3,10,0]]
|
| | | 1275 0 8 [42] 1000 [[3,10,0]]
|
| | | 1276 0 1 [709] 1 [[3,10,0]]
|
| | | 1277 0 4 [41] 35 [[3,10,0]]
|
| | | 1278 0 7 [] 10 [[3,10,0]]
|
| | | 1279 0 3 [] 10 [[3,10,0]]
|
| | | 1280 0 8 [42] 1000 [[3,10,0]]
|
| | | 1281 0 1 [710] 1 [[3,10,0]]
|
| | | 1282 0 4 [41] 35 [[3,10,0]]
|
| | | 1283 0 8 [42] 1000 [[3,10,0]]
|
| | | 1284 0 7 [] 10 [[3,10,0]]
|
| | | 1285 0 3 [] 10 [[3,10,0]]
|
| | | 1286 0 1 [801] 1 [[3,10,0]]
|
| | | 1287 0 4 [41] 35 [[3,10,0]]
|
| | | 1288 0 7 [] 10 [[3,10,0]]
|
| | | 1289 0 3 [] 10 [[3,10,0]]
|
| | | 1290 0 8 [42] 1000 [[3,10,0]]
|
| | | 1291 0 1 [802] 1 [[3,10,0]]
|
| | | 1292 0 4 [41] 35 [[3,10,0]]
|
| | | 1293 0 7 [] 10 [[3,10,0]]
|
| | | 1294 0 3 [] 10 [[3,10,0]]
|
| | | 1295 0 8 [42] 1000 [[3,10,0]]
|
| | | 1296 0 1 [803] 1 [[3,10,0]]
|
| | | 1297 0 4 [41] 35 [[3,10,0]]
|
| | | 1298 0 7 [] 10 [[3,10,0]]
|
| | | 1299 0 3 [] 10 [[3,10,0]]
|
| | | 1300 0 8 [42] 1000 [[3,10,0]]
|
| | | 1301 0 1 [804] 1 [[3,10,0]]
|
| | | 1302 0 4 [41] 35 [[3,10,0]]
|
| | | 1303 0 7 [] 10 [[3,10,0]]
|
| | | 1304 0 3 [] 10 [[3,10,0]]
|
| | | 1305 0 8 [42] 1000 [[3,10,0]]
|
| | | 1306 0 1 [805] 1 [[3,10,0]]
|
| | | 1307 0 4 [41] 35 [[3,10,0]]
|
| | | 1308 0 7 [] 10 [[3,10,0]]
|
| | | 1309 0 3 [] 10 [[3,10,0]]
|
| | | 1310 0 8 [42] 1000 [[3,10,0]]
|
| | | 1311 0 1 [806] 1 [[3,10,0]]
|
| | | 1312 0 4 [41] 35 [[3,10,0]]
|
| | | 1313 0 7 [] 10 [[3,10,0]]
|
| | | 1314 0 3 [] 10 [[3,10,0]]
|
| | | 1315 0 8 [42] 1000 [[3,10,0]]
|
| | | 1316 0 1 [807] 1 [[3,10,0]]
|
| | | 1317 0 4 [41] 35 [[3,10,0]]
|
| | | 1318 0 7 [] 10 [[3,10,0]]
|
| | | 1319 0 3 [] 10 [[3,10,0]]
|
| | | 1320 0 8 [42] 1000 [[3,10,0]]
|
| | | 1321 0 1 [808] 1 [[3,10,0]]
|
| | | 1322 0 4 [41] 35 [[3,10,0]]
|
| | | 1323 0 7 [] 10 [[3,10,0]]
|
| | | 1324 0 3 [] 10 [[3,10,0]]
|
| | | 1325 0 8 [42] 1000 [[3,10,0]]
|
| | | 1326 0 1 [809] 1 [[3,10,0]]
|
| | | 1327 0 4 [41] 35 [[3,10,0]]
|
| | | 1328 0 7 [] 10 [[3,10,0]]
|
| | | 1329 0 3 [] 10 [[3,10,0]]
|
| | | 1330 0 8 [42] 1000 [[3,10,0]]
|
| | | 1331 0 1 [810] 1 [[3,10,0]]
|
| | | 1332 0 4 [41] 35 [[3,10,0]]
|
| | | 1333 0 8 [42] 1000 [[3,10,0]]
|
| | | 1334 0 7 [] 10 [[3,10,0]]
|
| | | 1335 0 3 [] 10 [[3,10,0]]
|
| | | 1336 0 1 [901] 1 [[3,10,0]]
|
| | | 1337 0 4 [41] 35 [[3,10,0]]
|
| | | 1338 0 7 [] 10 [[3,10,0]]
|
| | | 1339 0 3 [] 10 [[3,10,0]]
|
| | | 1340 0 8 [42] 1000 [[3,10,0]]
|
| | | 1341 0 1 [902] 1 [[3,10,0]]
|
| | | 1342 0 4 [41] 35 [[3,10,0]]
|
| | | 1343 0 7 [] 10 [[3,10,0]]
|
| | | 1344 0 3 [] 10 [[3,10,0]]
|
| | | 1345 0 8 [42] 1000 [[3,10,0]]
|
| | | 1346 0 1 [903] 1 [[3,10,0]]
|
| | | 1347 0 4 [41] 35 [[3,10,0]]
|
| | | 1348 0 7 [] 10 [[3,10,0]]
|
| | | 1349 0 3 [] 10 [[3,10,0]]
|
| | | 1350 0 8 [42] 1000 [[3,10,0]]
|
| | | 1351 0 1 [904] 1 [[3,10,0]]
|
| | | 1352 0 4 [41] 35 [[3,10,0]]
|
| | | 1353 0 7 [] 10 [[3,10,0]]
|
| | | 1354 0 3 [] 10 [[3,10,0]]
|
| | | 1355 0 8 [42] 1000 [[3,10,0]]
|
| | | 1356 0 1 [905] 1 [[3,10,0]]
|
| | | 1357 0 4 [41] 35 [[3,10,0]]
|
| | | 1358 0 7 [] 10 [[3,10,0]]
|
| | | 1359 0 3 [] 10 [[3,10,0]]
|
| | | 1360 0 8 [42] 1000 [[3,10,0]]
|
| | | 1361 0 1 [906] 1 [[3,10,0]]
|
| | | 1362 0 4 [41] 35 [[3,10,0]]
|
| | | 1363 0 7 [] 10 [[3,10,0]]
|
| | | 1364 0 3 [] 10 [[3,10,0]]
|
| | | 1365 0 8 [42] 1000 [[3,10,0]]
|
| | | 1366 0 1 [907] 1 [[3,10,0]]
|
| | | 1367 0 4 [41] 35 [[3,10,0]]
|
| | | 1368 0 7 [] 10 [[3,10,0]]
|
| | | 1369 0 3 [] 10 [[3,10,0]]
|
| | | 1370 0 8 [42] 1000 [[3,10,0]]
|
| | | 1371 0 1 [908] 1 [[3,10,0]]
|
| | | 1372 0 4 [41] 35 [[3,10,0]]
|
| | | 1373 0 7 [] 10 [[3,10,0]]
|
| | | 1374 0 3 [] 10 [[3,10,0]]
|
| | | 1375 0 8 [42] 1000 [[3,10,0]]
|
| | | 1376 0 1 [909] 1 [[3,10,0]]
|
| | | 1377 0 4 [41] 35 [[3,10,0]]
|
| | | 1378 0 7 [] 10 [[3,10,0]]
|
| | | 1379 0 3 [] 10 [[3,10,0]]
|
| | | 1380 0 8 [42] 1000 [[3,10,0]]
|
| | | 1381 0 1 [910] 1 [[3,10,0]]
|
| | | 1382 0 4 [41] 35 [[3,10,0]]
|
| | | 1383 0 8 [42] 1000 [[3,10,0]]
|
| | | 1384 0 7 [] 10 [[3,10,0]]
|
| | | 1385 0 3 [] 10 [[3,10,0]]
|
| | | 1386 0 1 [1001] 1 [[3,10,0]]
|
| | | 1387 0 4 [41] 35 [[3,10,0]]
|
| | | 1388 0 7 [] 10 [[3,10,0]]
|
| | | 1389 0 3 [] 10 [[3,10,0]]
|
| | | 1390 0 8 [42] 1000 [[3,10,0]]
|
| | | 1391 0 1 [1002] 1 [[3,10,0]]
|
| | | 1392 0 4 [41] 35 [[3,10,0]]
|
| | | 1393 0 7 [] 10 [[3,10,0]]
|
| | | 1394 0 3 [] 10 [[3,10,0]]
|
| | | 1395 0 8 [42] 1000 [[3,10,0]]
|
| | | 1396 0 1 [1003] 1 [[3,10,0]]
|
| | | 1397 0 4 [41] 35 [[3,10,0]]
|
| | | 1398 0 7 [] 10 [[3,10,0]]
|
| | | 1399 0 3 [] 10 [[3,10,0]]
|
| | | 1400 0 8 [42] 1000 [[3,10,0]]
|
| | | 1401 0 1 [1004] 1 [[3,10,0]]
|
| | | 1402 0 4 [41] 35 [[3,10,0]]
|
| | | 1403 0 7 [] 10 [[3,10,0]]
|
| | | 1404 0 3 [] 10 [[3,10,0]]
|
| | | 1405 0 8 [42] 1000 [[3,10,0]]
|
| | | 1406 0 1 [1005] 1 [[3,10,0]]
|
| | | 1407 0 4 [41] 35 [[3,10,0]]
|
| | | 1408 0 7 [] 10 [[3,10,0]]
|
| | | 1409 0 3 [] 10 [[3,10,0]]
|
| | | 1410 0 8 [42] 1000 [[3,10,0]]
|
| | | 1411 0 1 [1006] 1 [[3,10,0]]
|
| | | 1412 0 4 [41] 35 [[3,10,0]]
|
| | | 1413 0 7 [] 10 [[3,10,0]]
|
| | | 1414 0 3 [] 10 [[3,10,0]]
|
| | | 1415 0 8 [42] 1000 [[3,10,0]]
|
| | | 1416 0 1 [1007] 1 [[3,10,0]]
|
| | | 1417 0 4 [41] 35 [[3,10,0]]
|
| | | 1418 0 7 [] 10 [[3,10,0]]
|
| | | 1419 0 3 [] 10 [[3,10,0]]
|
| | | 1420 0 8 [42] 1000 [[3,10,0]]
|
| | | 1421 0 1 [1008] 1 [[3,10,0]]
|
| | | 1422 0 4 [41] 35 [[3,10,0]]
|
| | | 1423 0 7 [] 10 [[3,10,0]]
|
| | | 1424 0 3 [] 10 [[3,10,0]]
|
| | | 1425 0 8 [42] 1000 [[3,10,0]]
|
| | | 1426 0 1 [1009] 1 [[3,10,0]]
|
| | | 1427 0 4 [41] 35 [[3,10,0]]
|
| | | 1428 0 7 [] 10 [[3,10,0]]
|
| | | 1429 0 3 [] 10 [[3,10,0]]
|
| | | 1430 0 8 [42] 1000 [[3,10,0]]
|
| | | 1431 0 1 [1010] 1 [[3,10,0]]
|
| | | 1432 0 4 [41] 35 [[3,10,0]]
|
| | | 1433 0 7 [] 10 [[3,10,0]]
|
| | | 1434 0 3 [] 10 [[3,10,0]]
|
| | | 1435 0 8 [42] 1000 [[3,10,0]]
|
| | | 1436 0 1 [1101] 1 [[3,10,0]]
|
| | | 1437 0 4 [41] 35 [[3,10,0]]
|
| | | 1438 0 7 [] 10 [[3,10,0]]
|
| | | 1439 0 3 [] 10 [[3,10,0]]
|
| | | 1440 0 8 [42] 1000 [[3,10,0]]
|
| | | 1441 0 1 [1102] 1 [[3,10,0]]
|
| | | 1442 0 4 [41] 35 [[3,10,0]]
|
| | | 1443 0 7 [] 10 [[3,10,0]]
|
| | | 1444 0 3 [] 10 [[3,10,0]]
|
| | | 1445 0 8 [42] 1000 [[3,10,0]]
|
| | | 1446 0 1 [1103] 1 [[3,10,0]]
|
| | | 1447 0 4 [41] 35 [[3,10,0]]
|
| | | 1448 0 7 [] 10 [[3,10,0]]
|
| | | 1449 0 3 [] 10 [[3,10,0]]
|
| | | 1450 0 8 [42] 1000 [[3,10,0]]
|
| | | 1451 0 1 [1104] 1 [[3,10,0]]
|
| | | 1452 0 4 [41] 35 [[3,10,0]]
|
| | | 1453 0 7 [] 10 [[3,10,0]]
|
| | | 1454 0 3 [] 10 [[3,10,0]]
|
| | | 1455 0 8 [42] 1000 [[3,10,0]]
|
| | | 1456 0 1 [1105] 1 [[3,10,0]]
|
| | | 1457 0 4 [41] 35 [[3,10,0]]
|
| | | 1458 0 7 [] 10 [[3,10,0]]
|
| | | 1459 0 3 [] 10 [[3,10,0]]
|
| | | 1460 0 8 [42] 1000 [[3,10,0]]
|
| | | 1461 0 1 [1106] 1 [[3,10,0]]
|
| | | 1462 0 4 [41] 35 [[3,10,0]]
|
| | | 1463 0 7 [] 10 [[3,10,0]]
|
| | | 1464 0 3 [] 10 [[3,10,0]]
|
| | | 1465 0 8 [42] 1000 [[3,10,0]]
|
| | | 1466 0 1 [1107] 1 [[3,10,0]]
|
| | | 1467 0 4 [41] 35 [[3,10,0]]
|
| | | 1468 0 7 [] 10 [[3,10,0]]
|
| | | 1469 0 3 [] 10 [[3,10,0]]
|
| | | 1470 0 8 [42] 1000 [[3,10,0]]
|
| | | 1471 0 1 [1108] 1 [[3,10,0]]
|
| | | 1472 0 4 [41] 35 [[3,10,0]]
|
| | | 1473 0 7 [] 10 [[3,10,0]]
|
| | | 1474 0 3 [] 10 [[3,10,0]]
|
| | | 1475 0 8 [42] 1000 [[3,10,0]]
|
| | | 1476 0 1 [1109] 1 [[3,10,0]]
|
| | | 1477 0 4 [41] 35 [[3,10,0]]
|
| | | 1478 0 7 [] 10 [[3,10,0]]
|
| | | 1479 0 3 [] 10 [[3,10,0]]
|
| | | 1480 0 8 [42] 1000 [[3,10,0]]
|
| | | 1481 0 1 [1110] 1 [[3,10,0]]
|
| | | 1482 0 4 [41] 35 [[3,10,0]]
|
| | | 1483 0 7 [] 10 [[3,10,0]]
|
| | | 1484 0 3 [] 10 [[3,10,0]]
|
| | | 1485 0 8 [42] 1000 [[3,10,0]]
|
| | | 1486 0 1 [1201] 1 [[3,10,0]]
|
| | | 1487 0 4 [41] 35 [[3,10,0]]
|
| | | 1488 0 7 [] 10 [[3,10,0]]
|
| | | 1489 0 3 [] 10 [[3,10,0]]
|
| | | 1490 0 8 [42] 1000 [[3,10,0]]
|
| | | 1491 0 1 [1202] 1 [[3,10,0]]
|
| | | 1492 0 4 [41] 35 [[3,10,0]]
|
| | | 1493 0 7 [] 10 [[3,10,0]]
|
| | | 1494 0 3 [] 10 [[3,10,0]]
|
| | | 1495 0 8 [42] 1000 [[3,10,0]]
|
| | | 1496 0 1 [1203] 1 [[3,10,0]]
|
| | | 1497 0 4 [41] 35 [[3,10,0]]
|
| | | 1498 0 7 [] 10 [[3,10,0]]
|
| | | 1499 0 3 [] 10 [[3,10,0]]
|
| | | 1500 0 8 [42] 1000 [[3,10,0]]
|
| | | 1501 0 1 [1204] 1 [[3,10,0]]
|
| | | 1502 0 4 [41] 35 [[3,10,0]]
|
| | | 1503 0 7 [] 10 [[3,10,0]]
|
| | | 1504 0 3 [] 10 [[3,10,0]]
|
| | | 1505 0 8 [42] 1000 [[3,10,0]]
|
| | | 1506 0 1 [1205] 1 [[3,10,0]]
|
| | | 1507 0 4 [41] 35 [[3,10,0]]
|
| | | 1508 0 7 [] 10 [[3,10,0]]
|
| | | 1509 0 3 [] 10 [[3,10,0]]
|
| | | 1510 0 8 [42] 1000 [[3,10,0]]
|
| | | 1511 0 1 [1206] 1 [[3,10,0]]
|
| | | 1512 0 4 [41] 35 [[3,10,0]]
|
| | | 1513 0 7 [] 10 [[3,10,0]]
|
| | | 1514 0 3 [] 10 [[3,10,0]]
|
| | | 1515 0 8 [42] 1000 [[3,10,0]]
|
| | | 1516 0 1 [1207] 1 [[3,10,0]]
|
| | | 1517 0 4 [41] 35 [[3,10,0]]
|
| | | 1518 0 7 [] 10 [[3,10,0]]
|
| | | 1519 0 3 [] 10 [[3,10,0]]
|
| | | 1520 0 8 [42] 1000 [[3,10,0]]
|
| | | 1521 0 1 [1208] 1 [[3,10,0]]
|
| | | 1522 0 4 [41] 35 [[3,10,0]]
|
| | | 1523 0 7 [] 10 [[3,10,0]]
|
| | | 1524 0 3 [] 10 [[3,10,0]]
|
| | | 1525 0 8 [42] 1000 [[3,10,0]]
|
| | | 1526 0 1 [1209] 1 [[3,10,0]]
|
| | | 1527 0 4 [41] 35 [[3,10,0]]
|
| | | 1528 0 7 [] 10 [[3,10,0]]
|
| | | 1529 0 3 [] 10 [[3,10,0]]
|
| | | 1530 0 8 [42] 1000 [[3,10,0]]
|
| | | 1531 0 1 [1210] 1 [[3,10,0]]
|
| | | 1532 0 4 [41] 35 [[3,10,0]]
|
| | | 1533 0 7 [] 10 [[3,10,0]]
|
| | | 1534 0 3 [] 10 [[3,10,0]]
|
| | | 1535 0 8 [42] 1000 [[3,10,0]]
|
| | | 1536 0 1 [1301] 1 [[3,10,0]]
|
| | | 1537 0 4 [41] 35 [[3,10,0]]
|
| | | 1538 0 7 [] 10 [[3,10,0]]
|
| | | 1539 0 3 [] 10 [[3,10,0]]
|
| | | 1540 0 8 [42] 1000 [[3,10,0]]
|
| | | 1541 0 1 [1302] 1 [[3,10,0]]
|
| | | 1542 0 4 [41] 35 [[3,10,0]]
|
| | | 1543 0 7 [] 10 [[3,10,0]]
|
| | | 1544 0 3 [] 10 [[3,10,0]]
|
| | | 1545 0 8 [42] 1000 [[3,10,0]]
|
| | | 1546 0 1 [1303] 1 [[3,10,0]]
|
| | | 1547 0 4 [41] 35 [[3,10,0]]
|
| | | 1548 0 7 [] 10 [[3,10,0]]
|
| | | 1549 0 3 [] 10 [[3,10,0]]
|
| | | 1550 0 8 [42] 1000 [[3,10,0]]
|
| | | 1551 0 1 [1304] 1 [[3,10,0]]
|
| | | 1552 0 4 [41] 35 [[3,10,0]]
|
| | | 1553 0 7 [] 10 [[3,10,0]]
|
| | | 1554 0 3 [] 10 [[3,10,0]]
|
| | | 1555 0 8 [42] 1000 [[3,10,0]]
|
| | | 1556 0 1 [1305] 1 [[3,10,0]]
|
| | | 1557 0 4 [41] 35 [[3,10,0]]
|
| | | 1558 0 7 [] 10 [[3,10,0]]
|
| | | 1559 0 3 [] 10 [[3,10,0]]
|
| | | 1560 0 8 [42] 1000 [[3,10,0]]
|
| | | 1561 0 1 [1306] 1 [[3,10,0]]
|
| | | 1562 0 4 [41] 35 [[3,10,0]]
|
| | | 1563 0 7 [] 10 [[3,10,0]]
|
| | | 1564 0 3 [] 10 [[3,10,0]]
|
| | | 1565 0 8 [42] 1000 [[3,10,0]]
|
| | | 1566 0 1 [1307] 1 [[3,10,0]]
|
| | | 1567 0 4 [41] 35 [[3,10,0]]
|
| | | 1568 0 7 [] 10 [[3,10,0]]
|
| | | 1569 0 3 [] 10 [[3,10,0]]
|
| | | 1570 0 8 [42] 1000 [[3,10,0]]
|
| | | 1571 0 1 [1308] 1 [[3,10,0]]
|
| | | 1572 0 4 [41] 35 [[3,10,0]]
|
| | | 1573 0 7 [] 10 [[3,10,0]]
|
| | | 1574 0 3 [] 10 [[3,10,0]]
|
| | | 1575 0 8 [42] 1000 [[3,10,0]]
|
| | | 1576 0 1 [1309] 1 [[3,10,0]]
|
| | | 1577 0 4 [41] 35 [[3,10,0]]
|
| | | 1578 0 7 [] 10 [[3,10,0]]
|
| | | 1579 0 3 [] 10 [[3,10,0]]
|
| | | 1580 0 8 [42] 1000 [[3,10,0]]
|
| | | 1581 0 1 [1310] 1 [[3,10,0]]
|
| | | 1582 0 4 [41] 35 [[3,10,0]]
|
| | | 1583 0 7 [] 10 [[3,10,0]]
|
| | | 1584 0 3 [] 10 [[3,10,0]]
|
| | | 1585 0 8 [42] 1000 [[3,10,0]]
|
| | | 1586 0 1 [1401] 1 [[3,10,0]]
|
| | | 1587 0 4 [41] 35 [[3,10,0]]
|
| | | 1588 0 7 [] 10 [[3,10,0]]
|
| | | 1589 0 3 [] 10 [[3,10,0]]
|
| | | 1590 0 8 [42] 1000 [[3,10,0]]
|
| | | 1591 0 1 [1402] 1 [[3,10,0]]
|
| | | 1592 0 4 [41] 35 [[3,10,0]]
|
| | | 1593 0 7 [] 10 [[3,10,0]]
|
| | | 1594 0 3 [] 10 [[3,10,0]]
|
| | | 1595 0 8 [42] 1000 [[3,10,0]]
|
| | | 1596 0 1 [1403] 1 [[3,10,0]]
|
| | | 1597 0 4 [41] 35 [[3,10,0]]
|
| | | 1598 0 7 [] 10 [[3,10,0]]
|
| | | 1599 0 3 [] 10 [[3,10,0]]
|
| | | 1600 0 8 [42] 1000 [[3,10,0]]
|
| | | 1601 0 1 [1404] 1 [[3,10,0]]
|
| | | 1602 0 4 [41] 35 [[3,10,0]]
|
| | | 1603 0 7 [] 10 [[3,10,0]]
|
| | | 1604 0 3 [] 10 [[3,10,0]]
|
| | | 1605 0 8 [42] 1000 [[3,10,0]]
|
| | | 1606 0 1 [1405] 1 [[3,10,0]]
|
| | | 1607 0 4 [41] 35 [[3,10,0]]
|
| | | 1608 0 7 [] 10 [[3,10,0]]
|
| | | 1609 0 3 [] 10 [[3,10,0]]
|
| | | 1610 0 8 [42] 1000 [[3,10,0]]
|
| | | 1611 0 1 [1406] 1 [[3,10,0]]
|
| | | 1612 0 4 [41] 35 [[3,10,0]]
|
| | | 1613 0 7 [] 10 [[3,10,0]]
|
| | | 1614 0 3 [] 10 [[3,10,0]]
|
| | | 1615 0 8 [42] 1000 [[3,10,0]]
|
| | | 1616 0 1 [1407] 1 [[3,10,0]]
|
| | | 1617 0 4 [41] 35 [[3,10,0]]
|
| | | 1618 0 7 [] 10 [[3,10,0]]
|
| | | 1619 0 3 [] 10 [[3,10,0]]
|
| | | 1620 0 8 [42] 1000 [[3,10,0]]
|
| | | 1621 0 1 [1408] 1 [[3,10,0]]
|
| | | 1622 0 4 [41] 35 [[3,10,0]]
|
| | | 1623 0 7 [] 10 [[3,10,0]]
|
| | | 1624 0 3 [] 10 [[3,10,0]]
|
| | | 1625 0 8 [42] 1000 [[3,10,0]]
|
| | | 1626 0 1 [1409] 1 [[3,10,0]]
|
| | | 1627 0 4 [41] 35 [[3,10,0]]
|
| | | 1628 0 7 [] 10 [[3,10,0]]
|
| | | 1629 0 3 [] 10 [[3,10,0]]
|
| | | 1630 0 8 [42] 1000 [[3,10,0]]
|
| | | 1631 0 1 [1410] 1 [[3,10,0]]
|
| | | 1632 0 4 [41] 35 [[3,10,0]]
|
| | | 1633 0 7 [] 10 [[3,10,0]]
|
| | | 1634 0 3 [] 10 [[3,10,0]]
|
| | | 1635 0 8 [42] 1000 [[3,10,0]]
|
| | | 1636 0 1 [1501] 1 [[3,10,0]]
|
| | | 1637 0 4 [41] 35 [[3,10,0]]
|
| | | 1638 0 7 [] 10 [[3,10,0]]
|
| | | 1639 0 3 [] 10 [[3,10,0]]
|
| | | 1640 0 8 [42] 1000 [[3,10,0]]
|
| | | 1641 0 1 [1502] 1 [[3,10,0]]
|
| | | 1642 0 4 [41] 35 [[3,10,0]]
|
| | | 1643 0 7 [] 10 [[3,10,0]]
|
| | | 1644 0 3 [] 10 [[3,10,0]]
|
| | | 1645 0 8 [42] 1000 [[3,10,0]]
|
| | | 1646 0 1 [1503] 1 [[3,10,0]]
|
| | | 1647 0 4 [41] 35 [[3,10,0]]
|
| | | 1648 0 7 [] 10 [[3,10,0]]
|
| | | 1649 0 3 [] 10 [[3,10,0]]
|
| | | 1650 0 8 [42] 1000 [[3,10,0]]
|
| | | 1651 0 1 [1504] 1 [[3,10,0]]
|
| | | 1652 0 4 [41] 35 [[3,10,0]]
|
| | | 1653 0 7 [] 10 [[3,10,0]]
|
| | | 1654 0 3 [] 10 [[3,10,0]]
|
| | | 1655 0 8 [42] 1000 [[3,10,0]]
|
| | | 1656 0 1 [1505] 1 [[3,10,0]]
|
| | | 1657 0 4 [41] 35 [[3,10,0]]
|
| | | 1658 0 7 [] 10 [[3,10,0]]
|
| | | 1659 0 3 [] 10 [[3,10,0]]
|
| | | 1660 0 8 [42] 1000 [[3,10,0]]
|
| | | 1661 0 1 [1506] 1 [[3,10,0]]
|
| | | 1662 0 4 [41] 35 [[3,10,0]]
|
| | | 1663 0 7 [] 10 [[3,10,0]]
|
| | | 1664 0 3 [] 10 [[3,10,0]]
|
| | | 1665 0 8 [42] 1000 [[3,10,0]]
|
| | | 1666 0 1 [1507] 1 [[3,10,0]]
|
| | | 1667 0 4 [41] 35 [[3,10,0]]
|
| | | 1668 0 7 [] 10 [[3,10,0]]
|
| | | 1669 0 3 [] 10 [[3,10,0]]
|
| | | 1670 0 8 [42] 1000 [[3,10,0]]
|
| | | 1671 0 1 [1508] 1 [[3,10,0]]
|
| | | 1672 0 4 [41] 35 [[3,10,0]]
|
| | | 1673 0 7 [] 10 [[3,10,0]]
|
| | | 1674 0 3 [] 10 [[3,10,0]]
|
| | | 1675 0 8 [42] 1000 [[3,10,0]]
|
| | | 1676 0 1 [1509] 1 [[3,10,0]]
|
| | | 1677 0 4 [41] 35 [[3,10,0]]
|
| | | 1678 0 7 [] 10 [[3,10,0]]
|
| | | 1679 0 3 [] 10 [[3,10,0]]
|
| | | 1680 0 8 [42] 1000 [[3,10,0]]
|
| | | 1681 0 1 [1510] 1 [[3,10,0]]
|
| | | 1682 0 4 [41] 35 [[3,10,0]]
|
| | | 1683 0 7 [] 10 [[3,10,0]]
|
| | | 1684 0 3 [] 10 [[3,10,0]]
|
| | | 1685 0 8 [42] 1000 [[3,10,0]]
|
| | | 1686 0 1 [1601] 1 [[3,10,0]]
|
| | | 1687 0 4 [41] 35 [[3,10,0]]
|
| | | 1688 0 7 [] 10 [[3,10,0]]
|
| | | 1689 0 3 [] 10 [[3,10,0]]
|
| | | 1690 0 8 [42] 1000 [[3,10,0]]
|
| | | 1691 0 1 [1602] 1 [[3,10,0]]
|
| | | 1692 0 4 [41] 35 [[3,10,0]]
|
| | | 1693 0 7 [] 10 [[3,10,0]]
|
| | | 1694 0 3 [] 10 [[3,10,0]]
|
| | | 1695 0 8 [42] 1000 [[3,10,0]]
|
| | | 1696 0 1 [1603] 1 [[3,10,0]]
|
| | | 1697 0 4 [41] 35 [[3,10,0]]
|
| | | 1698 0 7 [] 10 [[3,10,0]]
|
| | | 1699 0 3 [] 10 [[3,10,0]]
|
| | | 1700 0 8 [42] 1000 [[3,10,0]]
|
| | | 1701 0 1 [1604] 1 [[3,10,0]]
|
| | | 1702 0 4 [41] 35 [[3,10,0]]
|
| | | 1703 0 7 [] 10 [[3,10,0]]
|
| | | 1704 0 3 [] 10 [[3,10,0]]
|
| | | 1705 0 8 [42] 1000 [[3,10,0]]
|
| | | 1706 0 1 [1605] 1 [[3,10,0]]
|
| | | 1707 0 4 [41] 35 [[3,10,0]]
|
| | | 1708 0 7 [] 10 [[3,10,0]]
|
| | | 1709 0 3 [] 10 [[3,10,0]]
|
| | | 1710 0 8 [42] 1000 [[3,10,0]]
|
| | | 1711 0 1 [1606] 1 [[3,10,0]]
|
| | | 1712 0 4 [41] 35 [[3,10,0]]
|
| | | 1713 0 7 [] 10 [[3,10,0]]
|
| | | 1714 0 3 [] 10 [[3,10,0]]
|
| | | 1715 0 8 [42] 1000 [[3,10,0]]
|
| | | 1716 0 1 [1607] 1 [[3,10,0]]
|
| | | 1717 0 4 [41] 35 [[3,10,0]]
|
| | | 1718 0 7 [] 10 [[3,10,0]]
|
| | | 1719 0 3 [] 10 [[3,10,0]]
|
| | | 1720 0 8 [42] 1000 [[3,10,0]]
|
| | | 1721 0 1 [1608] 1 [[3,10,0]]
|
| | | 1722 0 4 [41] 35 [[3,10,0]]
|
| | | 1723 0 7 [] 10 [[3,10,0]]
|
| | | 1724 0 3 [] 10 [[3,10,0]]
|
| | | 1725 0 8 [42] 1000 [[3,10,0]]
|
| | | 1726 0 1 [1609] 1 [[3,10,0]]
|
| | | 1727 0 4 [41] 35 [[3,10,0]]
|
| | | 1728 0 7 [] 10 [[3,10,0]]
|
| | | 1729 0 3 [] 10 [[3,10,0]]
|
| | | 1730 0 8 [42] 1000 [[3,10,0]]
|
| | | 1731 0 1 [1610] 1 [[3,10,0]]
|
| | | 1732 0 4 [41] 35 [[3,10,0]]
|
| | | 1733 0 7 [] 10 [[3,10,0]]
|
| | | 1734 0 3 [] 10 [[3,10,0]]
|
| | | 1735 0 8 [42] 1000 [[3,10,0]]
|
| | | 1736 0 1 [1701] 1 [[3,10,0]]
|
| | | 1737 0 4 [41] 35 [[3,10,0]]
|
| | | 1738 0 7 [] 10 [[3,10,0]]
|
| | | 1739 0 3 [] 10 [[3,10,0]]
|
| | | 1740 0 8 [42] 1000 [[3,10,0]]
|
| | | 1741 0 1 [1702] 1 [[3,10,0]]
|
| | | 1742 0 4 [41] 35 [[3,10,0]]
|
| | | 1743 0 7 [] 10 [[3,10,0]]
|
| | | 1744 0 3 [] 10 [[3,10,0]]
|
| | | 1745 0 8 [42] 1000 [[3,10,0]]
|
| | | 1746 0 1 [1703] 1 [[3,10,0]]
|
| | | 1747 0 4 [41] 35 [[3,10,0]]
|
| | | 1748 0 7 [] 10 [[3,10,0]]
|
| | | 1749 0 3 [] 10 [[3,10,0]]
|
| | | 1750 0 8 [42] 1000 [[3,10,0]]
|
| | | 1751 0 1 [1704] 1 [[3,10,0]]
|
| | | 1752 0 4 [41] 35 [[3,10,0]]
|
| | | 1753 0 7 [] 10 [[3,10,0]]
|
| | | 1754 0 3 [] 10 [[3,10,0]]
|
| | | 1755 0 8 [42] 1000 [[3,10,0]]
|
| | | 1756 0 1 [1705] 1 [[3,10,0]]
|
| | | 1757 0 4 [41] 35 [[3,10,0]]
|
| | | 1758 0 7 [] 10 [[3,10,0]]
|
| | | 1759 0 3 [] 10 [[3,10,0]]
|
| | | 1760 0 8 [42] 1000 [[3,10,0]]
|
| | | 1761 0 1 [1706] 1 [[3,10,0]]
|
| | | 1762 0 4 [41] 35 [[3,10,0]]
|
| | | 1763 0 7 [] 10 [[3,10,0]]
|
| | | 1764 0 3 [] 10 [[3,10,0]]
|
| | | 1765 0 8 [42] 1000 [[3,10,0]]
|
| | | 1766 0 1 [1707] 1 [[3,10,0]]
|
| | | 1767 0 4 [41] 35 [[3,10,0]]
|
| | | 1768 0 7 [] 10 [[3,10,0]]
|
| | | 1769 0 3 [] 10 [[3,10,0]]
|
| | | 1770 0 8 [42] 1000 [[3,10,0]]
|
| | | 1771 0 1 [1708] 1 [[3,10,0]]
|
| | | 1772 0 4 [41] 35 [[3,10,0]]
|
| | | 1773 0 7 [] 10 [[3,10,0]]
|
| | | 1774 0 3 [] 10 [[3,10,0]]
|
| | | 1775 0 8 [42] 1000 [[3,10,0]]
|
| | | 1776 0 1 [1709] 1 [[3,10,0]]
|
| | | 1777 0 4 [41] 35 [[3,10,0]]
|
| | | 1778 0 7 [] 10 [[3,10,0]]
|
| | | 1779 0 3 [] 10 [[3,10,0]]
|
| | | 1780 0 8 [42] 1000 [[3,10,0]]
|
| | | 1781 0 1 [1710] 1 [[3,10,0]]
|
| | | 1782 0 4 [41] 35 [[3,10,0]]
|
| | | 1783 0 7 [] 10 [[3,10,0]]
|
| | | 1784 0 3 [] 10 [[3,10,0]]
|
| | | 1785 0 8 [42] 1000 [[3,10,0]]
|
| | | 1786 0 1 [1801] 1 [[3,10,0]]
|
| | | 1787 0 4 [41] 35 [[3,10,0]]
|
| | | 1788 0 7 [] 10 [[3,10,0]]
|
| | | 1789 0 3 [] 10 [[3,10,0]]
|
| | | 1790 0 8 [42] 1000 [[3,10,0]]
|
| | | 1791 0 1 [1802] 1 [[3,10,0]]
|
| | | 1792 0 4 [41] 35 [[3,10,0]]
|
| | | 1793 0 7 [] 10 [[3,10,0]]
|
| | | 1794 0 3 [] 10 [[3,10,0]]
|
| | | 1795 0 8 [42] 1000 [[3,10,0]]
|
| | | 1796 0 1 [1803] 1 [[3,10,0]]
|
| | | 1797 0 4 [41] 35 [[3,10,0]]
|
| | | 1798 0 7 [] 10 [[3,10,0]]
|
| | | 1799 0 3 [] 10 [[3,10,0]]
|
| | | 1800 0 8 [42] 1000 [[3,10,0]]
|
| | | 1801 0 1 [1804] 1 [[3,10,0]]
|
| | | 1802 0 4 [41] 35 [[3,10,0]]
|
| | | 1803 0 7 [] 10 [[3,10,0]]
|
| | | 1804 0 3 [] 10 [[3,10,0]]
|
| | | 1805 0 8 [42] 1000 [[3,10,0]]
|
| | | 1806 0 1 [1805] 1 [[3,10,0]]
|
| | | 1807 0 4 [41] 35 [[3,10,0]]
|
| | | 1808 0 7 [] 10 [[3,10,0]]
|
| | | 1809 0 3 [] 10 [[3,10,0]]
|
| | | 1810 0 8 [42] 1000 [[3,10,0]]
|
| | | 1811 0 1 [1806] 1 [[3,10,0]]
|
| | | 1812 0 4 [41] 35 [[3,10,0]]
|
| | | 1813 0 7 [] 10 [[3,10,0]]
|
| | | 1814 0 3 [] 10 [[3,10,0]]
|
| | | 1815 0 8 [42] 1000 [[3,10,0]]
|
| | | 1816 0 1 [1807] 1 [[3,10,0]]
|
| | | 1817 0 4 [41] 35 [[3,10,0]]
|
| | | 1818 0 7 [] 10 [[3,10,0]]
|
| | | 1819 0 3 [] 10 [[3,10,0]]
|
| | | 1820 0 8 [42] 1000 [[3,10,0]]
|
| | | 1821 0 1 [1808] 1 [[3,10,0]]
|
| | | 1822 0 4 [41] 35 [[3,10,0]]
|
| | | 1823 0 7 [] 10 [[3,10,0]]
|
| | | 1824 0 3 [] 10 [[3,10,0]]
|
| | | 1825 0 8 [42] 1000 [[3,10,0]]
|
| | | 1826 0 1 [1809] 1 [[3,10,0]]
|
| | | 1827 0 4 [41] 35 [[3,10,0]]
|
| | | 1828 0 7 [] 10 [[3,10,0]]
|
| | | 1829 0 3 [] 10 [[3,10,0]]
|
| | | 1830 0 8 [42] 1000 [[3,10,0]]
|
| | | 1831 0 1 [1810] 1 [[3,10,0]]
|
| | | 1832 0 4 [41] 35 [[3,10,0]]
|
| | | 1833 0 7 [] 10 [[3,10,0]]
|
| | | 1834 0 3 [] 10 [[3,10,0]]
|
| | | 1835 0 8 [42] 1000 [[3,10,0]]
|
| | | 1836 0 1 [1901] 1 [[3,10,0]]
|
| | | 1837 0 4 [41] 35 [[3,10,0]]
|
| | | 1838 0 7 [] 10 [[3,10,0]]
|
| | | 1839 0 3 [] 10 [[3,10,0]]
|
| | | 1840 0 8 [42] 1000 [[3,10,0]]
|
| | | 1841 0 1 [1902] 1 [[3,10,0]]
|
| | | 1842 0 4 [41] 35 [[3,10,0]]
|
| | | 1843 0 7 [] 10 [[3,10,0]]
|
| | | 1844 0 3 [] 10 [[3,10,0]]
|
| | | 1845 0 8 [42] 1000 [[3,10,0]]
|
| | | 1846 0 1 [1903] 1 [[3,10,0]]
|
| | | 1847 0 4 [41] 35 [[3,10,0]]
|
| | | 1848 0 7 [] 10 [[3,10,0]]
|
| | | 1849 0 3 [] 10 [[3,10,0]]
|
| | | 1850 0 8 [42] 1000 [[3,10,0]]
|
| | | 1851 0 1 [1904] 1 [[3,10,0]]
|
| | | 1852 0 4 [41] 35 [[3,10,0]]
|
| | | 1853 0 7 [] 10 [[3,10,0]]
|
| | | 1854 0 3 [] 10 [[3,10,0]]
|
| | | 1855 0 8 [42] 1000 [[3,10,0]]
|
| | | 1856 0 1 [1905] 1 [[3,10,0]]
|
| | | 1857 0 4 [41] 35 [[3,10,0]]
|
| | | 1858 0 7 [] 10 [[3,10,0]]
|
| | | 1859 0 3 [] 10 [[3,10,0]]
|
| | | 1860 0 8 [42] 1000 [[3,10,0]]
|
| | | 1861 0 1 [1906] 1 [[3,10,0]]
|
| | | 1862 0 4 [41] 35 [[3,10,0]]
|
| | | 1863 0 7 [] 10 [[3,10,0]]
|
| | | 1864 0 3 [] 10 [[3,10,0]]
|
| | | 1865 0 8 [42] 1000 [[3,10,0]]
|
| | | 1866 0 1 [1907] 1 [[3,10,0]]
|
| | | 1867 0 4 [41] 35 [[3,10,0]]
|
| | | 1868 0 7 [] 10 [[3,10,0]]
|
| | | 1869 0 3 [] 10 [[3,10,0]]
|
| | | 1870 0 8 [42] 1000 [[3,10,0]]
|
| | | 1871 0 1 [1908] 1 [[3,10,0]]
|
| | | 1872 0 4 [41] 35 [[3,10,0]]
|
| | | 1873 0 7 [] 10 [[3,10,0]]
|
| | | 1874 0 3 [] 10 [[3,10,0]]
|
| | | 1875 0 8 [42] 1000 [[3,10,0]]
|
| | | 1876 0 1 [1909] 1 [[3,10,0]]
|
| | | 1877 0 4 [41] 35 [[3,10,0]]
|
| | | 1878 0 7 [] 10 [[3,10,0]]
|
| | | 1879 0 3 [] 10 [[3,10,0]]
|
| | | 1880 0 8 [42] 1000 [[3,10,0]]
|
| | | 1881 0 1 [1910] 1 [[3,10,0]]
|
| | | 1882 0 4 [41] 35 [[3,10,0]]
|
| | | 1883 0 7 [] 10 [[3,10,0]]
|
| | | 1884 0 3 [] 10 [[3,10,0]]
|
| | | 1885 0 8 [42] 1000 [[3,10,0]]
|
| | | 1886 0 1 [2001] 1 [[3,10,0]]
|
| | | 1887 0 4 [41] 35 [[3,10,0]]
|
| | | 1888 0 7 [] 10 [[3,10,0]]
|
| | | 1889 0 3 [] 10 [[3,10,0]]
|
| | | 1890 0 8 [42] 1000 [[3,10,0]]
|
| | | 1891 0 1 [2002] 1 [[3,10,0]]
|
| | | 1892 0 4 [41] 35 [[3,10,0]]
|
| | | 1893 0 7 [] 10 [[3,10,0]]
|
| | | 1894 0 3 [] 10 [[3,10,0]]
|
| | | 1895 0 8 [42] 1000 [[3,10,0]]
|
| | | 1896 0 1 [2003] 1 [[3,10,0]]
|
| | | 1897 0 4 [41] 35 [[3,10,0]]
|
| | | 1898 0 7 [] 10 [[3,10,0]]
|
| | | 1899 0 3 [] 10 [[3,10,0]]
|
| | | 1900 0 8 [42] 1000 [[3,10,0]]
|
| | | 1901 0 1 [2004] 1 [[3,10,0]]
|
| | | 1902 0 4 [41] 35 [[3,10,0]]
|
| | | 1903 0 7 [] 10 [[3,10,0]]
|
| | | 1904 0 3 [] 10 [[3,10,0]]
|
| | | 1905 0 8 [42] 1000 [[3,10,0]]
|
| | | 1906 0 1 [2005] 1 [[3,10,0]]
|
| | | 1907 0 4 [41] 35 [[3,10,0]]
|
| | | 1908 0 7 [] 10 [[3,10,0]]
|
| | | 1909 0 3 [] 10 [[3,10,0]]
|
| | | 1910 0 8 [42] 1000 [[3,10,0]]
|
| | | 1911 0 1 [2006] 1 [[3,10,0]]
|
| | | 1912 0 4 [41] 35 [[3,10,0]]
|
| | | 1913 0 7 [] 10 [[3,10,0]]
|
| | | 1914 0 3 [] 10 [[3,10,0]]
|
| | | 1915 0 8 [42] 1000 [[3,10,0]]
|
| | | 1916 0 1 [2007] 1 [[3,10,0]]
|
| | | 1917 0 4 [41] 35 [[3,10,0]]
|
| | | 1918 0 7 [] 10 [[3,10,0]]
|
| | | 1919 0 3 [] 10 [[3,10,0]]
|
| | | 1920 0 8 [42] 1000 [[3,10,0]]
|
| | | 1921 0 1 [2008] 1 [[3,10,0]]
|
| | | 1922 0 4 [41] 35 [[3,10,0]]
|
| | | 1923 0 7 [] 10 [[3,10,0]]
|
| | | 1924 0 3 [] 10 [[3,10,0]]
|
| | | 1925 0 8 [42] 1000 [[3,10,0]]
|
| | | 1926 0 1 [2009] 1 [[3,10,0]]
|
| | | 1927 0 4 [41] 35 [[3,10,0]]
|
| | | 1928 0 7 [] 10 [[3,10,0]]
|
| | | 1929 0 3 [] 10 [[3,10,0]]
|
| | | 1930 0 8 [42] 1000 [[3,10,0]]
|
| | | 1931 0 1 [2010] 1 [[3,10,0]]
|
| | | 1932 0 4 [41] 35 [[3,10,0]]
|
| | | 1933 0 7 [] 10 [[3,10,0]]
|
| | | 1934 0 3 [] 10 [[3,10,0]]
|
| | | 1935 0 8 [42] 1000 [[3,10,0]]
|
| | | 1936 0 1 [2101] 1 [[3,10,0]]
|
| | | 1937 0 4 [41] 35 [[3,10,0]]
|
| | | 1938 0 7 [] 10 [[3,10,0]]
|
| | | 1939 0 3 [] 10 [[3,10,0]]
|
| | | 1940 0 8 [42] 1000 [[3,10,0]]
|
| | | 1941 0 1 [2102] 1 [[3,10,0]]
|
| | | 1942 0 4 [41] 35 [[3,10,0]]
|
| | | 1943 0 7 [] 10 [[3,10,0]]
|
| | | 1944 0 3 [] 10 [[3,10,0]]
|
| | | 1945 0 8 [42] 1000 [[3,10,0]]
|
| | | 1946 0 1 [2103] 1 [[3,10,0]]
|
| | | 1947 0 4 [41] 35 [[3,10,0]]
|
| | | 1948 0 7 [] 10 [[3,10,0]]
|
| | | 1949 0 3 [] 10 [[3,10,0]]
|
| | | 1950 0 8 [42] 1000 [[3,10,0]]
|
| | | 1951 0 1 [2104] 1 [[3,10,0]]
|
| | | 1952 0 4 [41] 35 [[3,10,0]]
|
| | | 1953 0 7 [] 10 [[3,10,0]]
|
| | | 1954 0 3 [] 10 [[3,10,0]]
|
| | | 1955 0 8 [42] 1000 [[3,10,0]]
|
| | | 1956 0 1 [2105] 1 [[3,10,0]]
|
| | | 1957 0 4 [41] 35 [[3,10,0]]
|
| | | 1958 0 7 [] 10 [[3,10,0]]
|
| | | 1959 0 3 [] 10 [[3,10,0]]
|
| | | 1960 0 8 [42] 1000 [[3,10,0]]
|
| | | 1961 0 1 [2106] 1 [[3,10,0]]
|
| | | 1962 0 4 [41] 35 [[3,10,0]]
|
| | | 1963 0 7 [] 10 [[3,10,0]]
|
| | | 1964 0 3 [] 10 [[3,10,0]]
|
| | | 1965 0 8 [42] 1000 [[3,10,0]]
|
| | | 1966 0 1 [2107] 1 [[3,10,0]]
|
| | | 1967 0 4 [41] 35 [[3,10,0]]
|
| | | 1968 0 7 [] 10 [[3,10,0]]
|
| | | 1969 0 3 [] 10 [[3,10,0]]
|
| | | 1970 0 8 [42] 1000 [[3,10,0]]
|
| | | 1971 0 1 [2108] 1 [[3,10,0]]
|
| | | 1972 0 4 [41] 35 [[3,10,0]]
|
| | | 1973 0 7 [] 10 [[3,10,0]]
|
| | | 1974 0 3 [] 10 [[3,10,0]]
|
| | | 1975 0 8 [42] 1000 [[3,10,0]]
|
| | | 1976 0 1 [2109] 1 [[3,10,0]]
|
| | | 1977 0 4 [41] 35 [[3,10,0]]
|
| | | 1978 0 7 [] 10 [[3,10,0]]
|
| | | 1979 0 3 [] 10 [[3,10,0]]
|
| | | 1980 0 8 [42] 1000 [[3,10,0]]
|
| | | 1981 0 1 [2110] 1 [[3,10,0]]
|
| | | 1982 0 4 [41] 35 [[3,10,0]]
|
| | | 1983 0 7 [] 10 [[3,10,0]]
|
| | | 1984 0 3 [] 10 [[3,10,0]]
|
| | | 1985 0 8 [42] 1000 [[3,10,0]]
|
| | | 1986 0 1 [2201] 1 [[3,10,0]]
|
| | | 1987 0 4 [41] 35 [[3,10,0]]
|
| | | 1988 0 7 [] 10 [[3,10,0]]
|
| | | 1989 0 3 [] 10 [[3,10,0]]
|
| | | 1990 0 8 [42] 1000 [[3,10,0]]
|
| | | 1991 0 1 [2202] 1 [[3,10,0]]
|
| | | 1992 0 4 [41] 35 [[3,10,0]]
|
| | | 1993 0 7 [] 10 [[3,10,0]]
|
| | | 1994 0 3 [] 10 [[3,10,0]]
|
| | | 1995 0 8 [42] 1000 [[3,10,0]]
|
| | | 1996 0 1 [2203] 1 [[3,10,0]]
|
| | | 1997 0 4 [41] 35 [[3,10,0]]
|
| | | 1998 0 7 [] 10 [[3,10,0]]
|
| | | 1999 0 3 [] 10 [[3,10,0]]
|
| | | 2000 0 8 [42] 1000 [[3,10,0]]
|
| | | 2001 0 1 [2204] 1 [[3,10,0]]
|
| | | 2002 0 4 [41] 35 [[3,10,0]]
|
| | | 2003 0 7 [] 10 [[3,10,0]]
|
| | | 2004 0 3 [] 10 [[3,10,0]]
|
| | | 2005 0 8 [42] 1000 [[3,10,0]]
|
| | | 2006 0 1 [2205] 1 [[3,10,0]]
|
| | | 2007 0 4 [41] 35 [[3,10,0]]
|
| | | 2008 0 7 [] 10 [[3,10,0]]
|
| | | 2009 0 3 [] 10 [[3,10,0]]
|
| | | 2010 0 8 [42] 1000 [[3,10,0]]
|
| | | 2011 0 1 [2206] 1 [[3,10,0]]
|
| | | 2012 0 4 [41] 35 [[3,10,0]]
|
| | | 2013 0 7 [] 10 [[3,10,0]]
|
| | | 2014 0 3 [] 10 [[3,10,0]]
|
| | | 2015 0 8 [42] 1000 [[3,10,0]]
|
| | | 2016 0 1 [2207] 1 [[3,10,0]]
|
| | | 2017 0 4 [41] 35 [[3,10,0]]
|
| | | 2018 0 7 [] 10 [[3,10,0]]
|
| | | 2019 0 3 [] 10 [[3,10,0]]
|
| | | 2020 0 8 [42] 1000 [[3,10,0]]
|
| | | 2021 0 1 [2208] 1 [[3,10,0]]
|
| | | 2022 0 4 [41] 35 [[3,10,0]]
|
| | | 2023 0 7 [] 10 [[3,10,0]]
|
| | | 2024 0 3 [] 10 [[3,10,0]]
|
| | | 2025 0 8 [42] 1000 [[3,10,0]]
|
| | | 2026 0 1 [2209] 1 [[3,10,0]]
|
| | | 2027 0 4 [41] 35 [[3,10,0]]
|
| | | 2028 0 7 [] 10 [[3,10,0]]
|
| | | 2029 0 3 [] 10 [[3,10,0]]
|
| | | 2030 0 8 [42] 1000 [[3,10,0]]
|
| | | 2031 0 1 [2210] 1 [[3,10,0]]
|
| | | 2032 0 4 [41] 35 [[3,10,0]]
|
| | | 2033 0 7 [] 10 [[3,10,0]]
|
| | | 2034 0 3 [] 10 [[3,10,0]]
|
| | | 2035 0 8 [42] 1000 [[3,10,0]]
|
| | | 2036 0 1 [2301] 1 [[3,10,0]]
|
| | | 2037 0 4 [41] 35 [[3,10,0]]
|
| | | 2038 0 7 [] 10 [[3,10,0]]
|
| | | 2039 0 3 [] 10 [[3,10,0]]
|
| | | 2040 0 8 [42] 1000 [[3,10,0]]
|
| | | 2041 0 1 [2302] 1 [[3,10,0]]
|
| | | 2042 0 4 [41] 35 [[3,10,0]]
|
| | | 2043 0 7 [] 10 [[3,10,0]]
|
| | | 2044 0 3 [] 10 [[3,10,0]]
|
| | | 2045 0 8 [42] 1000 [[3,10,0]]
|
| | | 2046 0 1 [2303] 1 [[3,10,0]]
|
| | | 2047 0 4 [41] 35 [[3,10,0]]
|
| | | 2048 0 7 [] 10 [[3,10,0]]
|
| | | 2049 0 3 [] 10 [[3,10,0]]
|
| | | 2050 0 8 [42] 1000 [[3,10,0]]
|
| | | 2051 0 1 [2304] 1 [[3,10,0]]
|
| | | 2052 0 4 [41] 35 [[3,10,0]]
|
| | | 2053 0 7 [] 10 [[3,10,0]]
|
| | | 2054 0 3 [] 10 [[3,10,0]]
|
| | | 2055 0 8 [42] 1000 [[3,10,0]]
|
| | | 2056 0 1 [2305] 1 [[3,10,0]]
|
| | | 2057 0 4 [41] 35 [[3,10,0]]
|
| | | 2058 0 7 [] 10 [[3,10,0]]
|
| | | 2059 0 3 [] 10 [[3,10,0]]
|
| | | 2060 0 8 [42] 1000 [[3,10,0]]
|
| | | 2061 0 1 [2306] 1 [[3,10,0]]
|
| | | 2062 0 4 [41] 35 [[3,10,0]]
|
| | | 2063 0 7 [] 10 [[3,10,0]]
|
| | | 2064 0 3 [] 10 [[3,10,0]]
|
| | | 2065 0 8 [42] 1000 [[3,10,0]]
|
| | | 2066 0 1 [2307] 1 [[3,10,0]]
|
| | | 2067 0 4 [41] 35 [[3,10,0]]
|
| | | 2068 0 7 [] 10 [[3,10,0]]
|
| | | 2069 0 3 [] 10 [[3,10,0]]
|
| | | 2070 0 8 [42] 1000 [[3,10,0]]
|
| | | 2071 0 1 [2308] 1 [[3,10,0]]
|
| | | 2072 0 4 [41] 35 [[3,10,0]]
|
| | | 2073 0 7 [] 10 [[3,10,0]]
|
| | | 2074 0 3 [] 10 [[3,10,0]]
|
| | | 2075 0 8 [42] 1000 [[3,10,0]]
|
| | | 2076 0 1 [2309] 1 [[3,10,0]]
|
| | | 2077 0 4 [41] 35 [[3,10,0]]
|
| | | 2078 0 7 [] 10 [[3,10,0]]
|
| | | 2079 0 3 [] 10 [[3,10,0]]
|
| | | 2080 0 8 [42] 1000 [[3,10,0]]
|
| | | 2081 0 1 [2310] 1 [[3,10,0]]
|
| | | 2082 0 4 [41] 35 [[3,10,0]]
|
| | | 2083 0 7 [] 10 [[3,10,0]]
|
| | | 2084 0 3 [] 10 [[3,10,0]]
|
| | | 2085 0 8 [42] 1000 [[3,10,0]]
|
| | | 2086 0 1 [2401] 1 [[3,10,0]]
|
| | | 2087 0 4 [41] 35 [[3,10,0]]
|
| | | 2088 0 7 [] 10 [[3,10,0]]
|
| | | 2089 0 3 [] 10 [[3,10,0]]
|
| | | 2090 0 8 [42] 1000 [[3,10,0]]
|
| | | 2091 0 1 [2402] 1 [[3,10,0]]
|
| | | 2092 0 4 [41] 35 [[3,10,0]]
|
| | | 2093 0 7 [] 10 [[3,10,0]]
|
| | | 2094 0 3 [] 10 [[3,10,0]]
|
| | | 2095 0 8 [42] 1000 [[3,10,0]]
|
| | | 2096 0 1 [2403] 1 [[3,10,0]]
|
| | | 2097 0 4 [41] 35 [[3,10,0]]
|
| | | 2098 0 7 [] 10 [[3,10,0]]
|
| | | 2099 0 3 [] 10 [[3,10,0]]
|
| | | 2100 0 8 [42] 1000 [[3,10,0]]
|
| | | 2101 0 1 [2404] 1 [[3,10,0]]
|
| | | 2102 0 4 [41] 35 [[3,10,0]]
|
| | | 2103 0 7 [] 10 [[3,10,0]]
|
| | | 2104 0 3 [] 10 [[3,10,0]]
|
| | | 2105 0 8 [42] 1000 [[3,10,0]]
|
| | | 2106 0 1 [2405] 1 [[3,10,0]]
|
| | | 2107 0 4 [41] 35 [[3,10,0]]
|
| | | 2108 0 7 [] 10 [[3,10,0]]
|
| | | 2109 0 3 [] 10 [[3,10,0]]
|
| | | 2110 0 8 [42] 1000 [[3,10,0]]
|
| | | 2111 0 1 [2406] 1 [[3,10,0]]
|
| | | 2112 0 4 [41] 35 [[3,10,0]]
|
| | | 2113 0 7 [] 10 [[3,10,0]]
|
| | | 2114 0 3 [] 10 [[3,10,0]]
|
| | | 2115 0 8 [42] 1000 [[3,10,0]]
|
| | | 2116 0 1 [2407] 1 [[3,10,0]]
|
| | | 2117 0 4 [41] 35 [[3,10,0]]
|
| | | 2118 0 7 [] 10 [[3,10,0]]
|
| | | 2119 0 3 [] 10 [[3,10,0]]
|
| | | 2120 0 8 [42] 1000 [[3,10,0]]
|
| | | 2121 0 1 [2408] 1 [[3,10,0]]
|
| | | 2122 0 4 [41] 35 [[3,10,0]]
|
| | | 2123 0 7 [] 10 [[3,10,0]]
|
| | | 2124 0 3 [] 10 [[3,10,0]]
|
| | | 2125 0 8 [42] 1000 [[3,10,0]]
|
| | | 2126 0 1 [2409] 1 [[3,10,0]]
|
| | | 2127 0 4 [41] 35 [[3,10,0]]
|
| | | 2128 0 7 [] 10 [[3,10,0]]
|
| | | 2129 0 3 [] 10 [[3,10,0]]
|
| | | 2130 0 8 [42] 1000 [[3,10,0]]
|
| | | 2131 0 1 [2410] 1 [[3,10,0]]
|
| | | 2132 0 4 [41] 35 [[3,10,0]]
|
| | | 2133 0 7 [] 10 [[3,10,0]]
|
| | | 2134 0 3 [] 10 [[3,10,0]]
|
| | | 2135 0 8 [42] 1000 [[3,10,0]]
|
| | | 2136 0 1 [2501] 1 [[3,10,0]]
|
| | | 2137 0 4 [41] 35 [[3,10,0]]
|
| | | 2138 0 7 [] 10 [[3,10,0]]
|
| | | 2139 0 3 [] 10 [[3,10,0]]
|
| | | 2140 0 8 [42] 1000 [[3,10,0]]
|
| | | 2141 0 1 [2502] 1 [[3,10,0]]
|
| | | 2142 0 4 [41] 35 [[3,10,0]]
|
| | | 2143 0 7 [] 10 [[3,10,0]]
|
| | | 2144 0 3 [] 10 [[3,10,0]]
|
| | | 2145 0 8 [42] 1000 [[3,10,0]]
|
| | | 2146 0 1 [2503] 1 [[3,10,0]]
|
| | | 2147 0 4 [41] 35 [[3,10,0]]
|
| | | 2148 0 7 [] 10 [[3,10,0]]
|
| | | 2149 0 3 [] 10 [[3,10,0]]
|
| | | 2150 0 8 [42] 1000 [[3,10,0]]
|
| | | 2151 0 1 [2504] 1 [[3,10,0]]
|
| | | 2152 0 4 [41] 35 [[3,10,0]]
|
| | | 2153 0 7 [] 10 [[3,10,0]]
|
| | | 2154 0 3 [] 10 [[3,10,0]]
|
| | | 2155 0 8 [42] 1000 [[3,10,0]]
|
| | | 2156 0 1 [2505] 1 [[3,10,0]]
|
| | | 2157 0 4 [41] 35 [[3,10,0]]
|
| | | 2158 0 7 [] 10 [[3,10,0]]
|
| | | 2159 0 3 [] 10 [[3,10,0]]
|
| | | 2160 0 8 [42] 1000 [[3,10,0]]
|
| | | 2161 0 1 [2506] 1 [[3,10,0]]
|
| | | 2162 0 4 [41] 35 [[3,10,0]]
|
| | | 2163 0 7 [] 10 [[3,10,0]]
|
| | | 2164 0 3 [] 10 [[3,10,0]]
|
| | | 2165 0 8 [42] 1000 [[3,10,0]]
|
| | | 2166 0 1 [2507] 1 [[3,10,0]]
|
| | | 2167 0 4 [41] 35 [[3,10,0]]
|
| | | 2168 0 7 [] 10 [[3,10,0]]
|
| | | 2169 0 3 [] 10 [[3,10,0]]
|
| | | 2170 0 8 [42] 1000 [[3,10,0]]
|
| | | 2171 0 1 [2508] 1 [[3,10,0]]
|
| | | 2172 0 4 [41] 35 [[3,10,0]]
|
| | | 2173 0 7 [] 10 [[3,10,0]]
|
| | | 2174 0 3 [] 10 [[3,10,0]]
|
| | | 2175 0 8 [42] 1000 [[3,10,0]]
|
| | | 2176 0 1 [2509] 1 [[3,10,0]]
|
| | | 2177 0 4 [41] 35 [[3,10,0]]
|
| | | 2178 0 7 [] 10 [[3,10,0]]
|
| | | 2179 0 3 [] 10 [[3,10,0]]
|
| | | 2180 0 8 [42] 1000 [[3,10,0]]
|
| | | 2181 0 1 [2510] 1 [[3,10,0]]
|
| | | 2182 0 4 [41] 35 [[3,10,0]]
|
| | | 2183 0 7 [] 10 [[3,10,0]]
|
| | | 2184 0 3 [] 10 [[3,10,0]]
|
| | | 2185 0 8 [42] 1000 [[3,10,0]]
|
| | | 2186 0 1 [2601] 1 [[3,10,0]]
|
| | | 2187 0 4 [41] 35 [[3,10,0]]
|
| | | 2188 0 7 [] 10 [[3,10,0]]
|
| | | 2189 0 3 [] 10 [[3,10,0]]
|
| | | 2190 0 8 [42] 1000 [[3,10,0]]
|
| | | 2191 0 1 [2602] 1 [[3,10,0]]
|
| | | 2192 0 4 [41] 35 [[3,10,0]]
|
| | | 2193 0 7 [] 10 [[3,10,0]]
|
| | | 2194 0 3 [] 10 [[3,10,0]]
|
| | | 2195 0 8 [42] 1000 [[3,10,0]]
|
| | | 2196 0 1 [2603] 1 [[3,10,0]]
|
| | | 2197 0 4 [41] 35 [[3,10,0]]
|
| | | 2198 0 7 [] 10 [[3,10,0]]
|
| | | 2199 0 3 [] 10 [[3,10,0]]
|
| | | 2200 0 8 [42] 1000 [[3,10,0]]
|
| | | 2201 0 1 [2604] 1 [[3,10,0]]
|
| | | 2202 0 4 [41] 35 [[3,10,0]]
|
| | | 2203 0 7 [] 10 [[3,10,0]]
|
| | | 2204 0 3 [] 10 [[3,10,0]]
|
| | | 2205 0 8 [42] 1000 [[3,10,0]]
|
| | | 2206 0 1 [2605] 1 [[3,10,0]]
|
| | | 2207 0 4 [41] 35 [[3,10,0]]
|
| | | 2208 0 7 [] 10 [[3,10,0]]
|
| | | 2209 0 3 [] 10 [[3,10,0]]
|
| | | 2210 0 8 [42] 1000 [[3,10,0]]
|
| | | 2211 0 1 [2606] 1 [[3,10,0]]
|
| | | 2212 0 4 [41] 35 [[3,10,0]]
|
| | | 2213 0 7 [] 10 [[3,10,0]]
|
| | | 2214 0 3 [] 10 [[3,10,0]]
|
| | | 2215 0 8 [42] 1000 [[3,10,0]]
|
| | | 2216 0 1 [2607] 1 [[3,10,0]]
|
| | | 2217 0 4 [41] 35 [[3,10,0]]
|
| | | 2218 0 7 [] 10 [[3,10,0]]
|
| | | 2219 0 3 [] 10 [[3,10,0]]
|
| | | 2220 0 8 [42] 1000 [[3,10,0]]
|
| | | 2221 0 1 [2608] 1 [[3,10,0]]
|
| | | 2222 0 4 [41] 35 [[3,10,0]]
|
| | | 2223 0 7 [] 10 [[3,10,0]]
|
| | | 2224 0 3 [] 10 [[3,10,0]]
|
| | | 2225 0 8 [42] 1000 [[3,10,0]]
|
| | | 2226 0 1 [2609] 1 [[3,10,0]]
|
| | | 2227 0 4 [41] 35 [[3,10,0]]
|
| | | 2228 0 7 [] 10 [[3,10,0]]
|
| | | 2229 0 3 [] 10 [[3,10,0]]
|
| | | 2230 0 8 [42] 1000 [[3,10,0]]
|
| | | 2231 0 1 [2610] 1 [[3,10,0]]
|
| | | 2232 0 4 [41] 35 [[3,10,0]]
|
| | | 2233 0 7 [] 10 [[3,10,0]]
|
| | | 2234 0 3 [] 10 [[3,10,0]]
|
| | | 2235 0 8 [42] 1000 [[3,10,0]]
|
| | | 2236 0 1 [2701] 1 [[3,10,0]]
|
| | | 2237 0 4 [41] 35 [[3,10,0]]
|
| | | 2238 0 7 [] 10 [[3,10,0]]
|
| | | 2239 0 3 [] 10 [[3,10,0]]
|
| | | 2240 0 8 [42] 1000 [[3,10,0]]
|
| | | 2241 0 1 [2702] 1 [[3,10,0]]
|
| | | 2242 0 4 [41] 35 [[3,10,0]]
|
| | | 2243 0 7 [] 10 [[3,10,0]]
|
| | | 2244 0 3 [] 10 [[3,10,0]]
|
| | | 2245 0 8 [42] 1000 [[3,10,0]]
|
| | | 2246 0 1 [2703] 1 [[3,10,0]]
|
| | | 2247 0 4 [41] 35 [[3,10,0]]
|
| | | 2248 0 7 [] 10 [[3,10,0]]
|
| | | 2249 0 3 [] 10 [[3,10,0]]
|
| | | 2250 0 8 [42] 1000 [[3,10,0]]
|
| | | 2251 0 1 [2704] 1 [[3,10,0]]
|
| | | 2252 0 4 [41] 35 [[3,10,0]]
|
| | | 2253 0 7 [] 10 [[3,10,0]]
|
| | | 2254 0 3 [] 10 [[3,10,0]]
|
| | | 2255 0 8 [42] 1000 [[3,10,0]]
|
| | | 2256 0 1 [2705] 1 [[3,10,0]]
|
| | | 2257 0 4 [41] 35 [[3,10,0]]
|
| | | 2258 0 7 [] 10 [[3,10,0]]
|
| | | 2259 0 3 [] 10 [[3,10,0]]
|
| | | 2260 0 8 [42] 1000 [[3,10,0]]
|
| | | 2261 0 1 [2706] 1 [[3,10,0]]
|
| | | 2262 0 4 [41] 35 [[3,10,0]]
|
| | | 2263 0 7 [] 10 [[3,10,0]]
|
| | | 2264 0 3 [] 10 [[3,10,0]]
|
| | | 2265 0 8 [42] 1000 [[3,10,0]]
|
| | | 2266 0 1 [2707] 1 [[3,10,0]]
|
| | | 2267 0 4 [41] 35 [[3,10,0]]
|
| | | 2268 0 7 [] 10 [[3,10,0]]
|
| | | 2269 0 3 [] 10 [[3,10,0]]
|
| | | 2270 0 8 [42] 1000 [[3,10,0]]
|
| | | 2271 0 1 [2708] 1 [[3,10,0]]
|
| | | 2272 0 4 [41] 35 [[3,10,0]]
|
| | | 2273 0 7 [] 10 [[3,10,0]]
|
| | | 2274 0 3 [] 10 [[3,10,0]]
|
| | | 2275 0 8 [42] 1000 [[3,10,0]]
|
| | | 2276 0 1 [2709] 1 [[3,10,0]]
|
| | | 2277 0 4 [41] 35 [[3,10,0]]
|
| | | 2278 0 7 [] 10 [[3,10,0]]
|
| | | 2279 0 3 [] 10 [[3,10,0]]
|
| | | 2280 0 8 [42] 1000 [[3,10,0]]
|
| | | 2281 0 1 [2710] 1 [[3,10,0]]
|
| | | 2282 0 4 [41] 35 [[3,10,0]]
|
| | | 2283 0 7 [] 10 [[3,10,0]]
|
| | | 2284 0 3 [] 10 [[3,10,0]]
|
| | | 2285 0 8 [42] 1000 [[3,10,0]]
|
| | | 2286 0 1 [2801] 1 [[3,10,0]]
|
| | | 2287 0 4 [41] 35 [[3,10,0]]
|
| | | 2288 0 7 [] 10 [[3,10,0]]
|
| | | 2289 0 3 [] 10 [[3,10,0]]
|
| | | 2290 0 8 [42] 1000 [[3,10,0]]
|
| | | 2291 0 1 [2802] 1 [[3,10,0]]
|
| | | 2292 0 4 [41] 35 [[3,10,0]]
|
| | | 2293 0 7 [] 10 [[3,10,0]]
|
| | | 2294 0 3 [] 10 [[3,10,0]]
|
| | | 2295 0 8 [42] 1000 [[3,10,0]]
|
| | | 2296 0 1 [2803] 1 [[3,10,0]]
|
| | | 2297 0 4 [41] 35 [[3,10,0]]
|
| | | 2298 0 7 [] 10 [[3,10,0]]
|
| | | 2299 0 3 [] 10 [[3,10,0]]
|
| | | 2300 0 8 [42] 1000 [[3,10,0]]
|
| | | 2301 0 1 [2804] 1 [[3,10,0]]
|
| | | 2302 0 4 [41] 35 [[3,10,0]]
|
| | | 2303 0 7 [] 10 [[3,10,0]]
|
| | | 2304 0 3 [] 10 [[3,10,0]]
|
| | | 2305 0 8 [42] 1000 [[3,10,0]]
|
| | | 2306 0 1 [2805] 1 [[3,10,0]]
|
| | | 2307 0 4 [41] 35 [[3,10,0]]
|
| | | 2308 0 7 [] 10 [[3,10,0]]
|
| | | 2309 0 3 [] 10 [[3,10,0]]
|
| | | 2310 0 8 [42] 1000 [[3,10,0]]
|
| | | 2311 0 1 [2806] 1 [[3,10,0]]
|
| | | 2312 0 4 [41] 35 [[3,10,0]]
|
| | | 2313 0 7 [] 10 [[3,10,0]]
|
| | | 2314 0 3 [] 10 [[3,10,0]]
|
| | | 2315 0 8 [42] 1000 [[3,10,0]]
|
| | | 2316 0 1 [2807] 1 [[3,10,0]]
|
| | | 2317 0 4 [41] 35 [[3,10,0]]
|
| | | 2318 0 7 [] 10 [[3,10,0]]
|
| | | 2319 0 3 [] 10 [[3,10,0]]
|
| | | 2320 0 8 [42] 1000 [[3,10,0]]
|
| | | 2321 0 1 [2808] 1 [[3,10,0]]
|
| | | 2322 0 4 [41] 35 [[3,10,0]]
|
| | | 2323 0 7 [] 10 [[3,10,0]]
|
| | | 2324 0 3 [] 10 [[3,10,0]]
|
| | | 2325 0 8 [42] 1000 [[3,10,0]]
|
| | | 2326 0 1 [2809] 1 [[3,10,0]]
|
| | | 2327 0 4 [41] 35 [[3,10,0]]
|
| | | 2328 0 7 [] 10 [[3,10,0]]
|
| | | 2329 0 3 [] 10 [[3,10,0]]
|
| | | 2330 0 8 [42] 1000 [[3,10,0]]
|
| | | 2331 0 1 [2810] 1 [[3,10,0]]
|
| | | 2332 0 4 [41] 35 [[3,10,0]]
|
| | | 2333 0 7 [] 10 [[3,10,0]]
|
| | | 2334 0 3 [] 10 [[3,10,0]]
|
| | | 2335 0 8 [42] 1000 [[3,10,0]]
|
| | | 2336 0 1 [2901] 1 [[3,10,0]]
|
| | | 2337 0 4 [41] 35 [[3,10,0]]
|
| | | 2338 0 7 [] 10 [[3,10,0]]
|
| | | 2339 0 3 [] 10 [[3,10,0]]
|
| | | 2340 0 8 [42] 1000 [[3,10,0]]
|
| | | 2341 0 1 [2902] 1 [[3,10,0]]
|
| | | 2342 0 4 [41] 35 [[3,10,0]]
|
| | | 2343 0 7 [] 10 [[3,10,0]]
|
| | | 2344 0 3 [] 10 [[3,10,0]]
|
| | | 2345 0 8 [42] 1000 [[3,10,0]]
|
| | | 2346 0 1 [2903] 1 [[3,10,0]]
|
| | | 2347 0 4 [41] 35 [[3,10,0]]
|
| | | 2348 0 7 [] 10 [[3,10,0]]
|
| | | 2349 0 3 [] 10 [[3,10,0]]
|
| | | 2350 0 8 [42] 1000 [[3,10,0]]
|
| | | 2351 0 1 [2904] 1 [[3,10,0]]
|
| | | 2352 0 4 [41] 35 [[3,10,0]]
|
| | | 2353 0 7 [] 10 [[3,10,0]]
|
| | | 2354 0 3 [] 10 [[3,10,0]]
|
| | | 2355 0 8 [42] 1000 [[3,10,0]]
|
| | | 2356 0 1 [2905] 1 [[3,10,0]]
|
| | | 2357 0 4 [41] 35 [[3,10,0]]
|
| | | 2358 0 7 [] 10 [[3,10,0]]
|
| | | 2359 0 3 [] 10 [[3,10,0]]
|
| | | 2360 0 8 [42] 1000 [[3,10,0]]
|
| | | 2361 0 1 [2906] 1 [[3,10,0]]
|
| | | 2362 0 4 [41] 35 [[3,10,0]]
|
| | | 2363 0 7 [] 10 [[3,10,0]]
|
| | | 2364 0 3 [] 10 [[3,10,0]]
|
| | | 2365 0 8 [42] 1000 [[3,10,0]]
|
| | | 2366 0 1 [2907] 1 [[3,10,0]]
|
| | | 2367 0 4 [41] 35 [[3,10,0]]
|
| | | 2368 0 7 [] 10 [[3,10,0]]
|
| | | 2369 0 3 [] 10 [[3,10,0]]
|
| | | 2370 0 8 [42] 1000 [[3,10,0]]
|
| | | 2371 0 1 [2908] 1 [[3,10,0]]
|
| | | 2372 0 4 [41] 35 [[3,10,0]]
|
| | | 2373 0 7 [] 10 [[3,10,0]]
|
| | | 2374 0 3 [] 10 [[3,10,0]]
|
| | | 2375 0 8 [42] 1000 [[3,10,0]]
|
| | | 2376 0 1 [2909] 1 [[3,10,0]]
|
| | | 2377 0 4 [41] 35 [[3,10,0]]
|
| | | 2378 0 7 [] 10 [[3,10,0]]
|
| | | 2379 0 3 [] 10 [[3,10,0]]
|
| | | 2380 0 8 [42] 1000 [[3,10,0]]
|
| | | 2381 0 1 [2910] 1 [[3,10,0]]
|
| | | 2382 0 4 [41] 35 [[3,10,0]]
|
| | | 2383 0 7 [] 10 [[3,10,0]]
|
| | | 2384 0 3 [] 10 [[3,10,0]]
|
| | | 2385 0 8 [42] 1000 [[3,10,0]]
|
| | | 2386 0 1 [3001] 1 [[3,10,0]]
|
| | | 2387 0 4 [41] 35 [[3,10,0]]
|
| | | 2388 0 7 [] 10 [[3,10,0]]
|
| | | 2389 0 3 [] 10 [[3,10,0]]
|
| | | 2390 0 8 [42] 1000 [[3,10,0]]
|
| | | 2391 0 1 [3002] 1 [[3,10,0]]
|
| | | 2392 0 4 [41] 35 [[3,10,0]]
|
| | | 2393 0 7 [] 10 [[3,10,0]]
|
| | | 2394 0 3 [] 10 [[3,10,0]]
|
| | | 2395 0 8 [42] 1000 [[3,10,0]]
|
| | | 2396 0 1 [3003] 1 [[3,10,0]]
|
| | | 2397 0 4 [41] 35 [[3,10,0]]
|
| | | 2398 0 7 [] 10 [[3,10,0]]
|
| | | 2399 0 3 [] 10 [[3,10,0]]
|
| | | 2400 0 8 [42] 1000 [[3,10,0]]
|
| | | 2401 0 1 [3004] 1 [[3,10,0]]
|
| | | 2402 0 4 [41] 35 [[3,10,0]]
|
| | | 2403 0 7 [] 10 [[3,10,0]]
|
| | | 2404 0 3 [] 10 [[3,10,0]]
|
| | | 2405 0 8 [42] 1000 [[3,10,0]]
|
| | | 2406 0 1 [3005] 1 [[3,10,0]]
|
| | | 2407 0 4 [41] 35 [[3,10,0]]
|
| | | 2408 0 7 [] 10 [[3,10,0]]
|
| | | 2409 0 3 [] 10 [[3,10,0]]
|
| | | 2410 0 8 [42] 1000 [[3,10,0]]
|
| | | 2411 0 1 [3006] 1 [[3,10,0]]
|
| | | 2412 0 4 [41] 35 [[3,10,0]]
|
| | | 2413 0 7 [] 10 [[3,10,0]]
|
| | | 2414 0 3 [] 10 [[3,10,0]]
|
| | | 2415 0 8 [42] 1000 [[3,10,0]]
|
| | | 2416 0 1 [3007] 1 [[3,10,0]]
|
| | | 2417 0 4 [41] 35 [[3,10,0]]
|
| | | 2418 0 7 [] 10 [[3,10,0]]
|
| | | 2419 0 3 [] 10 [[3,10,0]]
|
| | | 2420 0 8 [42] 1000 [[3,10,0]]
|
| | | 2421 0 1 [3008] 1 [[3,10,0]]
|
| | | 2422 0 4 [41] 35 [[3,10,0]]
|
| | | 2423 0 7 [] 10 [[3,10,0]]
|
| | | 2424 0 3 [] 10 [[3,10,0]]
|
| | | 2425 0 8 [42] 1000 [[3,10,0]]
|
| | | 2426 0 1 [3009] 1 [[3,10,0]]
|
| | | 2427 0 4 [41] 35 [[3,10,0]]
|
| | | 2428 0 7 [] 10 [[3,10,0]]
|
| | | 2429 0 3 [] 10 [[3,10,0]]
|
| | | 2430 0 8 [42] 1000 [[3,10,0]]
|
| | | 2431 0 1 [3010] 1 [[3,10,0]]
|
| | | 2432 0 4 [41] 35 [[3,10,0]]
|
| | | 2433 0 7 [] 10 [[3,10,0]]
|
| | | 2434 0 3 [] 10 [[3,10,0]]
|
| | | 2435 0 8 [42] 1000 [[3,10,0]]
|
| | | 2436 0 1 [3101] 1 [[3,10,0]]
|
| | | 2437 0 4 [41] 35 [[3,10,0]]
|
| | | 2438 0 7 [] 10 [[3,10,0]]
|
| | | 2439 0 3 [] 10 [[3,10,0]]
|
| | | 2440 0 8 [42] 1000 [[3,10,0]]
|
| | | 2441 0 1 [3102] 1 [[3,10,0]]
|
| | | 2442 0 4 [41] 35 [[3,10,0]]
|
| | | 2443 0 7 [] 10 [[3,10,0]]
|
| | | 2444 0 3 [] 10 [[3,10,0]]
|
| | | 2445 0 8 [42] 1000 [[3,10,0]]
|
| | | 2446 0 1 [3103] 1 [[3,10,0]]
|
| | | 2447 0 4 [41] 35 [[3,10,0]]
|
| | | 2448 0 7 [] 10 [[3,10,0]]
|
| | | 2449 0 3 [] 10 [[3,10,0]]
|
| | | 2450 0 8 [42] 1000 [[3,10,0]]
|
| | | 2451 0 1 [3104] 1 [[3,10,0]]
|
| | | 2452 0 4 [41] 35 [[3,10,0]]
|
| | | 2453 0 7 [] 10 [[3,10,0]]
|
| | | 2454 0 3 [] 10 [[3,10,0]]
|
| | | 2455 0 8 [42] 1000 [[3,10,0]]
|
| | | 2456 0 1 [3105] 1 [[3,10,0]]
|
| | | 2457 0 4 [41] 35 [[3,10,0]]
|
| | | 2458 0 7 [] 10 [[3,10,0]]
|
| | | 2459 0 3 [] 10 [[3,10,0]]
|
| | | 2460 0 8 [42] 1000 [[3,10,0]]
|
| | | 2461 0 1 [3106] 1 [[3,10,0]]
|
| | | 2462 0 4 [41] 35 [[3,10,0]]
|
| | | 2463 0 7 [] 10 [[3,10,0]]
|
| | | 2464 0 3 [] 10 [[3,10,0]]
|
| | | 2465 0 8 [42] 1000 [[3,10,0]]
|
| | | 2466 0 1 [3107] 1 [[3,10,0]]
|
| | | 2467 0 4 [41] 35 [[3,10,0]]
|
| | | 2468 0 7 [] 10 [[3,10,0]]
|
| | | 2469 0 3 [] 10 [[3,10,0]]
|
| | | 2470 0 8 [42] 1000 [[3,10,0]]
|
| | | 2471 0 1 [3108] 1 [[3,10,0]]
|
| | | 2472 0 4 [41] 35 [[3,10,0]]
|
| | | 2473 0 7 [] 10 [[3,10,0]]
|
| | | 2474 0 3 [] 10 [[3,10,0]]
|
| | | 2475 0 8 [42] 1000 [[3,10,0]]
|
| | | 2476 0 1 [3109] 1 [[3,10,0]]
|
| | | 2477 0 4 [41] 35 [[3,10,0]]
|
| | | 2478 0 7 [] 10 [[3,10,0]]
|
| | | 2479 0 3 [] 10 [[3,10,0]]
|
| | | 2480 0 8 [42] 1000 [[3,10,0]]
|
| | | 2481 0 1 [3110] 1 [[3,10,0]]
|
| | | 2482 0 4 [41] 35 [[3,10,0]]
|
| | | 2483 0 7 [] 10 [[3,10,0]]
|
| | | 2484 0 3 [] 10 [[3,10,0]]
|
| | | 2485 0 8 [42] 1000 [[3,10,0]]
|
| | | 2486 0 1 [3201] 1 [[3,10,0]]
|
| | | 2487 0 4 [41] 35 [[3,10,0]]
|
| | | 2488 0 7 [] 10 [[3,10,0]]
|
| | | 2489 0 3 [] 10 [[3,10,0]]
|
| | | 2490 0 8 [42] 1000 [[3,10,0]]
|
| | | 2491 0 1 [3202] 1 [[3,10,0]]
|
| | | 2492 0 4 [41] 35 [[3,10,0]]
|
| | | 2493 0 7 [] 10 [[3,10,0]]
|
| | | 2494 0 3 [] 10 [[3,10,0]]
|
| | | 2495 0 8 [42] 1000 [[3,10,0]]
|
| | | 2496 0 1 [3203] 1 [[3,10,0]]
|
| | | 2497 0 4 [41] 35 [[3,10,0]]
|
| | | 2498 0 7 [] 10 [[3,10,0]]
|
| | | 2499 0 3 [] 10 [[3,10,0]]
|
| | | 2500 0 8 [42] 1000 [[3,10,0]]
|
| | | 2501 0 1 [3204] 1 [[3,10,0]]
|
| | | 2502 0 4 [41] 35 [[3,10,0]]
|
| | | 2503 0 7 [] 10 [[3,10,0]]
|
| | | 2504 0 3 [] 10 [[3,10,0]]
|
| | | 2505 0 8 [42] 1000 [[3,10,0]]
|
| | | 2506 0 1 [3205] 1 [[3,10,0]]
|
| | | 2507 0 4 [41] 35 [[3,10,0]]
|
| | | 2508 0 7 [] 10 [[3,10,0]]
|
| | | 2509 0 3 [] 10 [[3,10,0]]
|
| | | 2510 0 8 [42] 1000 [[3,10,0]]
|
| | | 2511 0 1 [3206] 1 [[3,10,0]]
|
| | | 2512 0 4 [41] 35 [[3,10,0]]
|
| | | 2513 0 7 [] 10 [[3,10,0]]
|
| | | 2514 0 3 [] 10 [[3,10,0]]
|
| | | 2515 0 8 [42] 1000 [[3,10,0]]
|
| | | 2516 0 1 [3207] 1 [[3,10,0]]
|
| | | 2517 0 4 [41] 35 [[3,10,0]]
|
| | | 2518 0 7 [] 10 [[3,10,0]]
|
| | | 2519 0 3 [] 10 [[3,10,0]]
|
| | | 2520 0 8 [42] 1000 [[3,10,0]]
|
| | | 2521 0 1 [3208] 1 [[3,10,0]]
|
| | | 2522 0 4 [41] 35 [[3,10,0]]
|
| | | 2523 0 7 [] 10 [[3,10,0]]
|
| | | 2524 0 3 [] 10 [[3,10,0]]
|
| | | 2525 0 8 [42] 1000 [[3,10,0]]
|
| | | 2526 0 1 [3209] 1 [[3,10,0]]
|
| | | 2527 0 4 [41] 35 [[3,10,0]]
|
| | | 2528 0 7 [] 10 [[3,10,0]]
|
| | | 2529 0 3 [] 10 [[3,10,0]]
|
| | | 2530 0 8 [42] 1000 [[3,10,0]]
|
| | | 2531 0 1 [3210] 1 [[3,10,0]]
|
| | | 2532 0 4 [41] 35 [[3,10,0]]
|
| | | 2533 0 7 [] 10 [[3,10,0]]
|
| | | 2534 0 3 [] 10 [[3,10,0]]
|
| | | 2535 0 8 [42] 1000 [[3,10,0]]
|
| | | 2536 0 1 [3301] 1 [[3,10,0]]
|
| | | 2537 0 4 [41] 35 [[3,10,0]]
|
| | | 2538 0 7 [] 10 [[3,10,0]]
|
| | | 2539 0 3 [] 10 [[3,10,0]]
|
| | | 2540 0 8 [42] 1000 [[3,10,0]]
|
| | | 2541 0 1 [3302] 1 [[3,10,0]]
|
| | | 2542 0 4 [41] 35 [[3,10,0]]
|
| | | 2543 0 7 [] 10 [[3,10,0]]
|
| | | 2544 0 3 [] 10 [[3,10,0]]
|
| | | 2545 0 8 [42] 1000 [[3,10,0]]
|
| | | 2546 0 1 [3303] 1 [[3,10,0]]
|
| | | 2547 0 4 [41] 35 [[3,10,0]]
|
| | | 2548 0 7 [] 10 [[3,10,0]]
|
| | | 2549 0 3 [] 10 [[3,10,0]]
|
| | | 2550 0 8 [42] 1000 [[3,10,0]]
|
| | | 2551 0 1 [3304] 1 [[3,10,0]]
|
| | | 2552 0 4 [41] 35 [[3,10,0]]
|
| | | 2553 0 7 [] 10 [[3,10,0]]
|
| | | 2554 0 3 [] 10 [[3,10,0]]
|
| | | 2555 0 8 [42] 1000 [[3,10,0]]
|
| | | 2556 0 1 [3305] 1 [[3,10,0]]
|
| | | 2557 0 4 [41] 35 [[3,10,0]]
|
| | | 2558 0 7 [] 10 [[3,10,0]]
|
| | | 2559 0 3 [] 10 [[3,10,0]]
|
| | | 2560 0 8 [42] 1000 [[3,10,0]]
|
| | | 2561 0 1 [3306] 1 [[3,10,0]]
|
| | | 2562 0 4 [41] 35 [[3,10,0]]
|
| | | 2563 0 7 [] 10 [[3,10,0]]
|
| | | 2564 0 3 [] 10 [[3,10,0]]
|
| | | 2565 0 8 [42] 1000 [[3,10,0]]
|
| | | 2566 0 1 [3307] 1 [[3,10,0]]
|
| | | 2567 0 4 [41] 35 [[3,10,0]]
|
| | | 2568 0 7 [] 10 [[3,10,0]]
|
| | | 2569 0 3 [] 10 [[3,10,0]]
|
| | | 2570 0 8 [42] 1000 [[3,10,0]]
|
| | | 2571 0 1 [3308] 1 [[3,10,0]]
|
| | | 2572 0 4 [41] 35 [[3,10,0]]
|
| | | 2573 0 7 [] 10 [[3,10,0]]
|
| | | 2574 0 3 [] 10 [[3,10,0]]
|
| | | 2575 0 8 [42] 1000 [[3,10,0]]
|
| | | 2576 0 1 [3309] 1 [[3,10,0]]
|
| | | 2577 0 4 [41] 35 [[3,10,0]]
|
| | | 2578 0 7 [] 10 [[3,10,0]]
|
| | | 2579 0 3 [] 10 [[3,10,0]]
|
| | | 2580 0 8 [42] 1000 [[3,10,0]]
|
| | | 2581 0 1 [3310] 1 [[3,10,0]]
|
| | | 2582 0 4 [41] 35 [[3,10,0]]
|
| | | 2583 0 7 [] 10 [[3,10,0]]
|
| | | 2584 0 3 [] 10 [[3,10,0]]
|
| | | 2585 0 8 [42] 1000 [[3,10,0]]
|
| | | 2586 0 1 [3401] 1 [[3,10,0]]
|
| | | 2587 0 4 [41] 35 [[3,10,0]]
|
| | | 2588 0 7 [] 10 [[3,10,0]]
|
| | | 2589 0 3 [] 10 [[3,10,0]]
|
| | | 2590 0 8 [42] 1000 [[3,10,0]]
|
| | | 2591 0 1 [3402] 1 [[3,10,0]]
|
| | | 2592 0 4 [41] 35 [[3,10,0]]
|
| | | 2593 0 7 [] 10 [[3,10,0]]
|
| | | 2594 0 3 [] 10 [[3,10,0]]
|
| | | 2595 0 8 [42] 1000 [[3,10,0]]
|
| | | 2596 0 1 [3403] 1 [[3,10,0]]
|
| | | 2597 0 4 [41] 35 [[3,10,0]]
|
| | | 2598 0 7 [] 10 [[3,10,0]]
|
| | | 2599 0 3 [] 10 [[3,10,0]]
|
| | | 2600 0 8 [42] 1000 [[3,10,0]]
|
| | | 2601 0 1 [3404] 1 [[3,10,0]]
|
| | | 2602 0 4 [41] 35 [[3,10,0]]
|
| | | 2603 0 7 [] 10 [[3,10,0]]
|
| | | 2604 0 3 [] 10 [[3,10,0]]
|
| | | 2605 0 8 [42] 1000 [[3,10,0]]
|
| | | 2606 0 1 [3405] 1 [[3,10,0]]
|
| | | 2607 0 4 [41] 35 [[3,10,0]]
|
| | | 2608 0 7 [] 10 [[3,10,0]]
|
| | | 2609 0 3 [] 10 [[3,10,0]]
|
| | | 2610 0 8 [42] 1000 [[3,10,0]]
|
| | | 2611 0 1 [3406] 1 [[3,10,0]]
|
| | | 2612 0 4 [41] 35 [[3,10,0]]
|
| | | 2613 0 7 [] 10 [[3,10,0]]
|
| | | 2614 0 3 [] 10 [[3,10,0]]
|
| | | 2615 0 8 [42] 1000 [[3,10,0]]
|
| | | 2616 0 1 [3407] 1 [[3,10,0]]
|
| | | 2617 0 4 [41] 35 [[3,10,0]]
|
| | | 2618 0 7 [] 10 [[3,10,0]]
|
| | | 2619 0 3 [] 10 [[3,10,0]]
|
| | | 2620 0 8 [42] 1000 [[3,10,0]]
|
| | | 2621 0 1 [3408] 1 [[3,10,0]]
|
| | | 2622 0 4 [41] 35 [[3,10,0]]
|
| | | 2623 0 7 [] 10 [[3,10,0]]
|
| | | 2624 0 3 [] 10 [[3,10,0]]
|
| | | 2625 0 8 [42] 1000 [[3,10,0]]
|
| | | 2626 0 1 [3409] 1 [[3,10,0]]
|
| | | 2627 0 4 [41] 35 [[3,10,0]]
|
| | | 2628 0 7 [] 10 [[3,10,0]]
|
| | | 2629 0 3 [] 10 [[3,10,0]]
|
| | | 2630 0 8 [42] 1000 [[3,10,0]]
|
| | | 2631 0 1 [3410] 1 [[3,10,0]]
|
| | | 2632 0 4 [41] 35 [[3,10,0]]
|
| | | 2633 0 7 [] 10 [[3,10,0]]
|
| | | 2634 0 3 [] 10 [[3,10,0]]
|
| | | 2635 0 8 [42] 1000 [[3,10,0]]
|
| | | 2636 0 1 [3501] 1 [[3,10,0]]
|
| | | 2637 0 4 [41] 35 [[3,10,0]]
|
| | | 2638 0 7 [] 10 [[3,10,0]]
|
| | | 2639 0 3 [] 10 [[3,10,0]]
|
| | | 2640 0 8 [42] 1000 [[3,10,0]]
|
| | | 2641 0 1 [3502] 1 [[3,10,0]]
|
| | | 2642 0 4 [41] 35 [[3,10,0]]
|
| | | 2643 0 7 [] 10 [[3,10,0]]
|
| | | 2644 0 3 [] 10 [[3,10,0]]
|
| | | 2645 0 8 [42] 1000 [[3,10,0]]
|
| | | 2646 0 1 [3503] 1 [[3,10,0]]
|
| | | 2647 0 4 [41] 35 [[3,10,0]]
|
| | | 2648 0 7 [] 10 [[3,10,0]]
|
| | | 2649 0 3 [] 10 [[3,10,0]]
|
| | | 2650 0 8 [42] 1000 [[3,10,0]]
|
| | | 2651 0 1 [3504] 1 [[3,10,0]]
|
| | | 2652 0 4 [41] 35 [[3,10,0]]
|
| | | 2653 0 7 [] 10 [[3,10,0]]
|
| | | 2654 0 3 [] 10 [[3,10,0]]
|
| | | 2655 0 8 [42] 1000 [[3,10,0]]
|
| | | 2656 0 1 [3505] 1 [[3,10,0]]
|
| | | 2657 0 4 [41] 35 [[3,10,0]]
|
| | | 2658 0 7 [] 10 [[3,10,0]]
|
| | | 2659 0 3 [] 10 [[3,10,0]]
|
| | | 2660 0 8 [42] 1000 [[3,10,0]]
|
| | | 2661 0 1 [3506] 1 [[3,10,0]]
|
| | | 2662 0 4 [41] 35 [[3,10,0]]
|
| | | 2663 0 7 [] 10 [[3,10,0]]
|
| | | 2664 0 3 [] 10 [[3,10,0]]
|
| | | 2665 0 8 [42] 1000 [[3,10,0]]
|
| | | 2666 0 1 [3507] 1 [[3,10,0]]
|
| | | 2667 0 4 [41] 35 [[3,10,0]]
|
| | | 2668 0 7 [] 10 [[3,10,0]]
|
| | | 2669 0 3 [] 10 [[3,10,0]]
|
| | | 2670 0 8 [42] 1000 [[3,10,0]]
|
| | | 2671 0 1 [3508] 1 [[3,10,0]]
|
| | | 2672 0 4 [41] 35 [[3,10,0]]
|
| | | 2673 0 7 [] 10 [[3,10,0]]
|
| | | 2674 0 3 [] 10 [[3,10,0]]
|
| | | 2675 0 8 [42] 1000 [[3,10,0]]
|
| | | 2676 0 1 [3509] 1 [[3,10,0]]
|
| | | 2677 0 4 [41] 35 [[3,10,0]]
|
| | | 2678 0 7 [] 10 [[3,10,0]]
|
| | | 2679 0 3 [] 10 [[3,10,0]]
|
| | | 2680 0 8 [42] 1000 [[3,10,0]]
|
| | | 2681 0 1 [3510] 1 [[3,10,0]]
|
| | | 2682 0 4 [41] 35 [[3,10,0]]
|
| | | 2683 0 7 [] 10 [[3,10,0]]
|
| | | 2684 0 3 [] 10 [[3,10,0]]
|
| | | 2685 0 8 [42] 1000 [[3,10,0]]
|
| | | 2686 0 1 [3601] 1 [[3,10,0]]
|
| | | 2687 0 4 [41] 35 [[3,10,0]]
|
| | | 2688 0 7 [] 10 [[3,10,0]]
|
| | | 2689 0 3 [] 10 [[3,10,0]]
|
| | | 2690 0 8 [42] 1000 [[3,10,0]]
|
| | | 2691 0 1 [3602] 1 [[3,10,0]]
|
| | | 2692 0 4 [41] 35 [[3,10,0]]
|
| | | 2693 0 7 [] 10 [[3,10,0]]
|
| | | 2694 0 3 [] 10 [[3,10,0]]
|
| | | 2695 0 8 [42] 1000 [[3,10,0]]
|
| | | 2696 0 1 [3603] 1 [[3,10,0]]
|
| | | 2697 0 4 [41] 35 [[3,10,0]]
|
| | | 2698 0 7 [] 10 [[3,10,0]]
|
| | | 2699 0 3 [] 10 [[3,10,0]]
|
| | | 2700 0 8 [42] 1000 [[3,10,0]]
|
| | | 2701 0 1 [3604] 1 [[3,10,0]]
|
| | | 2702 0 4 [41] 35 [[3,10,0]]
|
| | | 2703 0 7 [] 10 [[3,10,0]]
|
| | | 2704 0 3 [] 10 [[3,10,0]]
|
| | | 2705 0 8 [42] 1000 [[3,10,0]]
|
| | | 2706 0 1 [3605] 1 [[3,10,0]]
|
| | | 2707 0 4 [41] 35 [[3,10,0]]
|
| | | 2708 0 7 [] 10 [[3,10,0]]
|
| | | 2709 0 3 [] 10 [[3,10,0]]
|
| | | 2710 0 8 [42] 1000 [[3,10,0]]
|
| | | 2711 0 1 [3606] 1 [[3,10,0]]
|
| | | 2712 0 4 [41] 35 [[3,10,0]]
|
| | | 2713 0 7 [] 10 [[3,10,0]]
|
| | | 2714 0 3 [] 10 [[3,10,0]]
|
| | | 2715 0 8 [42] 1000 [[3,10,0]]
|
| | | 2716 0 1 [3607] 1 [[3,10,0]]
|
| | | 2717 0 4 [41] 35 [[3,10,0]]
|
| | | 2718 0 7 [] 10 [[3,10,0]]
|
| | | 2719 0 3 [] 10 [[3,10,0]]
|
| | | 2720 0 8 [42] 1000 [[3,10,0]]
|
| | | 2721 0 1 [3608] 1 [[3,10,0]]
|
| | | 2722 0 4 [41] 35 [[3,10,0]]
|
| | | 2723 0 7 [] 10 [[3,10,0]]
|
| | | 2724 0 3 [] 10 [[3,10,0]]
|
| | | 2725 0 8 [42] 1000 [[3,10,0]]
|
| | | 2726 0 1 [3609] 1 [[3,10,0]]
|
| | | 2727 0 4 [41] 35 [[3,10,0]]
|
| | | 2728 0 7 [] 10 [[3,10,0]]
|
| | | 2729 0 3 [] 10 [[3,10,0]]
|
| | | 2730 0 8 [42] 1000 [[3,10,0]]
|
| | | 2731 0 1 [3610] 1 [[3,10,0]]
|
| | | 2732 0 4 [41] 35 [[3,10,0]]
|
| | | 2733 0 7 [] 10 [[3,10,0]]
|
| | | 2734 0 3 [] 10 [[3,10,0]]
|
| | | 2735 0 8 [42] 1000 [[3,10,0]]
|
| | | 2736 0 1 [3701] 1 [[3,10,0]]
|
| | | 2737 0 4 [41] 35 [[3,10,0]]
|
| | | 2738 0 7 [] 10 [[3,10,0]]
|
| | | 2739 0 3 [] 10 [[3,10,0]]
|
| | | 2740 0 8 [42] 1000 [[3,10,0]]
|
| | | 2741 0 1 [3702] 1 [[3,10,0]]
|
| | | 2742 0 4 [41] 35 [[3,10,0]]
|
| | | 2743 0 7 [] 10 [[3,10,0]]
|
| | | 2744 0 3 [] 10 [[3,10,0]]
|
| | | 2745 0 8 [42] 1000 [[3,10,0]]
|
| | | 2746 0 1 [3703] 1 [[3,10,0]]
|
| | | 2747 0 4 [41] 35 [[3,10,0]]
|
| | | 2748 0 7 [] 10 [[3,10,0]]
|
| | | 2749 0 3 [] 10 [[3,10,0]]
|
| | | 2750 0 8 [42] 1000 [[3,10,0]]
|
| | | 2751 0 1 [3704] 1 [[3,10,0]]
|
| | | 2752 0 4 [41] 35 [[3,10,0]]
|
| | | 2753 0 7 [] 10 [[3,10,0]]
|
| | | 2754 0 3 [] 10 [[3,10,0]]
|
| | | 2755 0 8 [42] 1000 [[3,10,0]]
|
| | | 2756 0 1 [3705] 1 [[3,10,0]]
|
| | | 2757 0 4 [41] 35 [[3,10,0]]
|
| | | 2758 0 7 [] 10 [[3,10,0]]
|
| | | 2759 0 3 [] 10 [[3,10,0]]
|
| | | 2760 0 8 [42] 1000 [[3,10,0]]
|
| | | 2761 0 1 [3706] 1 [[3,10,0]]
|
| | | 2762 0 4 [41] 35 [[3,10,0]]
|
| | | 2763 0 7 [] 10 [[3,10,0]]
|
| | | 2764 0 3 [] 10 [[3,10,0]]
|
| | | 2765 0 8 [42] 1000 [[3,10,0]]
|
| | | 2766 0 1 [3707] 1 [[3,10,0]]
|
| | | 2767 0 4 [41] 35 [[3,10,0]]
|
| | | 2768 0 7 [] 10 [[3,10,0]]
|
| | | 2769 0 3 [] 10 [[3,10,0]]
|
| | | 2770 0 8 [42] 1000 [[3,10,0]]
|
| | | 2771 0 1 [3708] 1 [[3,10,0]]
|
| | | 2772 0 4 [41] 35 [[3,10,0]]
|
| | | 2773 0 7 [] 10 [[3,10,0]]
|
| | | 2774 0 3 [] 10 [[3,10,0]]
|
| | | 2775 0 8 [42] 1000 [[3,10,0]]
|
| | | 2776 0 1 [3709] 1 [[3,10,0]]
|
| | | 2777 0 4 [41] 35 [[3,10,0]]
|
| | | 2778 0 7 [] 10 [[3,10,0]]
|
| | | 2779 0 3 [] 10 [[3,10,0]]
|
| | | 2780 0 8 [42] 1000 [[3,10,0]]
|
| | | 2781 0 1 [3710] 1 [[3,10,0]]
|
| | | 2782 0 4 [41] 35 [[3,10,0]]
|
| | | 2783 0 7 [] 10 [[3,10,0]]
|
| | | 2784 0 3 [] 10 [[3,10,0]]
|
| | | 2785 0 8 [42] 1000 [[3,10,0]]
|
| | | 2786 0 1 [3801] 1 [[3,10,0]]
|
| | | 2787 0 4 [41] 35 [[3,10,0]]
|
| | | 2788 0 7 [] 10 [[3,10,0]]
|
| | | 2789 0 3 [] 10 [[3,10,0]]
|
| | | 2790 0 8 [42] 1000 [[3,10,0]]
|
| | | 2791 0 1 [3802] 1 [[3,10,0]]
|
| | | 2792 0 4 [41] 35 [[3,10,0]]
|
| | | 2793 0 7 [] 10 [[3,10,0]]
|
| | | 2794 0 3 [] 10 [[3,10,0]]
|
| | | 2795 0 8 [42] 1000 [[3,10,0]]
|
| | | 2796 0 1 [3803] 1 [[3,10,0]]
|
| | | 2797 0 4 [41] 35 [[3,10,0]]
|
| | | 2798 0 7 [] 10 [[3,10,0]]
|
| | | 2799 0 3 [] 10 [[3,10,0]]
|
| | | 2800 0 8 [42] 1000 [[3,10,0]]
|
| | | 2801 0 1 [3804] 1 [[3,10,0]]
|
| | | 2802 0 4 [41] 35 [[3,10,0]]
|
| | | 2803 0 7 [] 10 [[3,10,0]]
|
| | | 2804 0 3 [] 10 [[3,10,0]]
|
| | | 2805 0 8 [42] 1000 [[3,10,0]]
|
| | | 2806 0 1 [3805] 1 [[3,10,0]]
|
| | | 2807 0 4 [41] 35 [[3,10,0]]
|
| | | 2808 0 7 [] 10 [[3,10,0]]
|
| | | 2809 0 3 [] 10 [[3,10,0]]
|
| | | 2810 0 8 [42] 1000 [[3,10,0]]
|
| | | 2811 0 1 [3806] 1 [[3,10,0]]
|
| | | 2812 0 4 [41] 35 [[3,10,0]]
|
| | | 2813 0 7 [] 10 [[3,10,0]]
|
| | | 2814 0 3 [] 10 [[3,10,0]]
|
| | | 2815 0 8 [42] 1000 [[3,10,0]]
|
| | | 2816 0 1 [3807] 1 [[3,10,0]]
|
| | | 2817 0 4 [41] 35 [[3,10,0]]
|
| | | 2818 0 7 [] 10 [[3,10,0]]
|
| | | 2819 0 3 [] 10 [[3,10,0]]
|
| | | 2820 0 8 [42] 1000 [[3,10,0]]
|
| | | 2821 0 1 [3808] 1 [[3,10,0]]
|
| | | 2822 0 4 [41] 35 [[3,10,0]]
|
| | | 2823 0 7 [] 10 [[3,10,0]]
|
| | | 2824 0 3 [] 10 [[3,10,0]]
|
| | | 2825 0 8 [42] 1000 [[3,10,0]]
|
| | | 2826 0 1 [3809] 1 [[3,10,0]]
|
| | | 2827 0 4 [41] 35 [[3,10,0]]
|
| | | 2828 0 7 [] 10 [[3,10,0]]
|
| | | 2829 0 3 [] 10 [[3,10,0]]
|
| | | 2830 0 8 [42] 1000 [[3,10,0]]
|
| | | 2831 0 1 [3810] 1 [[3,10,0]]
|
| | | 2832 0 4 [41] 35 [[3,10,0]]
|
| | | 2833 0 7 [] 10 [[3,10,0]]
|
| | | 2834 0 3 [] 10 [[3,10,0]]
|
| | | 2835 0 8 [42] 1000 [[3,10,0]]
|
| | | 2836 0 1 [3901] 1 [[3,10,0]]
|
| | | 2837 0 4 [41] 35 [[3,10,0]]
|
| | | 2838 0 7 [] 10 [[3,10,0]]
|
| | | 2839 0 3 [] 10 [[3,10,0]]
|
| | | 2840 0 8 [42] 1000 [[3,10,0]]
|
| | | 2841 0 1 [3902] 1 [[3,10,0]]
|
| | | 2842 0 4 [41] 35 [[3,10,0]]
|
| | | 2843 0 7 [] 10 [[3,10,0]]
|
| | | 2844 0 3 [] 10 [[3,10,0]]
|
| | | 2845 0 8 [42] 1000 [[3,10,0]]
|
| | | 2846 0 1 [3903] 1 [[3,10,0]]
|
| | | 2847 0 4 [41] 35 [[3,10,0]]
|
| | | 2848 0 7 [] 10 [[3,10,0]]
|
| | | 2849 0 3 [] 10 [[3,10,0]]
|
| | | 2850 0 8 [42] 1000 [[3,10,0]]
|
| | | 2851 0 1 [3904] 1 [[3,10,0]]
|
| | | 2852 0 4 [41] 35 [[3,10,0]]
|
| | | 2853 0 7 [] 10 [[3,10,0]]
|
| | | 2854 0 3 [] 10 [[3,10,0]]
|
| | | 2855 0 8 [42] 1000 [[3,10,0]]
|
| | | 2856 0 1 [3905] 1 [[3,10,0]]
|
| | | 2857 0 4 [41] 35 [[3,10,0]]
|
| | | 2858 0 7 [] 10 [[3,10,0]]
|
| | | 2859 0 3 [] 10 [[3,10,0]]
|
| | | 2860 0 8 [42] 1000 [[3,10,0]]
|
| | | 2861 0 1 [3906] 1 [[3,10,0]]
|
| | | 2862 0 4 [41] 35 [[3,10,0]]
|
| | | 2863 0 7 [] 10 [[3,10,0]]
|
| | | 2864 0 3 [] 10 [[3,10,0]]
|
| | | 2865 0 8 [42] 1000 [[3,10,0]]
|
| | | 2866 0 1 [3907] 1 [[3,10,0]]
|
| | | 2867 0 4 [41] 35 [[3,10,0]]
|
| | | 2868 0 7 [] 10 [[3,10,0]]
|
| | | 2869 0 3 [] 10 [[3,10,0]]
|
| | | 2870 0 8 [42] 1000 [[3,10,0]]
|
| | | 2871 0 1 [3908] 1 [[3,10,0]]
|
| | | 2872 0 4 [41] 35 [[3,10,0]]
|
| | | 2873 0 7 [] 10 [[3,10,0]]
|
| | | 2874 0 3 [] 10 [[3,10,0]]
|
| | | 2875 0 8 [42] 1000 [[3,10,0]]
|
| | | 2876 0 1 [3909] 1 [[3,10,0]]
|
| | | 2877 0 4 [41] 35 [[3,10,0]]
|
| | | 2878 0 7 [] 10 [[3,10,0]]
|
| | | 2879 0 3 [] 10 [[3,10,0]]
|
| | | 2880 0 8 [42] 1000 [[3,10,0]]
|
| | | 2881 0 1 [3910] 1 [[3,10,0]]
|
| | | 2882 0 4 [41] 35 [[3,10,0]]
|
| | | 2883 0 7 [] 10 [[3,10,0]]
|
| | | 2884 0 3 [] 10 [[3,10,0]]
|
| | | 2885 0 8 [42] 1000 [[3,10,0]]
|
| | | 2886 0 1 [4001] 1 [[3,10,0]]
|
| | | 2887 0 4 [41] 35 [[3,10,0]]
|
| | | 2888 0 7 [] 10 [[3,10,0]]
|
| | | 2889 0 3 [] 10 [[3,10,0]]
|
| | | 2890 0 8 [42] 1000 [[3,10,0]]
|
| | | 2891 0 1 [4002] 1 [[3,10,0]]
|
| | | 2892 0 4 [41] 35 [[3,10,0]]
|
| | | 2893 0 7 [] 10 [[3,10,0]]
|
| | | 2894 0 3 [] 10 [[3,10,0]]
|
| | | 2895 0 8 [42] 1000 [[3,10,0]]
|
| | | 2896 0 1 [4003] 1 [[3,10,0]]
|
| | | 2897 0 4 [41] 35 [[3,10,0]]
|
| | | 2898 0 7 [] 10 [[3,10,0]]
|
| | | 2899 0 3 [] 10 [[3,10,0]]
|
| | | 2900 0 8 [42] 1000 [[3,10,0]]
|
| | | 2901 0 1 [4004] 1 [[3,10,0]]
|
| | | 2902 0 4 [41] 35 [[3,10,0]]
|
| | | 2903 0 7 [] 10 [[3,10,0]]
|
| | | 2904 0 3 [] 10 [[3,10,0]]
|
| | | 2905 0 8 [42] 1000 [[3,10,0]]
|
| | | 2906 0 1 [4005] 1 [[3,10,0]]
|
| | | 2907 0 4 [41] 35 [[3,10,0]]
|
| | | 2908 0 7 [] 10 [[3,10,0]]
|
| | | 2909 0 3 [] 10 [[3,10,0]]
|
| | | 2910 0 8 [42] 1000 [[3,10,0]]
|
| | | 2911 0 1 [4006] 1 [[3,10,0]]
|
| | | 2912 0 4 [41] 35 [[3,10,0]]
|
| | | 2913 0 7 [] 10 [[3,10,0]]
|
| | | 2914 0 3 [] 10 [[3,10,0]]
|
| | | 2915 0 8 [42] 1000 [[3,10,0]]
|
| | | 2916 0 1 [4007] 1 [[3,10,0]]
|
| | | 2917 0 4 [41] 35 [[3,10,0]]
|
| | | 2918 0 7 [] 10 [[3,10,0]]
|
| | | 2919 0 3 [] 10 [[3,10,0]]
|
| | | 2920 0 8 [42] 1000 [[3,10,0]]
|
| | | 2921 0 1 [4008] 1 [[3,10,0]]
|
| | | 2922 0 4 [41] 35 [[3,10,0]]
|
| | | 2923 0 7 [] 10 [[3,10,0]]
|
| | | 2924 0 3 [] 10 [[3,10,0]]
|
| | | 2925 0 8 [42] 1000 [[3,10,0]]
|
| | | 2926 0 1 [4009] 1 [[3,10,0]]
|
| | | 2927 0 4 [41] 35 [[3,10,0]]
|
| | | 2928 0 7 [] 10 [[3,10,0]]
|
| | | 2929 0 3 [] 10 [[3,10,0]]
|
| | | 2930 0 8 [42] 1000 [[3,10,0]]
|
| | | 2931 0 1 [4010] 1 [[3,10,0]]
|
| | | 2932 0 4 [41] 35 [[3,10,0]]
|
| | | 2933 0 7 [] 10 [[3,10,0]]
|
| | | 2934 0 3 [] 10 [[3,10,0]]
|
| | | 2935 0 8 [42] 1000 [[3,10,0]]
|
| | | 2936 0 1 [4101] 1 [[3,10,0]]
|
| | | 2937 0 4 [41] 35 [[3,10,0]]
|
| | | 2938 0 7 [] 10 [[3,10,0]]
|
| | | 2939 0 3 [] 10 [[3,10,0]]
|
| | | 2940 0 8 [42] 1000 [[3,10,0]]
|
| | | 2941 0 1 [4102] 1 [[3,10,0]]
|
| | | 2942 0 4 [41] 35 [[3,10,0]]
|
| | | 2943 0 7 [] 10 [[3,10,0]]
|
| | | 2944 0 3 [] 10 [[3,10,0]]
|
| | | 2945 0 8 [42] 1000 [[3,10,0]]
|
| | | 2946 0 1 [4103] 1 [[3,10,0]]
|
| | | 2947 0 4 [41] 35 [[3,10,0]]
|
| | | 2948 0 7 [] 10 [[3,10,0]]
|
| | | 2949 0 3 [] 10 [[3,10,0]]
|
| | | 2950 0 8 [42] 1000 [[3,10,0]]
|
| | | 2951 0 1 [4104] 1 [[3,10,0]]
|
| | | 2952 0 4 [41] 35 [[3,10,0]]
|
| | | 2953 0 7 [] 10 [[3,10,0]]
|
| | | 2954 0 3 [] 10 [[3,10,0]]
|
| | | 2955 0 8 [42] 1000 [[3,10,0]]
|
| | | 2956 0 1 [4105] 1 [[3,10,0]]
|
| | | 2957 0 4 [41] 35 [[3,10,0]]
|
| | | 2958 0 7 [] 10 [[3,10,0]]
|
| | | 2959 0 3 [] 10 [[3,10,0]]
|
| | | 2960 0 8 [42] 1000 [[3,10,0]]
|
| | | 2961 0 1 [4106] 1 [[3,10,0]]
|
| | | 2962 0 4 [41] 35 [[3,10,0]]
|
| | | 2963 0 7 [] 10 [[3,10,0]]
|
| | | 2964 0 3 [] 10 [[3,10,0]]
|
| | | 2965 0 8 [42] 1000 [[3,10,0]]
|
| | | 2966 0 1 [4107] 1 [[3,10,0]]
|
| | | 2967 0 4 [41] 35 [[3,10,0]]
|
| | | 2968 0 7 [] 10 [[3,10,0]]
|
| | | 2969 0 3 [] 10 [[3,10,0]]
|
| | | 2970 0 8 [42] 1000 [[3,10,0]]
|
| | | 2971 0 1 [4108] 1 [[3,10,0]]
|
| | | 2972 0 4 [41] 35 [[3,10,0]]
|
| | | 2973 0 7 [] 10 [[3,10,0]]
|
| | | 2974 0 3 [] 10 [[3,10,0]]
|
| | | 2975 0 8 [42] 1000 [[3,10,0]]
|
| | | 2976 0 1 [4109] 1 [[3,10,0]]
|
| | | 2977 0 4 [41] 35 [[3,10,0]]
|
| | | 2978 0 7 [] 10 [[3,10,0]]
|
| | | 2979 0 3 [] 10 [[3,10,0]]
|
| | | 2980 0 8 [42] 1000 [[3,10,0]]
|
| | | 2981 0 1 [4110] 1 [[3,10,0]]
|
| | | 2982 0 4 [41] 35 [[3,10,0]]
|
| | | 2983 0 7 [] 10 [[3,10,0]]
|
| | | 2984 0 3 [] 10 [[3,10,0]]
|
| | | 2985 0 8 [42] 1000 [[3,10,0]]
|
| | | 2986 0 1 [4201] 1 [[3,10,0]]
|
| | | 2987 0 4 [41] 35 [[3,10,0]]
|
| | | 2988 0 7 [] 10 [[3,10,0]]
|
| | | 2989 0 3 [] 10 [[3,10,0]]
|
| | | 2990 0 8 [42] 1000 [[3,10,0]]
|
| | | 2991 0 1 [4202] 1 [[3,10,0]]
|
| | | 2992 0 4 [41] 35 [[3,10,0]]
|
| | | 2993 0 7 [] 10 [[3,10,0]]
|
| | | 2994 0 3 [] 10 [[3,10,0]]
|
| | | 2995 0 8 [42] 1000 [[3,10,0]]
|
| | | 2996 0 1 [4203] 1 [[3,10,0]]
|
| | | 2997 0 4 [41] 35 [[3,10,0]]
|
| | | 2998 0 7 [] 10 [[3,10,0]]
|
| | | 2999 0 3 [] 10 [[3,10,0]]
|
| | | 3000 0 8 [42] 1000 [[3,10,0]]
|
| | | 3001 0 1 [4204] 1 [[3,10,0]]
|
| | | 3002 0 4 [41] 35 [[3,10,0]]
|
| | | 3003 0 7 [] 10 [[3,10,0]]
|
| | | 3004 0 3 [] 10 [[3,10,0]]
|
| | | 3005 0 8 [42] 1000 [[3,10,0]]
|
| | | 3006 0 1 [4205] 1 [[3,10,0]]
|
| | | 3007 0 4 [41] 35 [[3,10,0]]
|
| | | 3008 0 7 [] 10 [[3,10,0]]
|
| | | 3009 0 3 [] 10 [[3,10,0]]
|
| | | 3010 0 8 [42] 1000 [[3,10,0]]
|
| | | 3011 0 1 [4206] 1 [[3,10,0]]
|
| | | 3012 0 4 [41] 35 [[3,10,0]]
|
| | | 3013 0 7 [] 10 [[3,10,0]]
|
| | | 3014 0 3 [] 10 [[3,10,0]]
|
| | | 3015 0 8 [42] 1000 [[3,10,0]]
|
| | | 3016 0 1 [4207] 1 [[3,10,0]]
|
| | | 3017 0 4 [41] 35 [[3,10,0]]
|
| | | 3018 0 7 [] 10 [[3,10,0]]
|
| | | 3019 0 3 [] 10 [[3,10,0]]
|
| | | 3020 0 8 [42] 1000 [[3,10,0]]
|
| | | 3021 0 1 [4208] 1 [[3,10,0]]
|
| | | 3022 0 4 [41] 35 [[3,10,0]]
|
| | | 3023 0 7 [] 10 [[3,10,0]]
|
| | | 3024 0 3 [] 10 [[3,10,0]]
|
| | | 3025 0 8 [42] 1000 [[3,10,0]]
|
| | | 3026 0 1 [4209] 1 [[3,10,0]]
|
| | | 3027 0 4 [41] 35 [[3,10,0]]
|
| | | 3028 0 7 [] 10 [[3,10,0]]
|
| | | 3029 0 3 [] 10 [[3,10,0]]
|
| | | 3030 0 8 [42] 1000 [[3,10,0]]
|
| | | 3031 0 1 [4210] 1 [[3,10,0]]
|
| | | 3032 0 4 [41] 35 [[3,10,0]]
|
| | | 3033 0 7 [] 10 [[3,10,0]]
|
| | | 3034 0 3 [] 10 [[3,10,0]]
|
| | | 3035 0 8 [42] 1000 [[3,10,0]]
|
| | | 3036 0 1 [4301] 1 [[3,10,0]]
|
| | | 3037 0 4 [41] 35 [[3,10,0]]
|
| | | 3038 0 7 [] 10 [[3,10,0]]
|
| | | 3039 0 3 [] 10 [[3,10,0]]
|
| | | 3040 0 8 [42] 1000 [[3,10,0]]
|
| | | 3041 0 1 [4302] 1 [[3,10,0]]
|
| | | 3042 0 4 [41] 35 [[3,10,0]]
|
| | | 3043 0 7 [] 10 [[3,10,0]]
|
| | | 3044 0 3 [] 10 [[3,10,0]]
|
| | | 3045 0 8 [42] 1000 [[3,10,0]]
|
| | | 3046 0 1 [4303] 1 [[3,10,0]]
|
| | | 3047 0 4 [41] 35 [[3,10,0]]
|
| | | 3048 0 7 [] 10 [[3,10,0]]
|
| | | 3049 0 3 [] 10 [[3,10,0]]
|
| | | 3050 0 8 [42] 1000 [[3,10,0]]
|
| | | 3051 0 1 [4304] 1 [[3,10,0]]
|
| | | 3052 0 4 [41] 35 [[3,10,0]]
|
| | | 3053 0 7 [] 10 [[3,10,0]]
|
| | | 3054 0 3 [] 10 [[3,10,0]]
|
| | | 3055 0 8 [42] 1000 [[3,10,0]]
|
| | | 3056 0 1 [4305] 1 [[3,10,0]]
|
| | | 3057 0 4 [41] 35 [[3,10,0]]
|
| | | 3058 0 7 [] 10 [[3,10,0]]
|
| | | 3059 0 3 [] 10 [[3,10,0]]
|
| | | 3060 0 8 [42] 1000 [[3,10,0]]
|
| | | 3061 0 1 [4306] 1 [[3,10,0]]
|
| | | 3062 0 4 [41] 35 [[3,10,0]]
|
| | | 3063 0 7 [] 10 [[3,10,0]]
|
| | | 3064 0 3 [] 10 [[3,10,0]]
|
| | | 3065 0 8 [42] 1000 [[3,10,0]]
|
| | | 3066 0 1 [4307] 1 [[3,10,0]]
|
| | | 3067 0 4 [41] 35 [[3,10,0]]
|
| | | 3068 0 7 [] 10 [[3,10,0]]
|
| | | 3069 0 3 [] 10 [[3,10,0]]
|
| | | 3070 0 8 [42] 1000 [[3,10,0]]
|
| | | 3071 0 1 [4308] 1 [[3,10,0]]
|
| | | 3072 0 4 [41] 35 [[3,10,0]]
|
| | | 3073 0 7 [] 10 [[3,10,0]]
|
| | | 3074 0 3 [] 10 [[3,10,0]]
|
| | | 3075 0 8 [42] 1000 [[3,10,0]]
|
| | | 3076 0 1 [4309] 1 [[3,10,0]]
|
| | | 3077 0 4 [41] 35 [[3,10,0]]
|
| | | 3078 0 7 [] 10 [[3,10,0]]
|
| | | 3079 0 3 [] 10 [[3,10,0]]
|
| | | 3080 0 8 [42] 1000 [[3,10,0]]
|
| | | 3081 0 1 [4310] 1 [[3,10,0]]
|
| | | 3082 0 4 [41] 35 [[3,10,0]]
|
| | | 3083 0 7 [] 10 [[3,10,0]]
|
| | | 3084 0 3 [] 10 [[3,10,0]]
|
| | | 3085 0 8 [42] 1000 [[3,10,0]]
|
| | | 3086 0 1 [4401] 1 [[3,10,0]]
|
| | | 3087 0 4 [41] 35 [[3,10,0]]
|
| | | 3088 0 7 [] 10 [[3,10,0]]
|
| | | 3089 0 3 [] 10 [[3,10,0]]
|
| | | 3090 0 8 [42] 1000 [[3,10,0]]
|
| | | 3091 0 1 [4402] 1 [[3,10,0]]
|
| | | 3092 0 4 [41] 35 [[3,10,0]]
|
| | | 3093 0 7 [] 10 [[3,10,0]]
|
| | | 3094 0 3 [] 10 [[3,10,0]]
|
| | | 3095 0 8 [42] 1000 [[3,10,0]]
|
| | | 3096 0 1 [4403] 1 [[3,10,0]]
|
| | | 3097 0 4 [41] 35 [[3,10,0]]
|
| | | 3098 0 7 [] 10 [[3,10,0]]
|
| | | 3099 0 3 [] 10 [[3,10,0]]
|
| | | 3100 0 8 [42] 1000 [[3,10,0]]
|
| | | 3101 0 1 [4404] 1 [[3,10,0]]
|
| | | 3102 0 4 [41] 35 [[3,10,0]]
|
| | | 3103 0 7 [] 10 [[3,10,0]]
|
| | | 3104 0 3 [] 10 [[3,10,0]]
|
| | | 3105 0 8 [42] 1000 [[3,10,0]]
|
| | | 3106 0 1 [4405] 1 [[3,10,0]]
|
| | | 3107 0 4 [41] 35 [[3,10,0]]
|
| | | 3108 0 7 [] 10 [[3,10,0]]
|
| | | 3109 0 3 [] 10 [[3,10,0]]
|
| | | 3110 0 8 [42] 1000 [[3,10,0]]
|
| | | 3111 0 1 [4406] 1 [[3,10,0]]
|
| | | 3112 0 4 [41] 35 [[3,10,0]]
|
| | | 3113 0 7 [] 10 [[3,10,0]]
|
| | | 3114 0 3 [] 10 [[3,10,0]]
|
| | | 3115 0 8 [42] 1000 [[3,10,0]]
|
| | | 3116 0 1 [4407] 1 [[3,10,0]]
|
| | | 3117 0 4 [41] 35 [[3,10,0]]
|
| | | 3118 0 7 [] 10 [[3,10,0]]
|
| | | 3119 0 3 [] 10 [[3,10,0]]
|
| | | 3120 0 8 [42] 1000 [[3,10,0]]
|
| | | 3121 0 1 [4408] 1 [[3,10,0]]
|
| | | 3122 0 4 [41] 35 [[3,10,0]]
|
| | | 3123 0 7 [] 10 [[3,10,0]]
|
| | | 3124 0 3 [] 10 [[3,10,0]]
|
| | | 3125 0 8 [42] 1000 [[3,10,0]]
|
| | | 3126 0 1 [4409] 1 [[3,10,0]]
|
| | | 3127 0 4 [41] 35 [[3,10,0]]
|
| | | 3128 0 7 [] 10 [[3,10,0]]
|
| | | 3129 0 3 [] 10 [[3,10,0]]
|
| | | 3130 0 8 [42] 1000 [[3,10,0]]
|
| | | 3131 0 1 [4410] 1 [[3,10,0]]
|
| | | 3132 0 4 [41] 35 [[3,10,0]]
|
| | | 3133 0 7 [] 10 [[3,10,0]]
|
| | | 3134 0 3 [] 10 [[3,10,0]]
|
| | | 3135 0 8 [42] 1000 [[3,10,0]]
|
| | | 3136 0 1 [4501] 1 [[3,10,0]]
|
| | | 3137 0 4 [41] 35 [[3,10,0]]
|
| | | 3138 0 7 [] 10 [[3,10,0]]
|
| | | 3139 0 3 [] 10 [[3,10,0]]
|
| | | 3140 0 8 [42] 1000 [[3,10,0]]
|
| | | 3141 0 1 [4502] 1 [[3,10,0]]
|
| | | 3142 0 4 [41] 35 [[3,10,0]]
|
| | | 3143 0 7 [] 10 [[3,10,0]]
|
| | | 3144 0 3 [] 10 [[3,10,0]]
|
| | | 3145 0 8 [42] 1000 [[3,10,0]]
|
| | | 3146 0 1 [4503] 1 [[3,10,0]]
|
| | | 3147 0 4 [41] 35 [[3,10,0]]
|
| | | 3148 0 7 [] 10 [[3,10,0]]
|
| | | 3149 0 3 [] 10 [[3,10,0]]
|
| | | 3150 0 8 [42] 1000 [[3,10,0]]
|
| | | 3151 0 1 [4504] 1 [[3,10,0]]
|
| | | 3152 0 4 [41] 35 [[3,10,0]]
|
| | | 3153 0 7 [] 10 [[3,10,0]]
|
| | | 3154 0 3 [] 10 [[3,10,0]]
|
| | | 3155 0 8 [42] 1000 [[3,10,0]]
|
| | | 3156 0 1 [4505] 1 [[3,10,0]]
|
| | | 3157 0 4 [41] 35 [[3,10,0]]
|
| | | 3158 0 7 [] 10 [[3,10,0]]
|
| | | 3159 0 3 [] 10 [[3,10,0]]
|
| | | 3160 0 8 [42] 1000 [[3,10,0]]
|
| | | 3161 0 1 [4506] 1 [[3,10,0]]
|
| | | 3162 0 4 [41] 35 [[3,10,0]]
|
| | | 3163 0 7 [] 10 [[3,10,0]]
|
| | | 3164 0 3 [] 10 [[3,10,0]]
|
| | | 3165 0 8 [42] 1000 [[3,10,0]]
|
| | | 3166 0 1 [4507] 1 [[3,10,0]]
|
| | | 3167 0 4 [41] 35 [[3,10,0]]
|
| | | 3168 0 7 [] 10 [[3,10,0]]
|
| | | 3169 0 3 [] 10 [[3,10,0]]
|
| | | 3170 0 8 [42] 1000 [[3,10,0]]
|
| | | 3171 0 1 [4508] 1 [[3,10,0]]
|
| | | 3172 0 4 [41] 35 [[3,10,0]]
|
| | | 3173 0 7 [] 10 [[3,10,0]]
|
| | | 3174 0 3 [] 10 [[3,10,0]]
|
| | | 3175 0 8 [42] 1000 [[3,10,0]]
|
| | | 3176 0 1 [4509] 1 [[3,10,0]]
|
| | | 3177 0 4 [41] 35 [[3,10,0]]
|
| | | 3178 0 7 [] 10 [[3,10,0]]
|
| | | 3179 0 3 [] 10 [[3,10,0]]
|
| | | 3180 0 8 [42] 1000 [[3,10,0]]
|
| | | 3181 0 1 [4510] 1 [[3,10,0]]
|
| | | 3182 0 4 [41] 35 [[3,10,0]]
|
| | | 3183 0 7 [] 10 [[3,10,0]]
|
| | | 3184 0 3 [] 10 [[3,10,0]]
|
| | | 3185 0 8 [42] 1000 [[3,10,0]]
|
| | | 3186 0 1 [4601] 1 [[3,10,0]]
|
| | | 3187 0 4 [41] 35 [[3,10,0]]
|
| | | 3188 0 7 [] 10 [[3,10,0]]
|
| | | 3189 0 3 [] 10 [[3,10,0]]
|
| | | 3190 0 8 [42] 1000 [[3,10,0]]
|
| | | 3191 0 1 [4602] 1 [[3,10,0]]
|
| | | 3192 0 4 [41] 35 [[3,10,0]]
|
| | | 3193 0 7 [] 10 [[3,10,0]]
|
| | | 3194 0 3 [] 10 [[3,10,0]]
|
| | | 3195 0 8 [42] 1000 [[3,10,0]]
|
| | | 3196 0 1 [4603] 1 [[3,10,0]]
|
| | | 3197 0 4 [41] 35 [[3,10,0]]
|
| | | 3198 0 7 [] 10 [[3,10,0]]
|
| | | 3199 0 3 [] 10 [[3,10,0]]
|
| | | 3200 0 8 [42] 1000 [[3,10,0]]
|
| | | 3201 0 1 [4604] 1 [[3,10,0]]
|
| | | 3202 0 4 [41] 35 [[3,10,0]]
|
| | | 3203 0 7 [] 10 [[3,10,0]]
|
| | | 3204 0 3 [] 10 [[3,10,0]]
|
| | | 3205 0 8 [42] 1000 [[3,10,0]]
|
| | | 3206 0 1 [4605] 1 [[3,10,0]]
|
| | | 3207 0 4 [41] 35 [[3,10,0]]
|
| | | 3208 0 7 [] 10 [[3,10,0]]
|
| | | 3209 0 3 [] 10 [[3,10,0]]
|
| | | 3210 0 8 [42] 1000 [[3,10,0]]
|
| | | 3211 0 1 [4606] 1 [[3,10,0]]
|
| | | 3212 0 4 [41] 35 [[3,10,0]]
|
| | | 3213 0 7 [] 10 [[3,10,0]]
|
| | | 3214 0 3 [] 10 [[3,10,0]]
|
| | | 3215 0 8 [42] 1000 [[3,10,0]]
|
| | | 3216 0 1 [4607] 1 [[3,10,0]]
|
| | | 3217 0 4 [41] 35 [[3,10,0]]
|
| | | 3218 0 7 [] 10 [[3,10,0]]
|
| | | 3219 0 3 [] 10 [[3,10,0]]
|
| | | 3220 0 8 [42] 1000 [[3,10,0]]
|
| | | 3221 0 1 [4608] 1 [[3,10,0]]
|
| | | 3222 0 4 [41] 35 [[3,10,0]]
|
| | | 3223 0 7 [] 10 [[3,10,0]]
|
| | | 3224 0 3 [] 10 [[3,10,0]]
|
| | | 3225 0 8 [42] 1000 [[3,10,0]]
|
| | | 3226 0 1 [4609] 1 [[3,10,0]]
|
| | | 3227 0 4 [41] 35 [[3,10,0]]
|
| | | 3228 0 7 [] 10 [[3,10,0]]
|
| | | 3229 0 3 [] 10 [[3,10,0]]
|
| | | 3230 0 8 [42] 1000 [[3,10,0]]
|
| | | 3231 0 1 [4610] 1 [[3,10,0]]
|
| | | 3232 0 4 [41] 35 [[3,10,0]]
|
| | | 3233 0 7 [] 10 [[3,10,0]]
|
| | | 3234 0 3 [] 10 [[3,10,0]]
|
| | | 3235 0 8 [42] 1000 [[3,10,0]]
|
| | | 3236 0 1 [4701] 1 [[3,10,0]]
|
| | | 3237 0 4 [41] 35 [[3,10,0]]
|
| | | 3238 0 7 [] 10 [[3,10,0]]
|
| | | 3239 0 3 [] 10 [[3,10,0]]
|
| | | 3240 0 8 [42] 1000 [[3,10,0]]
|
| | | 3241 0 1 [4702] 1 [[3,10,0]]
|
| | | 3242 0 4 [41] 35 [[3,10,0]]
|
| | | 3243 0 7 [] 10 [[3,10,0]]
|
| | | 3244 0 3 [] 10 [[3,10,0]]
|
| | | 3245 0 8 [42] 1000 [[3,10,0]]
|
| | | 3246 0 1 [4703] 1 [[3,10,0]]
|
| | | 3247 0 4 [41] 35 [[3,10,0]]
|
| | | 3248 0 7 [] 10 [[3,10,0]]
|
| | | 3249 0 3 [] 10 [[3,10,0]]
|
| | | 3250 0 8 [42] 1000 [[3,10,0]]
|
| | | 3251 0 1 [4704] 1 [[3,10,0]]
|
| | | 3252 0 4 [41] 35 [[3,10,0]]
|
| | | 3253 0 7 [] 10 [[3,10,0]]
|
| | | 3254 0 3 [] 10 [[3,10,0]]
|
| | | 3255 0 8 [42] 1000 [[3,10,0]]
|
| | | 3256 0 1 [4705] 1 [[3,10,0]]
|
| | | 3257 0 4 [41] 35 [[3,10,0]]
|
| | | 3258 0 7 [] 10 [[3,10,0]]
|
| | | 3259 0 3 [] 10 [[3,10,0]]
|
| | | 3260 0 8 [42] 1000 [[3,10,0]]
|
| | | 3261 0 1 [4706] 1 [[3,10,0]]
|
| | | 3262 0 4 [41] 35 [[3,10,0]]
|
| | | 3263 0 7 [] 10 [[3,10,0]]
|
| | | 3264 0 3 [] 10 [[3,10,0]]
|
| | | 3265 0 8 [42] 1000 [[3,10,0]]
|
| | | 3266 0 1 [4707] 1 [[3,10,0]]
|
| | | 3267 0 4 [41] 35 [[3,10,0]]
|
| | | 3268 0 7 [] 10 [[3,10,0]]
|
| | | 3269 0 3 [] 10 [[3,10,0]]
|
| | | 3270 0 8 [42] 1000 [[3,10,0]]
|
| | | 3271 0 1 [4708] 1 [[3,10,0]]
|
| | | 3272 0 4 [41] 35 [[3,10,0]]
|
| | | 3273 0 7 [] 10 [[3,10,0]]
|
| | | 3274 0 3 [] 10 [[3,10,0]]
|
| | | 3275 0 8 [42] 1000 [[3,10,0]]
|
| | | 3276 0 1 [4709] 1 [[3,10,0]]
|
| | | 3277 0 4 [41] 35 [[3,10,0]]
|
| | | 3278 0 7 [] 10 [[3,10,0]]
|
| | | 3279 0 3 [] 10 [[3,10,0]]
|
| | | 3280 0 8 [42] 1000 [[3,10,0]]
|
| | | 3281 0 1 [4710] 1 [[3,10,0]]
|
| | | 3282 0 4 [41] 35 [[3,10,0]]
|
| | | 3283 0 7 [] 10 [[3,10,0]]
|
| | | 3284 0 3 [] 10 [[3,10,0]]
|
| | | 3285 0 8 [42] 1000 [[3,10,0]]
|
| | | 3286 0 1 [4801] 1 [[3,10,0]]
|
| | | 3287 0 4 [41] 35 [[3,10,0]]
|
| | | 3288 0 7 [] 10 [[3,10,0]]
|
| | | 3289 0 3 [] 10 [[3,10,0]]
|
| | | 3290 0 8 [42] 1000 [[3,10,0]]
|
| | | 3291 0 1 [4802] 1 [[3,10,0]]
|
| | | 3292 0 4 [41] 35 [[3,10,0]]
|
| | | 3293 0 7 [] 10 [[3,10,0]]
|
| | | 3294 0 3 [] 10 [[3,10,0]]
|
| | | 3295 0 8 [42] 1000 [[3,10,0]]
|
| | | 3296 0 1 [4803] 1 [[3,10,0]]
|
| | | 3297 0 4 [41] 35 [[3,10,0]]
|
| | | 3298 0 7 [] 10 [[3,10,0]]
|
| | | 3299 0 3 [] 10 [[3,10,0]]
|
| | | 3300 0 8 [42] 1000 [[3,10,0]]
|
| | | 3301 0 1 [4804] 1 [[3,10,0]]
|
| | | 3302 0 4 [41] 35 [[3,10,0]]
|
| | | 3303 0 7 [] 10 [[3,10,0]]
|
| | | 3304 0 3 [] 10 [[3,10,0]]
|
| | | 3305 0 8 [42] 1000 [[3,10,0]]
|
| | | 3306 0 1 [4805] 1 [[3,10,0]]
|
| | | 3307 0 4 [41] 35 [[3,10,0]]
|
| | | 3308 0 7 [] 10 [[3,10,0]]
|
| | | 3309 0 3 [] 10 [[3,10,0]]
|
| | | 3310 0 8 [42] 1000 [[3,10,0]]
|
| | | 3311 0 1 [4806] 1 [[3,10,0]]
|
| | | 3312 0 4 [41] 35 [[3,10,0]]
|
| | | 3313 0 7 [] 10 [[3,10,0]]
|
| | | 3314 0 3 [] 10 [[3,10,0]]
|
| | | 3315 0 8 [42] 1000 [[3,10,0]]
|
| | | 3316 0 1 [4807] 1 [[3,10,0]]
|
| | | 3317 0 4 [41] 35 [[3,10,0]]
|
| | | 3318 0 7 [] 10 [[3,10,0]]
|
| | | 3319 0 3 [] 10 [[3,10,0]]
|
| | | 3320 0 8 [42] 1000 [[3,10,0]]
|
| | | 3321 0 1 [4808] 1 [[3,10,0]]
|
| | | 3322 0 4 [41] 35 [[3,10,0]]
|
| | | 3323 0 7 [] 10 [[3,10,0]]
|
| | | 3324 0 3 [] 10 [[3,10,0]]
|
| | | 3325 0 8 [42] 1000 [[3,10,0]]
|
| | | 3326 0 1 [4809] 1 [[3,10,0]]
|
| | | 3327 0 4 [41] 35 [[3,10,0]]
|
| | | 3328 0 7 [] 10 [[3,10,0]]
|
| | | 3329 0 3 [] 10 [[3,10,0]]
|
| | | 3330 0 8 [42] 1000 [[3,10,0]]
|
| | | 3331 0 1 [4810] 1 [[3,10,0]]
|
| | | 3332 0 4 [41] 35 [[3,10,0]]
|
| | | 3333 0 7 [] 10 [[3,10,0]]
|
| | | 3334 0 3 [] 10 [[3,10,0]]
|
| | | 3335 0 8 [42] 1000 [[3,10,0]]
|
| | | 3336 0 1 [4901] 1 [[3,10,0]]
|
| | | 3337 0 4 [41] 35 [[3,10,0]]
|
| | | 3338 0 7 [] 10 [[3,10,0]]
|
| | | 3339 0 3 [] 10 [[3,10,0]]
|
| | | 3340 0 8 [42] 1000 [[3,10,0]]
|
| | | 3341 0 1 [4902] 1 [[3,10,0]]
|
| | | 3342 0 4 [41] 35 [[3,10,0]]
|
| | | 3343 0 7 [] 10 [[3,10,0]]
|
| | | 3344 0 3 [] 10 [[3,10,0]]
|
| | | 3345 0 8 [42] 1000 [[3,10,0]]
|
| | | 3346 0 1 [4903] 1 [[3,10,0]]
|
| | | 3347 0 4 [41] 35 [[3,10,0]]
|
| | | 3348 0 7 [] 10 [[3,10,0]]
|
| | | 3349 0 3 [] 10 [[3,10,0]]
|
| | | 3350 0 8 [42] 1000 [[3,10,0]]
|
| | | 3351 0 1 [4904] 1 [[3,10,0]]
|
| | | 3352 0 4 [41] 35 [[3,10,0]]
|
| | | 3353 0 7 [] 10 [[3,10,0]]
|
| | | 3354 0 3 [] 10 [[3,10,0]]
|
| | | 3355 0 8 [42] 1000 [[3,10,0]]
|
| | | 3356 0 1 [4905] 1 [[3,10,0]]
|
| | | 3357 0 4 [41] 35 [[3,10,0]]
|
| | | 3358 0 7 [] 10 [[3,10,0]]
|
| | | 3359 0 3 [] 10 [[3,10,0]]
|
| | | 3360 0 8 [42] 1000 [[3,10,0]]
|
| | | 3361 0 1 [4906] 1 [[3,10,0]]
|
| | | 3362 0 4 [41] 35 [[3,10,0]]
|
| | | 3363 0 7 [] 10 [[3,10,0]]
|
| | | 3364 0 3 [] 10 [[3,10,0]]
|
| | | 3365 0 8 [42] 1000 [[3,10,0]]
|
| | | 3366 0 1 [4907] 1 [[3,10,0]]
|
| | | 3367 0 4 [41] 35 [[3,10,0]]
|
| | | 3368 0 7 [] 10 [[3,10,0]]
|
| | | 3369 0 3 [] 10 [[3,10,0]]
|
| | | 3370 0 8 [42] 1000 [[3,10,0]]
|
| | | 3371 0 1 [4908] 1 [[3,10,0]]
|
| | | 3372 0 4 [41] 35 [[3,10,0]]
|
| | | 3373 0 7 [] 10 [[3,10,0]]
|
| | | 3374 0 3 [] 10 [[3,10,0]]
|
| | | 3375 0 8 [42] 1000 [[3,10,0]]
|
| | | 3376 0 1 [4909] 1 [[3,10,0]]
|
| | | 3377 0 4 [41] 35 [[3,10,0]]
|
| | | 3378 0 7 [] 10 [[3,10,0]]
|
| | | 3379 0 3 [] 10 [[3,10,0]]
|
| | | 3380 0 8 [42] 1000 [[3,10,0]]
|
| | | 3381 0 1 [4910] 1 [[3,10,0]]
|
| | | 3382 0 4 [41] 35 [[3,10,0]]
|
| | | 3383 0 7 [] 10 [[3,10,0]]
|
| | | 3384 0 3 [] 10 [[3,10,0]]
|
| | | 3385 0 8 [42] 1000 [[3,10,0]]
|
| | | 3386 0 1 [5001] 1 [[3,10,0]]
|
| | | 3387 0 4 [41] 35 [[3,10,0]]
|
| | | 3388 0 7 [] 10 [[3,10,0]]
|
| | | 3389 0 3 [] 10 [[3,10,0]]
|
| | | 3390 0 8 [42] 1000 [[3,10,0]]
|
| | | 3391 0 1 [5002] 1 [[3,10,0]]
|
| | | 3392 0 4 [41] 35 [[3,10,0]]
|
| | | 3393 0 7 [] 10 [[3,10,0]]
|
| | | 3394 0 3 [] 10 [[3,10,0]]
|
| | | 3395 0 8 [42] 1000 [[3,10,0]]
|
| | | 3396 0 1 [5003] 1 [[3,10,0]]
|
| | | 3397 0 4 [41] 35 [[3,10,0]]
|
| | | 3398 0 7 [] 10 [[3,10,0]]
|
| | | 3399 0 3 [] 10 [[3,10,0]]
|
| | | 3400 0 8 [42] 1000 [[3,10,0]]
|
| | | 3401 0 1 [5004] 1 [[3,10,0]]
|
| | | 3402 0 4 [41] 35 [[3,10,0]]
|
| | | 3403 0 7 [] 10 [[3,10,0]]
|
| | | 3404 0 3 [] 10 [[3,10,0]]
|
| | | 3405 0 8 [42] 1000 [[3,10,0]]
|
| | | 3406 0 1 [5005] 1 [[3,10,0]]
|
| | | 3407 0 4 [41] 35 [[3,10,0]]
|
| | | 3408 0 7 [] 10 [[3,10,0]]
|
| | | 3409 0 3 [] 10 [[3,10,0]]
|
| | | 3410 0 8 [42] 1000 [[3,10,0]]
|
| | | 3411 0 1 [5006] 1 [[3,10,0]]
|
| | | 3412 0 4 [41] 35 [[3,10,0]]
|
| | | 3413 0 7 [] 10 [[3,10,0]]
|
| | | 3414 0 3 [] 10 [[3,10,0]]
|
| | | 3415 0 8 [42] 1000 [[3,10,0]]
|
| | | 3416 0 1 [5007] 1 [[3,10,0]]
|
| | | 3417 0 4 [41] 35 [[3,10,0]]
|
| | | 3418 0 7 [] 10 [[3,10,0]]
|
| | | 3419 0 3 [] 10 [[3,10,0]]
|
| | | 3420 0 8 [42] 1000 [[3,10,0]]
|
| | | 3421 0 1 [5008] 1 [[3,10,0]]
|
| | | 3422 0 4 [41] 35 [[3,10,0]]
|
| | | 3423 0 7 [] 10 [[3,10,0]]
|
| | | 3424 0 3 [] 10 [[3,10,0]]
|
| | | 3425 0 8 [42] 1000 [[3,10,0]]
|
| | | 3426 0 1 [5009] 1 [[3,10,0]]
|
| | | 3427 0 4 [41] 35 [[3,10,0]]
|
| | | 3428 0 7 [] 10 [[3,10,0]]
|
| | | 3429 0 3 [] 10 [[3,10,0]]
|
| | | 3430 0 8 [42] 1000 [[3,10,0]]
|
| | | 3431 0 1 [5010] 1 [[3,10,0]]
|
| | |
| | | TreeLV LVUPNeedMoney LVUPNeedTime EquipColorRateList
|
| | | 1 100 300 [6900,2000,1000,100]
|
| | | 2 600 900 [5399,2500,1800,281,20]
|
| | | 1 300 300 [6900,2000,1000,100]
|
| | | 2 2500 900 [5399,2500,1800,281,20]
|
| | | 3 4500 1800 [4200,3000,2200,540,60]
|
| | | 4 6000 2700 [3100,3499,2600,701,90,10]
|
| | | 5 12000 10200 [1900,3900,3000,1000,180,20]
|
| | | 6 35000 20100 [1400,3600,3400,1300,260,36,4]
|
| | | 7 70000 40200 [900,3300,3800,1600,320,72,8]
|
| | | 8 200000 80100 [363,3000,4200,1900,400,120,15,2]
|
| | | 9 330000 140100 [0,2591,4500,2200,500,180,25,4]
|
| | | 10 550000 240000 [0,1786,4800,2500,620,240,45,8,1]
|
| | | 11 760000 500100 [0,0,5078,3220,880,550,200,63,8,1]
|
| | | 12 1000000 660300 [0,0,0,5141,3052,1012,519,205,62,8,1]
|
| | | 13 1300000 821700 [0,0,0,0,5339,3010,922,461,200,59,8,1]
|
| | | 14 1650000 1018200 [0,0,0,0,0,5340,2965,944,498,186,58,8,1]
|
| | | 15 2100000 1141800 [0,0,0,0,0,0,5152,3098,986,497,195,63,8,1]
|
| | | 16 2550000 1341600 [0,0,0,0,0,0,0,5327,2946,976,491,191,61,7,1]
|
| | | 17 3100000 1481100 [0,0,0,0,0,0,0,0,5501,2794,966,485,187,59,7,1]
|
| | | 18 3600000 1678200 [0,0,0,0,0,0,0,0,0,5676,2642,956,479,183,57,6,1]
|
| | | 19 4150000 1833300 [0,0,0,0,0,0,0,0,0,0,5850,2490,946,473,179,55,6,1]
|
| | | 20 4700000 2017200 [0,0,0,0,0,0,0,0,0,0,0,6025,2338,936,467,175,53,5,1]
|
| | | 21 5300000 2183100 [0,0,0,0,0,0,0,0,0,0,0,0,6199,2186,926,461,171,51,5,1]
|
| | | 22 5900000 2359800 [0,0,0,0,0,0,0,0,0,0,0,0,0,6374,2034,916,455,167,49,4,1]
|
| | | 23 7000000 2626500 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,6548,1882,906,449,163,47,4,1]
|
| | | 24 8500000 3073200 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6723,1730,896,443,159,45,3,1]
|
| | | 25 0 0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6897,1578,886,437,155,43,3,1]
|
| | | 4 10000 2700 [3100,3499,2600,701,90,10]
|
| | | 5 30000 10200 [1900,3900,3000,1000,180,20]
|
| | | 6 70000 20100 [1401,3600,3400,1300,260,35,4]
|
| | | 7 150000 40200 [900,3300,3800,1600,320,72,8]
|
| | | 8 300000 80100 [363,3000,4200,1900,400,120,15,2]
|
| | | 9 450000 140100 [0,2591,4500,2200,500,180,25,4]
|
| | | 10 500000 240000 [0,1786,4800,2500,620,240,45,8,1]
|
| | | 11 650000 500100 [0,0,5298,2956,986,493,198,60,8,1]
|
| | | 12 800000 780000 [0,0,0,5140,3052,1012,519,205,62,9,1]
|
| | | 13 950000 1400100 [0,0,0,0,5339,3010,922,461,200,59,8,1]
|
| | | 14 1100000 2000100 [0,0,0,0,0,5340,2965,944,498,186,58,8,1]
|
| | | 15 1400000 2333100 [0,0,0,0,0,0,5152,3098,986,497,195,63,8,1]
|
| | | 16 1700000 2600100 [0,0,0,0,0,0,0,5233,3022,979,489,206,61,9,1]
|
| | | 17 2200000 2700000 [0,0,0,0,0,0,0,0,5353,2873,1018,497,187,62,9,1]
|
| | | 18 2700000 2800200 [0,0,0,0,0,0,0,0,0,5248,2981,987,510,206,59,8,1]
|
| | | 19 3400000 2900100 [0,0,0,0,0,0,0,0,0,0,5307,2947,1003,481,193,60,8,1]
|
| | | 20 4000000 3000000 [0,0,0,0,0,0,0,0,0,0,0,5307,2947,1003,481,194,60,8,1]
|
| | | 21 5000000 3100200 [0,0,0,0,0,0,0,0,0,0,0,0,5376,2898,977,482,194,64,8,1]
|
| | | 22 5500000 3200100 [0,0,0,0,0,0,0,0,0,0,0,0,0,5412,2896,939,493,188,63,9]
|
| | | 23 6000000 3300000 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,5370,2916,954,501,193,57,8,1]
|
| | | 24 6500000 3400200 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5350,2887,998,503,194,59,8,1]
|
| | |
| | | ItemColor MoneyBase AtkStep DefStep HPStep AttrLibCntList AttrRange AttrRangeDict
|
| | | 1 10 67 13 533 [0,0,0] {}
|
| | | 2 12 101 20 800 [0,0,0] {}
|
| | | 3 14 152 30 1200 [1,0,0] {}
|
| | | 4 16 228 45 1800 [1,0,0] 50|130 {21:[40,104],31:[60,156]}
|
| | | 5 18 342 68 2700 [1,0,0] 60|150 {21:[48,120],31:[72,180]}
|
| | | 6 20 513 102 4050 [1,1,0] 70|170 {21:[56,136],31:[84,204]}
|
| | | 7 22 770 153 6075 [1,1,1] 80|190 {21:[64,152],31:[96,228]}
|
| | | 8 24 1155 230 9113 [2,1,1] 90|210 {21:[72,168],31:[108,252]}
|
| | | 9 26 1733 345 13670 [2,1,1] 100|230 {21:[80,184],31:[120,276]}
|
| | | 10 28 2600 518 20505 [2,1,1] 110|250 {21:[88,200],31:[132,300]}
|
| | | 11 30 3900 777 30758 [2,1,1] 120|270 {21:[96,216],31:[144,324]}
|
| | | 12 32 5850 1166 46137 [2,1,1] 130|290 {21:[104,232],31:[156,348]}
|
| | | 13 34 8775 1749 69206 [2,1,1] 140|310 {21:[112,248],31:[168,372]}
|
| | | 14 36 13163 2624 103809 [2,1,1] 150|330 {21:[120,264],31:[180,396]}
|
| | | 15 38 19745 3936 155714 [2,1,1] 160|350 {21:[128,280],31:[192,420]}
|
| | | 16 40 29618 5904 233571 [2,1,1] 170|370 {21:[136,296],31:[204,444]}
|
| | | 17 42 44427 8856 350357 [2,1,1] 180|390 {21:[144,312],31:[216,468]}
|
| | | 18 44 66641 13284 525536 [2,1,1] 190|410 {21:[152,328],31:[228,492]}
|
| | | 19 46 99962 19926 788304 [2,1,1] 200|430 {21:[160,344],31:[240,516]}
|
| | | 20 48 149943 29889 1182456 [2,1,1] 210|450 {21:[168,360],31:[252,540]}
|
| | | 21 50 224915 44834 1773684 [2,1,1] 220|470 {21:[176,376],31:[264,564]}
|
| | | 22 52 337373 67251 2660526 [2,1,1] 230|490 {21:[184,392],31:[276,588]}
|
| | | 23 54 506060 100877 3990789 [2,1,1] 240|510 {21:[192,408],31:[288,612]}
|
| | | 24 56 759090 151316 5986184 [2,1,1] 250|530 {21:[200,424],31:[300,636]}
|
| | | 1 30 42 8 333 [0,0,0] {}
|
| | | 2 30 63 12 500 [0,0,0] {}
|
| | | 3 30 95 18 750 [1,0,0] {}
|
| | | 4 30 143 27 1125 [1,0,0] 50|130 {21:[40,104],31:[60,156]}
|
| | | 5 30 215 41 1688 [1,0,0] 60|150 {21:[48,120],31:[72,180]}
|
| | | 6 30 323 62 2532 [1,1,0] 70|170 {21:[56,136],31:[84,204]}
|
| | | 7 30 485 93 3798 [1,1,1] 80|190 {21:[64,152],31:[96,228]}
|
| | | 8 30 728 140 5697 [2,1,1] 90|210 {21:[72,168],31:[108,252]}
|
| | | 9 30 1092 210 8546 [2,1,1] 100|230 {21:[80,184],31:[120,276]}
|
| | | 10 30 1638 315 12819 [2,1,1] 110|250 {21:[88,200],31:[132,300]}
|
| | | 11 30 2457 473 19229 [2,1,1] 120|270 {21:[96,216],31:[144,324]}
|
| | | 12 30 3686 710 28844 [2,1,1] 130|290 {21:[104,232],31:[156,348]}
|
| | | 13 30 5529 1065 43266 [2,1,1] 140|310 {21:[112,248],31:[168,372]}
|
| | | 14 30 8294 1598 64899 [2,1,1] 150|330 {21:[120,264],31:[180,396]}
|
| | | 15 30 12441 2397 97349 [2,1,1] 160|350 {21:[128,280],31:[192,420]}
|
| | | 16 30 17417 3356 136289 [2,1,1] 170|370 {21:[136,296],31:[204,444]}
|
| | | 17 30 24384 4698 190805 [2,1,1] 180|390 {21:[144,312],31:[216,468]}
|
| | | 18 30 34138 6577 267127 [2,1,1] 190|410 {21:[152,328],31:[228,492]}
|
| | | 19 30 47793 9208 373978 [2,1,1] 200|430 {21:[160,344],31:[240,516]}
|
| | | 20 30 66910 12891 523569 [2,1,1] 210|450 {21:[168,360],31:[252,540]}
|
| | | 21 30 93674 18047 732997 [2,1,1] 220|470 {21:[176,376],31:[264,564]}
|
| | | 22 30 131144 25266 1026196 [2,1,1] 230|490 {21:[184,392],31:[276,588]}
|
| | | 23 30 183602 35372 1436674 [2,1,1] 240|510 {21:[192,408],31:[288,612]}
|
| | | 24 30 257043 49521 2011344 [2,1,1] 250|530 {21:[200,424],31:[300,636]}
|
| | |
| | | LV AtkRatio MaxHPRatio DefRatio StunRateRatio SuperHitRateRatio ComboRateRatio MissRateRatio ParryRateRatio SuckHPPerRatio StunRateDefRatio SuperHitRateDefRatio ComboRateDefRatio MissRateDefRatio ParryRateDefRatio SuckHPPerDefRatio FinalDamPerRatio FinalDamPerDefRatio PhyDamPerRatio PhyDamPerDefRatio MagDamPerRatio MagDamPerDefRatio NormalSkillPerRatio NormalSkillPerDefRatio AngerSkillPerRatio AngerSkillPerDefRatio SuperDamPerRatio SuperDamPerDefRatio CurePerRatio CurePerDefRatio ShieldPerRatio ShieldPerDefRatio DOTPerRatio DOTPerDefRatio WeiFinalDamPerRatio WeiFinalDamPerDefRatio ShuFinalDamPerRatio ShuFinalDamPerDefRatio WuFinalDamPerRatio WuFinalDamPerDefRatio QunFinalDamPerRatio QunFinalDamPerDefRatio
|
| | | 1 20 4 100 3625 3625 3625 3625 3625 3625 2416 2416 2416 2416 2416 2416 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625
|
| | | 2 20 4 100 3625 3625 3625 3625 3625 3625 2416 2416 2416 2416 2416 2416 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625 3625
|
| | | 3 19.9 3.95 100 3697 3697 3697 3697 3697 3697 2464 2464 2464 2464 2464 2464 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697
|
| | | 4 19.8 3.9 100 3770 3770 3770 3770 3770 3770 2513 2513 2513 2513 2513 2513 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770
|
| | | 5 19.7 3.85 100 3845 3845 3845 3845 3845 3845 2563 2563 2563 2563 2563 2563 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845
|
| | | 6 19.6 3.8 100 3921 3921 3921 3921 3921 3921 2614 2614 2614 2614 2614 2614 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921 3921
|
| | | 7 19.5 3.75 100 3999 3999 3999 3999 3999 3999 2666 2666 2666 2666 2666 2666 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999 3999
|
| | | 8 19.4 3.7 100 4078 4078 4078 4078 4078 4078 2718 2718 2718 2718 2718 2718 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078 4078
|
| | | 9 19.3 3.65 100 4159 4159 4159 4159 4159 4159 2772 2772 2772 2772 2772 2772 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159 4159
|
| | | 10 19.2 3.6 100 4242 4242 4242 4242 4242 4242 2828 2828 2828 2828 2828 2828 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242 4242
|
| | | 11 19.1 3.68 100 4326 4326 4326 4326 4326 4326 2884 2884 2884 2884 2884 2884 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326 4326
|
| | | 12 17.57 3.58 90 5969 5969 5969 5969 5969 5969 3979 3979 3979 3979 3979 3979 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969 5969
|
| | | 13 16.16 3.48 81 8237 8237 8237 8237 8237 8237 5491 5491 5491 5491 5491 5491 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237 8237
|
| | | 14 14.87 3.38 72.9 11367 11367 11367 11367 11367 11367 7578 7578 7578 7578 7578 7578 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367 11367
|
| | | 15 13.68 3.28 65.61 15686 15686 15686 15686 15686 15686 10457 10457 10457 10457 10457 10457 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686 15686
|
| | | 16 12.59 3.18 59.05 21646 21646 21646 21646 21646 21646 14430 14430 14430 14430 14430 14430 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646 21646
|
| | | 17 11.58 3.08 53.15 29871 29871 29871 29871 29871 29871 19914 19914 19914 19914 19914 19914 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871 29871
|
| | | 18 10.65 2.98 47.84 41221 41221 41221 41221 41221 41221 27480 27480 27480 27480 27480 27480 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221 41221
|
| | | 19 9.8 2.88 43.06 56884 56884 56884 56884 56884 56884 37922 37922 37922 37922 37922 37922 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884 56884
|
| | | 20 9.02 2.78 38.75 78499 78499 78499 78499 78499 78499 52332 52332 52332 52332 52332 52332 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499 78499
|
| | | 21 8.3 2.68 34.88 108328 108328 108328 108328 108328 108328 72218 72218 72218 72218 72218 72218 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328 108328
|
| | | 22 7.64 2.58 31.39 149492 149492 149492 149492 149492 149492 99661 99661 99661 99661 99661 99661 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492 149492
|
| | | 23 7.03 2.48 28.25 206298 206298 206298 206298 206298 206298 137532 137532 137532 137532 137532 137532 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298 206298
|
| | | 24 6.47 2.38 25.43 284691 284691 284691 284691 284691 284691 189794 189794 189794 189794 189794 189794 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691 284691
|
| | | 25 5.95 2.28 22.89 392873 392873 392873 392873 392873 392873 261915 261915 261915 261915 261915 261915 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873 392873
|
| | | 26 5.47 2.18 20.6 542164 542164 542164 542164 542164 542164 361442 361442 361442 361442 361442 361442 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164 542164
|
| | | 27 5.03 2.08 18.54 748186 748186 748186 748186 748186 748186 498790 498790 498790 498790 498790 498790 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186 748186
|
| | | 28 4.63 1.98 16.69 1032496 1032496 1032496 1032496 1032496 1032496 688330 688330 688330 688330 688330 688330 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496 1032496
|
| | | 29 4.26 1.88 15.02 1424844 1424844 1424844 1424844 1424844 1424844 949896 949896 949896 949896 949896 949896 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844 1424844
|
| | | 30 3.41 1.5 12.02 1966284 1966284 1966284 1966284 1966284 1966284 1310856 1310856 1310856 1310856 1310856 1310856 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284 1966284
|
| | | 31 2.73 1.2 9.62 2713471 2713471 2713471 2713471 2713471 2713471 1808980 1808980 1808980 1808980 1808980 1808980 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471 2713471
|
| | | 32 2.18 0.96 7.7 3744589 3744589 3744589 3744589 3744589 3744589 2496392 2496392 2496392 2496392 2496392 2496392 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589 3744589
|
| | | 33 1.74 0.77 6.16 5167532 5167532 5167532 5167532 5167532 5167532 3445021 3445021 3445021 3445021 3445021 3445021 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532 5167532
|
| | | 34 1.39 0.62 4.93 7131194 7131194 7131194 7131194 7131194 7131194 4754129 4754129 4754129 4754129 4754129 4754129 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194 7131194
|
| | | 35 1.11 0.5 3.94 9841047 9841047 9841047 9841047 9841047 9841047 6560698 6560698 6560698 6560698 6560698 6560698 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047 9841047
|
| | | 3 20 4 100 3697 3697 3697 3697 3697 3697 2464 2464 2464 2464 2464 2464 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697 3697
|
| | | 4 20 4 100 3770 3770 3770 3770 3770 3770 2513 2513 2513 2513 2513 2513 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770 3770
|
| | | 5 20 4 100 3845 3845 3845 3845 3845 3845 2563 2563 2563 2563 2563 2563 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845 3845
|
| | | 6 20 4 100 4037 4037 4037 4037 4037 4037 2691 2691 2691 2691 2691 2691 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037 4037
|
| | | 7 20 4 100 4440 4440 4440 4440 4440 4440 2960 2960 2960 2960 2960 2960 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440 4440
|
| | | 8 20 4 100 4884 4884 4884 4884 4884 4884 3256 3256 3256 3256 3256 3256 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884 4884
|
| | | 9 20 4 100 5616 5616 5616 5616 5616 5616 3744 3744 3744 3744 3744 3744 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616 5616
|
| | | 10 20 4 100 6458 6458 6458 6458 6458 6458 4305 4305 4305 4305 4305 4305 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458 6458
|
| | | 11 20 4 100 7426 7426 7426 7426 7426 7426 4950 4950 4950 4950 4950 4950 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426 7426
|
| | | 12 20 4 100 8539 8539 8539 8539 8539 8539 5692 5692 5692 5692 5692 5692 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539 8539
|
| | | 13 20 4 100 9819 9819 9819 9819 9819 9819 6546 6546 6546 6546 6546 6546 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819 9819
|
| | | 14 20 4 100 12764 12764 12764 12764 12764 12764 8509 8509 8509 8509 8509 8509 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764 12764
|
| | | 15 20 4 100 16593 16593 16593 16593 16593 16593 11062 11062 11062 11062 11062 11062 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593 16593
|
| | | 16 20 4 100 21570 21570 21570 21570 21570 21570 14380 14380 14380 14380 14380 14380 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570 21570
|
| | | 17 20 4 100 30198 30198 30198 30198 30198 30198 20132 20132 20132 20132 20132 20132 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198 30198
|
| | | 18 20 4 100 42277 42277 42277 42277 42277 42277 28184 28184 28184 28184 28184 28184 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277 42277
|
| | | 19 20 4 100 59187 59187 59187 59187 59187 59187 39458 39458 39458 39458 39458 39458 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187 59187
|
| | | 20 20 4 100 88780 88780 88780 88780 88780 88780 59186 59186 59186 59186 59186 59186 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780 88780
|
| | | 21 20 4 100 159804 159804 159804 159804 159804 159804 106536 106536 106536 106536 106536 106536 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804 159804
|
| | | 22 20 4 100 287647 287647 287647 287647 287647 287647 191764 191764 191764 191764 191764 191764 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647 287647
|
| | | 23 20 4 100 517764 517764 517764 517764 517764 517764 345176 345176 345176 345176 345176 345176 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764 517764
|
| | | 24 20 4 100 931975 931975 931975 931975 931975 931975 621316 621316 621316 621316 621316 621316 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975 931975
|
| | | 25 20 4 100 1677555 1677555 1677555 1677555 1677555 1677555 1118370 1118370 1118370 1118370 1118370 1118370 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555 1677555
|
| | | 26 20 4 100 3019599 3019599 3019599 3019599 3019599 3019599 2013066 2013066 2013066 2013066 2013066 2013066 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599 3019599
|
| | | 27 20 4 100 5435278 5435278 5435278 5435278 5435278 5435278 3623518 3623518 3623518 3623518 3623518 3623518 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278 5435278
|
| | | 28 20 4 100 9783500 9783500 9783500 9783500 9783500 9783500 6522333 6522333 6522333 6522333 6522333 6522333 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500 9783500
|
| | | 29 20 4 100 17610300 17610300 17610300 17610300 17610300 17610300 11740200 11740200 11740200 11740200 11740200 11740200 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300 17610300
|
| | |
| | | Lv LvLarge LVMax AddAttrType AddAttrNum
|
| | | 0 0 5
|
| | | 1 1 10 6|7|8 470|58|11
|
| | | 2 1 15 6|7|8 1108|138|27
|
| | | 3 1 22 6|7|8 1774|221|44
|
| | | 4 4 29 6|7|8 3496|437|87
|
| | | 5 4 35 6|7|8 4560|570|114
|
| | | 6 4 42 6|7|8 5472|684|136
|
| | | 7 7 49 6|7|8 6536|817|163
|
| | | 8 7 55 6|7|8 7600|950|190
|
| | | 9 7 69 6|7|8 8891|1111|222
|
| | | 10 10 83 6|7|8 16016|2002|400
|
| | | 11 10 95 6|7|8 19219|2402|480
|
| | | 12 10 115 6|7|8 21964|2745|549
|
| | | 13 13 135 6|7|8 26540|3317|663
|
| | | 14 13 155 6|7|8 32009|4001|800
|
| | | 15 13 182 6|7|8 53664|6708|1341
|
| | | 16 16 209 6|7|8 64289|8036|1607
|
| | | 17 16 235 6|7|8 110870|13858|2771
|
| | | 18 16 269 6|7|8 186212|23276|4655
|
| | | 19 19 303 6|7|8 319686|39960|7992
|
| | | 20 19 335 6|7|8 554012|69251|13850
|
| | | 21 19 375 6|7|8 1339318|167414|33483
|
| | | 22 22 415 6|7|8 2248091|281011|56202
|
| | | 23 22 455 6|7|8 3730425|466303|93260
|
| | | 24 22 502 6|7|8 6122171|765271|153054
|
| | | 25 25 549 6|7|8 10105515|1263189|252637
|
| | | 26 25 595 6|7|8 15460612|1932576|386515
|
| | | 27 25 649 6|7|8 23731502|2966437|593287
|
| | | 28 28 703 6|7|8 50660404|6332550|1266510
|
| | | 29 28 755 6|7|8 103338275|12917284|2583456
|
| | | 1 1 10 6|7|8 235|29|5
|
| | | 2 1 15 6|7|8 554|69|13
|
| | | 3 1 22 6|7|8 887|110|22
|
| | | 4 4 29 6|7|8 1748|218|43
|
| | | 5 4 35 6|7|8 2280|285|57
|
| | | 6 4 42 6|7|8 2736|342|68
|
| | | 7 7 49 6|7|8 3268|408|81
|
| | | 8 7 55 6|7|8 3800|475|95
|
| | | 9 7 69 6|7|8 4445|555|111
|
| | | 10 10 83 6|7|8 8008|1001|200
|
| | | 11 10 95 6|7|8 9609|1201|240
|
| | | 12 10 115 6|7|8 10982|1372|274
|
| | | 13 13 135 6|7|8 13659|1707|341
|
| | | 14 13 155 6|7|8 23392|2924|584
|
| | | 15 13 182 6|7|8 27414|3426|685
|
| | | 16 16 209 6|7|8 48290|6036|1207
|
| | | 17 16 235 6|7|8 83236|10404|2080
|
| | | 18 16 269 6|7|8 139750|17468|3493
|
| | | 19 19 303 6|7|8 245604|30700|6140
|
| | | 20 19 335 6|7|8 607835|75979|15195
|
| | | 21 19 375 6|7|8 1004619|125577|25115
|
| | | 22 22 415 6|7|8 1686072|210759|42151
|
| | | 23 22 455 6|7|8 2797980|349747|69949
|
| | | 24 22 502 6|7|8 4580995|572624|114524
|
| | | 25 25 549 6|7|8 7073704|884213|176842
|
| | | 26 25 595 6|7|8 10822519|1352814|270563
|
| | | 27 25 649 6|7|8 16417618|2052202|410440
|
| | | 28 28 703 6|7|8 25330202|3166275|633255
|
| | | 29 28 755 6|7|8 51669137|6458642|1291728
|
| | |
| | | 8 2 2 505 [[1,100,0]]
|
| | | 8 3 4 7 [[1,100,0]]
|
| | | 9 1 1 69 [[1,200,0]]
|
| | | 9 2 2 803 [[1,200,0]]
|
| | | 9 2 2 706 [[1,200,0]]
|
| | | 9 3 3 250 [[1,200,0]]
|
| | | 10 1 1 83 [[1,200,0]]
|
| | | 10 2 2 1101 [[1,200,0]]
|
| | | 10 3 3 300 [[1,200,0]]
|
| | | 10 2 2 907 [[1,200,0]]
|
| | | 10 3 4 8 [[1,200,0]]
|
| | | 11 1 1 95 [[1,200,0]]
|
| | | 11 2 2 1305 [[1,200,0]]
|
| | | 11 3 4 8 [[1,200,0]]
|
| | | 11 2 2 1105 [[1,200,0]]
|
| | | 11 3 3 350 [[1,200,0]]
|
| | | 12 1 1 115 [[1,300,0]]
|
| | | 12 2 2 1705 [[1,300,0]]
|
| | | 12 3 3 350 [[1,300,0]]
|
| | | 12 2 2 1405 [[1,300,0]]
|
| | | 12 3 4 9 [[1,300,0]]
|
| | | 13 1 1 135 [[1,300,0]]
|
| | | 13 2 2 2105 [[1,300,0]]
|
| | | 13 3 4 9 [[1,300,0]]
|
| | | 13 2 2 1705 [[1,300,0]]
|
| | | 13 3 3 400 [[1,300,0]]
|
| | | 14 1 1 155 [[1,300,0]]
|
| | | 14 2 2 2505 [[1,300,0]]
|
| | | 14 3 3 400 [[1,200,0]]
|
| | | 14 2 2 2005 [[1,300,0]]
|
| | | 14 3 4 10 [[1,200,0]]
|
| | | 15 1 1 182 [[1,400,0]]
|
| | | 15 2 2 3009 [[1,400,0]]
|
| | | 15 3 4 10 [[1,400,0]]
|
| | | 15 2 2 2405 [[1,400,0]]
|
| | | 15 3 4 11 [[1,400,0]]
|
| | | 16 1 1 209 [[1,400,0]]
|
| | | 16 2 2 3603 [[1,400,0]]
|
| | | 16 3 4 11 [[1,400,0]]
|
| | | 16 2 2 2805 [[1,400,0]]
|
| | | 16 3 4 12 [[1,400,0]]
|
| | | 17 1 1 235 [[1,400,0]]
|
| | | 17 2 2 4105 [[1,400,0]]
|
| | | 17 3 4 12 [[1,400,0]]
|
| | | 17 2 2 3204 [[1,400,0]]
|
| | | 17 3 4 13 [[1,400,0]]
|
| | | 18 1 1 269 [[1,500,0]]
|
| | | 18 2 2 4803 [[1,500,0]]
|
| | | 18 3 4 13 [[1,500,0]]
|
| | | 18 2 2 3705 [[1,500,0]]
|
| | | 18 3 4 14 [[1,500,0]]
|
| | | 19 1 1 303 [[1,500,0]]
|
| | | 19 2 2 5501 [[1,500,0]]
|
| | | 19 3 4 14 [[1,500,0]]
|
| | | 19 2 2 4206 [[1,500,0]]
|
| | | 19 3 4 15 [[1,500,0]]
|
| | | 20 1 1 335 [[1,500,0]]
|
| | | 20 2 2 6105 [[1,500,0]]
|
| | | 20 3 4 15 [[1,500,0]]
|
| | | 20 2 2 4704 [[1,500,0]]
|
| | | 20 3 4 16 [[1,500,0]]
|
| | | 21 1 1 375 [[1,500,0]]
|
| | | 21 2 2 6905 [[1,500,0]]
|
| | | 21 3 4 16 [[1,500,0]]
|
| | | 21 2 2 5304 [[1,500,0]]
|
| | | 21 3 4 17 [[1,500,0]]
|
| | | 22 1 1 415 [[1,600,0]]
|
| | | 22 2 2 7705 [[1,600,0]]
|
| | | 22 3 4 17 [[1,600,0]]
|
| | | 22 2 2 5904 [[1,600,0]]
|
| | | 22 3 4 18 [[1,600,0]]
|
| | | 23 1 1 455 [[1,600,0]]
|
| | | 23 2 2 8505 [[1,600,0]]
|
| | | 23 3 4 18 [[1,600,0]]
|
| | | 23 2 2 6504 [[1,600,0]]
|
| | | 23 3 4 19 [[1,600,0]]
|
| | | 24 1 1 502 [[1,600,0]]
|
| | | 24 2 2 9409 [[1,600,0]]
|
| | | 24 3 4 19 [[1,600,0]]
|
| | | 24 2 2 7205 [[1,600,0]]
|
| | | 24 3 4 20 [[1,600,0]]
|
| | | 25 1 1 549 [[1,600,0]]
|
| | | 25 2 2 10403 [[1,600,0]]
|
| | | 25 3 4 20 [[1,600,0]]
|
| | | 25 2 2 7905 [[1,600,0]]
|
| | | 25 3 4 21 [[1,600,0]]
|
| | | 26 1 1 595 [[1,600,0]]
|
| | | 26 2 2 11305 [[1,600,0]]
|
| | | 26 3 4 21 [[1,600,0]]
|
| | | 26 2 2 8604 [[1,600,0]]
|
| | | 26 3 4 22 [[1,600,0]]
|
| | | 27 1 1 649 [[1,600,0]]
|
| | | 27 2 2 12403 [[1,600,0]]
|
| | | 27 2 2 9405 [[1,600,0]]
|
| | | 27 3 4 23 [[1,600,0]]
|
| | | 28 1 1 703 [[1,600,0]]
|
| | | 28 2 2 13501 [[1,600,0]]
|
| | | 28 2 2 10206 [[1,600,0]]
|
| | | 28 3 4 25 [[1,600,0]]
|
| | | 29 1 1 755 [[1,600,0]]
|
| | | 29 2 2 14505 [[1,600,0]]
|
| | | 29 2 2 11004 [[1,600,0]]
|
| | | 29 3 4 27 [[1,600,0]]
|
| | |
| | | TaskID TaskGroup TaskType TaskConds NeedValue AwardItemList
|
| | | 1001 0 8 [42] 300 [[30,5,0]]
|
| | | 1002 0 2 [] 2 [[30,5,0]]
|
| | | 1003 0 5 [] 5 [[30,5,0]]
|
| | | 1004 0 6 [] 2 [[30,5,0]]
|
| | | 1005 0 8 [42] 500 [[30,5,0]]
|
| | | 1006 0 2 [] 3 [[30,5,0]]
|
| | | 1007 0 5 [] 10 [[30,5,0]]
|
| | | 1008 0 6 [] 3 [[30,5,0]]
|
| | | 1009 0 8 [42] 500 [[30,5,0]]
|
| | | 1010 0 2 [] 4 [[30,5,0]]
|
| | | 1011 0 5 [] 15 [[30,5,0]]
|
| | | 1012 0 6 [] 4 [[30,5,0]]
|
| | | 1013 0 8 [42] 1000 [[30,5,0]]
|
| | | 1014 0 2 [] 5 [[30,5,0]]
|
| | | 1015 0 5 [] 20 [[30,5,0]]
|
| | | 1016 0 6 [] 5 [[30,5,0]]
|
| | | 1001 0 4 [41] 5 [[3,5,0]]
|
| | | 1002 0 7 [] 5 [[3,5,0]]
|
| | | 1003 0 9 [1] 5 [[3,5,0]]
|
| | | 1004 0 5 [] 2 [[3,5,0]]
|
| | | 1005 0 1 [101] 1 [[3,5,0]]
|
| | | 1006 0 4 [41] 5 [[3,5,0]]
|
| | | 1007 0 7 [] 5 [[3,5,0]]
|
| | | 1008 0 8 [42] 1000 [[3,5,0]]
|
| | | 1009 0 1 [102] 1 [[3,5,0]]
|
| | | 1010 0 5 [] 3 [[3,5,0]]
|
| | | 1011 0 4 [41] 5 [[3,5,0]]
|
| | | 1012 0 7 [] 5 [[3,5,0]]
|
| | | 1013 0 3 [] 5 [[3,5,0]]
|
| | | 1014 0 1 [103] 1 [[3,5,0]]
|
| | | 1015 0 5 [] 5 [[3,5,0]]
|
| | | 1016 0 6 [] 1 [[3,5,0]]
|
| | | 1017 0 1 [104] 1 [[3,5,0]]
|
| | | 1018 0 4 [41] 10 [[3,5,0]]
|
| | | 1019 0 7 [] 10 [[3,5,0]]
|
| | | 1020 0 3 [] 5 [[3,5,0]]
|
| | | 1021 0 1 [105] 1 [[3,5,0]]
|
| | | 1022 0 4 [41] 10 [[3,5,0]]
|
| | | 1023 0 7 [] 10 [[3,5,0]]
|
| | | 1024 0 3 [] 5 [[3,5,0]]
|
| | | 1025 0 1 [201] 1 [[3,5,0]]
|
| | | 1026 0 5 [] 10 [[3,5,0]]
|
| | | 1027 0 4 [41] 10 [[3,5,0]]
|
| | | 1028 0 7 [] 10 [[3,5,0]]
|
| | | 1029 0 9 [3] 2 [[3,5,0]]
|
| | | 1030 0 1 [202] 1 [[3,5,0]]
|
| | | 1031 0 5 [] 1 [[3,5,0]]
|
| | | 1032 0 4 [41] 15 [[3,5,0]]
|
| | | 1033 0 7 [] 10 [[3,5,0]]
|
| | | 1034 0 3 [] 10 [[3,5,0]]
|
| | | 1035 0 1 [203] 1 [[3,5,0]]
|
| | | 1036 0 5 [] 13 [[3,5,0]]
|
| | | 1037 0 4 [41] 20 [[3,5,0]]
|
| | | 1038 0 7 [] 10 [[3,5,0]]
|
| | | 1039 0 3 [] 10 [[3,5,0]]
|
| | | 1040 0 1 [204] 1 [[3,5,0]]
|
| | | 1041 0 5 [] 15 [[3,5,0]]
|
| | | 1042 0 4 [41] 20 [[3,5,0]]
|
| | | 1043 0 7 [] 10 [[3,5,0]]
|
| | | 1044 0 1 [205] 1 [[3,5,0]]
|
| | | 1045 0 7 [] 10 [[3,5,0]]
|
| | | 1046 0 3 [] 10 [[3,5,0]]
|
| | | 1047 0 1 [301] 1 [[3,10,0]]
|
| | | 1048 0 4 [41] 20 [[3,10,0]]
|
| | | 1049 0 3 [] 10 [[3,10,0]]
|
| | | 1050 0 7 [] 10 [[3,10,0]]
|
| | | 1051 0 3 [] 10 [[3,10,0]]
|
| | | 1052 0 1 [302] 1 [[3,10,0]]
|
| | | 1053 0 3 [] 10 [[3,10,0]]
|
| | | 1054 0 4 [41] 20 [[3,10,0]]
|
| | | 1055 0 7 [] 10 [[3,10,0]]
|
| | | 1056 0 3 [] 10 [[3,10,0]]
|
| | | 1057 0 1 [303] 1 [[3,10,0]]
|
| | | 1058 0 3 [] 10 [[3,10,0]]
|
| | | 1059 0 4 [41] 20 [[3,10,0]]
|
| | | 1060 0 7 [] 10 [[3,10,0]]
|
| | | 1061 0 3 [] 10 [[3,10,0]]
|
| | | 1062 0 1 [304] 1 [[3,10,0]]
|
| | | 1063 0 5 [] 21 [[3,10,0]]
|
| | | 1064 0 4 [41] 20 [[3,10,0]]
|
| | | 1065 0 7 [] 10 [[3,10,0]]
|
| | | 1066 0 3 [] 10 [[3,10,0]]
|
| | | 1067 0 1 [305] 1 [[3,10,0]]
|
| | | 1068 0 3 [] 10 [[3,10,0]]
|
| | | 1069 0 4 [41] 20 [[3,10,0]]
|
| | | 1070 0 7 [] 10 [[3,10,0]]
|
| | | 1071 0 3 [] 10 [[3,10,0]]
|
| | | 1072 0 1 [306] 1 [[3,10,0]]
|
| | | 1073 0 5 [] 22 [[3,10,0]]
|
| | | 1074 0 4 [41] 30 [[3,10,0]]
|
| | | 1075 0 7 [] 10 [[3,10,0]]
|
| | | 1076 0 1 [307] 1 [[3,10,0]]
|
| | | 1077 0 5 [] 23 [[3,10,0]]
|
| | | 1078 0 4 [41] 30 [[3,10,0]]
|
| | | 1079 0 7 [] 10 [[3,10,0]]
|
| | | 1080 0 3 [] 10 [[3,10,0]]
|
| | | 1081 0 1 [308] 1 [[3,10,0]]
|
| | | 1082 0 8 [42] 1000 [[3,10,0]]
|
| | | 1083 0 4 [41] 30 [[3,10,0]]
|
| | | 1084 0 7 [] 10 [[3,10,0]]
|
| | | 1085 0 3 [] 10 [[3,10,0]]
|
| | | 1086 0 1 [401] 1 [[3,10,0]]
|
| | | 1087 0 4 [41] 35 [[3,10,0]]
|
| | | 1088 0 7 [] 10 [[3,10,0]]
|
| | | 1089 0 3 [] 10 [[3,10,0]]
|
| | | 1090 0 8 [42] 1000 [[3,10,0]]
|
| | | 1091 0 1 [402] 1 [[3,10,0]]
|
| | | 1092 0 4 [41] 35 [[3,10,0]]
|
| | | 1093 0 7 [] 10 [[3,10,0]]
|
| | | 1094 0 3 [] 10 [[3,10,0]]
|
| | | 1095 0 8 [42] 1000 [[3,10,0]]
|
| | | 1096 0 1 [403] 1 [[3,10,0]]
|
| | | 1097 0 4 [41] 35 [[3,10,0]]
|
| | | 1098 0 7 [] 10 [[3,10,0]]
|
| | | 1099 0 3 [] 10 [[3,10,0]]
|
| | | 1100 0 8 [42] 1000 [[3,10,0]]
|
| | | 1101 0 1 [404] 1 [[3,10,0]]
|
| | | 1102 0 4 [41] 35 [[3,10,0]]
|
| | | 1103 0 7 [] 10 [[3,10,0]]
|
| | | 1104 0 3 [] 10 [[3,10,0]]
|
| | | 1105 0 8 [42] 1000 [[3,10,0]]
|
| | | 1106 0 1 [405] 1 [[3,10,0]]
|
| | | 1107 0 4 [41] 35 [[3,10,0]]
|
| | | 1108 0 7 [] 10 [[3,10,0]]
|
| | | 1109 0 3 [] 10 [[3,10,0]]
|
| | | 1110 0 8 [42] 1000 [[3,10,0]]
|
| | | 1111 0 1 [406] 1 [[3,10,0]]
|
| | | 1112 0 4 [41] 35 [[3,10,0]]
|
| | | 1113 0 7 [] 10 [[3,10,0]]
|
| | | 1114 0 3 [] 10 [[3,10,0]]
|
| | | 1115 0 8 [42] 1000 [[3,10,0]]
|
| | | 1116 0 1 [407] 1 [[3,10,0]]
|
| | | 1117 0 4 [41] 35 [[3,10,0]]
|
| | | 1118 0 7 [] 10 [[3,10,0]]
|
| | | 1119 0 3 [] 10 [[3,10,0]]
|
| | | 1120 0 8 [42] 1000 [[3,10,0]]
|
| | | 1121 0 1 [408] 1 [[3,10,0]]
|
| | | 1122 0 4 [41] 35 [[3,10,0]]
|
| | | 1123 0 7 [] 10 [[3,10,0]]
|
| | | 1124 0 3 [] 10 [[3,10,0]]
|
| | | 1125 0 8 [42] 1000 [[3,10,0]]
|
| | | 1126 0 1 [409] 1 [[3,10,0]]
|
| | | 1127 0 4 [41] 35 [[3,10,0]]
|
| | | 1128 0 7 [] 10 [[3,10,0]]
|
| | | 1129 0 3 [] 10 [[3,10,0]]
|
| | | 1130 0 8 [42] 1000 [[3,10,0]]
|
| | | 1131 0 1 [410] 1 [[3,10,0]]
|
| | | 1132 0 4 [41] 35 [[3,10,0]]
|
| | | 1133 0 8 [42] 1000 [[3,10,0]]
|
| | | 1134 0 7 [] 10 [[3,10,0]]
|
| | | 1135 0 3 [] 10 [[3,10,0]]
|
| | | 1136 0 1 [501] 1 [[3,10,0]]
|
| | | 1137 0 4 [41] 35 [[3,10,0]]
|
| | | 1138 0 7 [] 10 [[3,10,0]]
|
| | | 1139 0 3 [] 10 [[3,10,0]]
|
| | | 1140 0 8 [42] 1000 [[3,10,0]]
|
| | | 1141 0 1 [502] 1 [[3,10,0]]
|
| | | 1142 0 4 [41] 35 [[3,10,0]]
|
| | | 1143 0 7 [] 10 [[3,10,0]]
|
| | | 1144 0 3 [] 10 [[3,10,0]]
|
| | | 1145 0 8 [42] 1000 [[3,10,0]]
|
| | | 1146 0 1 [503] 1 [[3,10,0]]
|
| | | 1147 0 4 [41] 35 [[3,10,0]]
|
| | | 1148 0 7 [] 10 [[3,10,0]]
|
| | | 1149 0 3 [] 10 [[3,10,0]]
|
| | | 1150 0 8 [42] 1000 [[3,10,0]]
|
| | | 1151 0 1 [504] 1 [[3,10,0]]
|
| | | 1152 0 4 [41] 35 [[3,10,0]]
|
| | | 1153 0 7 [] 10 [[3,10,0]]
|
| | | 1154 0 3 [] 10 [[3,10,0]]
|
| | | 1155 0 8 [42] 1000 [[3,10,0]]
|
| | | 1156 0 1 [505] 1 [[3,10,0]]
|
| | | 1157 0 4 [41] 35 [[3,10,0]]
|
| | | 1158 0 7 [] 10 [[3,10,0]]
|
| | | 1159 0 3 [] 10 [[3,10,0]]
|
| | | 1160 0 8 [42] 1000 [[3,10,0]]
|
| | | 1161 0 1 [506] 1 [[3,10,0]]
|
| | | 1162 0 4 [41] 35 [[3,10,0]]
|
| | | 1163 0 7 [] 10 [[3,10,0]]
|
| | | 1164 0 3 [] 10 [[3,10,0]]
|
| | | 1165 0 8 [42] 1000 [[3,10,0]]
|
| | | 1166 0 1 [507] 1 [[3,10,0]]
|
| | | 1167 0 4 [41] 35 [[3,10,0]]
|
| | | 1168 0 7 [] 10 [[3,10,0]]
|
| | | 1169 0 3 [] 10 [[3,10,0]]
|
| | | 1170 0 8 [42] 1000 [[3,10,0]]
|
| | | 1171 0 1 [508] 1 [[3,10,0]]
|
| | | 1172 0 4 [41] 35 [[3,10,0]]
|
| | | 1173 0 7 [] 10 [[3,10,0]]
|
| | | 1174 0 3 [] 10 [[3,10,0]]
|
| | | 1175 0 8 [42] 1000 [[3,10,0]]
|
| | | 1176 0 1 [509] 1 [[3,10,0]]
|
| | | 1177 0 4 [41] 35 [[3,10,0]]
|
| | | 1178 0 7 [] 10 [[3,10,0]]
|
| | | 1179 0 3 [] 10 [[3,10,0]]
|
| | | 1180 0 8 [42] 1000 [[3,10,0]]
|
| | | 1181 0 1 [510] 1 [[3,10,0]]
|
| | | 1182 0 4 [41] 35 [[3,10,0]]
|
| | | 1183 0 8 [42] 1000 [[3,10,0]]
|
| | | 1184 0 7 [] 10 [[3,10,0]]
|
| | | 1185 0 3 [] 10 [[3,10,0]]
|
| | | 1186 0 1 [601] 1 [[3,10,0]]
|
| | | 1187 0 4 [41] 35 [[3,10,0]]
|
| | | 1188 0 7 [] 10 [[3,10,0]]
|
| | | 1189 0 3 [] 10 [[3,10,0]]
|
| | | 1190 0 8 [42] 1000 [[3,10,0]]
|
| | | 1191 0 1 [602] 1 [[3,10,0]]
|
| | | 1192 0 4 [41] 35 [[3,10,0]]
|
| | | 1193 0 7 [] 10 [[3,10,0]]
|
| | | 1194 0 3 [] 10 [[3,10,0]]
|
| | | 1195 0 8 [42] 1000 [[3,10,0]]
|
| | | 1196 0 1 [603] 1 [[3,10,0]]
|
| | | 1197 0 4 [41] 35 [[3,10,0]]
|
| | | 1198 0 7 [] 10 [[3,10,0]]
|
| | | 1199 0 3 [] 10 [[3,10,0]]
|
| | | 1200 0 8 [42] 1000 [[3,10,0]]
|
| | | 1201 0 1 [604] 1 [[3,10,0]]
|
| | | 1202 0 4 [41] 35 [[3,10,0]]
|
| | | 1203 0 7 [] 10 [[3,10,0]]
|
| | | 1204 0 3 [] 10 [[3,10,0]]
|
| | | 1205 0 8 [42] 1000 [[3,10,0]]
|
| | | 1206 0 1 [605] 1 [[3,10,0]]
|
| | | 1207 0 4 [41] 35 [[3,10,0]]
|
| | | 1208 0 7 [] 10 [[3,10,0]]
|
| | | 1209 0 3 [] 10 [[3,10,0]]
|
| | | 1210 0 8 [42] 1000 [[3,10,0]]
|
| | | 1211 0 1 [606] 1 [[3,10,0]]
|
| | | 1212 0 4 [41] 35 [[3,10,0]]
|
| | | 1213 0 7 [] 10 [[3,10,0]]
|
| | | 1214 0 3 [] 10 [[3,10,0]]
|
| | | 1215 0 8 [42] 1000 [[3,10,0]]
|
| | | 1216 0 1 [607] 1 [[3,10,0]]
|
| | | 1217 0 4 [41] 35 [[3,10,0]]
|
| | | 1218 0 7 [] 10 [[3,10,0]]
|
| | | 1219 0 3 [] 10 [[3,10,0]]
|
| | | 1220 0 8 [42] 1000 [[3,10,0]]
|
| | | 1221 0 1 [608] 1 [[3,10,0]]
|
| | | 1222 0 4 [41] 35 [[3,10,0]]
|
| | | 1223 0 7 [] 10 [[3,10,0]]
|
| | | 1224 0 3 [] 10 [[3,10,0]]
|
| | | 1225 0 8 [42] 1000 [[3,10,0]]
|
| | | 1226 0 1 [609] 1 [[3,10,0]]
|
| | | 1227 0 4 [41] 35 [[3,10,0]]
|
| | | 1228 0 7 [] 10 [[3,10,0]]
|
| | | 1229 0 3 [] 10 [[3,10,0]]
|
| | | 1230 0 8 [42] 1000 [[3,10,0]]
|
| | | 1231 0 1 [610] 1 [[3,10,0]]
|
| | | 1232 0 4 [41] 35 [[3,10,0]]
|
| | | 1233 0 8 [42] 1000 [[3,10,0]]
|
| | | 1234 0 7 [] 10 [[3,10,0]]
|
| | | 1235 0 3 [] 10 [[3,10,0]]
|
| | | 1236 0 1 [701] 1 [[3,10,0]]
|
| | | 1237 0 4 [41] 35 [[3,10,0]]
|
| | | 1238 0 7 [] 10 [[3,10,0]]
|
| | | 1239 0 3 [] 10 [[3,10,0]]
|
| | | 1240 0 8 [42] 1000 [[3,10,0]]
|
| | | 1241 0 1 [702] 1 [[3,10,0]]
|
| | | 1242 0 4 [41] 35 [[3,10,0]]
|
| | | 1243 0 7 [] 10 [[3,10,0]]
|
| | | 1244 0 3 [] 10 [[3,10,0]]
|
| | | 1245 0 8 [42] 1000 [[3,10,0]]
|
| | | 1246 0 1 [703] 1 [[3,10,0]]
|
| | | 1247 0 4 [41] 35 [[3,10,0]]
|
| | | 1248 0 7 [] 10 [[3,10,0]]
|
| | | 1249 0 3 [] 10 [[3,10,0]]
|
| | | 1250 0 8 [42] 1000 [[3,10,0]]
|
| | | 1251 0 1 [704] 1 [[3,10,0]]
|
| | | 1252 0 4 [41] 35 [[3,10,0]]
|
| | | 1253 0 7 [] 10 [[3,10,0]]
|
| | | 1254 0 3 [] 10 [[3,10,0]]
|
| | | 1255 0 8 [42] 1000 [[3,10,0]]
|
| | | 1256 0 1 [705] 1 [[3,10,0]]
|
| | | 1257 0 4 [41] 35 [[3,10,0]]
|
| | | 1258 0 7 [] 10 [[3,10,0]]
|
| | | 1259 0 3 [] 10 [[3,10,0]]
|
| | | 1260 0 8 [42] 1000 [[3,10,0]]
|
| | | 1261 0 1 [706] 1 [[3,10,0]]
|
| | | 1262 0 4 [41] 35 [[3,10,0]]
|
| | | 1263 0 7 [] 10 [[3,10,0]]
|
| | | 1264 0 3 [] 10 [[3,10,0]]
|
| | | 1265 0 8 [42] 1000 [[3,10,0]]
|
| | | 1266 0 1 [707] 1 [[3,10,0]]
|
| | | 1267 0 4 [41] 35 [[3,10,0]]
|
| | | 1268 0 7 [] 10 [[3,10,0]]
|
| | | 1269 0 3 [] 10 [[3,10,0]]
|
| | | 1270 0 8 [42] 1000 [[3,10,0]]
|
| | | 1271 0 1 [708] 1 [[3,10,0]]
|
| | | 1272 0 4 [41] 35 [[3,10,0]]
|
| | | 1273 0 7 [] 10 [[3,10,0]]
|
| | | 1274 0 3 [] 10 [[3,10,0]]
|
| | | 1275 0 8 [42] 1000 [[3,10,0]]
|
| | | 1276 0 1 [709] 1 [[3,10,0]]
|
| | | 1277 0 4 [41] 35 [[3,10,0]]
|
| | | 1278 0 7 [] 10 [[3,10,0]]
|
| | | 1279 0 3 [] 10 [[3,10,0]]
|
| | | 1280 0 8 [42] 1000 [[3,10,0]]
|
| | | 1281 0 1 [710] 1 [[3,10,0]]
|
| | | 1282 0 4 [41] 35 [[3,10,0]]
|
| | | 1283 0 8 [42] 1000 [[3,10,0]]
|
| | | 1284 0 7 [] 10 [[3,10,0]]
|
| | | 1285 0 3 [] 10 [[3,10,0]]
|
| | | 1286 0 1 [801] 1 [[3,10,0]]
|
| | | 1287 0 4 [41] 35 [[3,10,0]]
|
| | | 1288 0 7 [] 10 [[3,10,0]]
|
| | | 1289 0 3 [] 10 [[3,10,0]]
|
| | | 1290 0 8 [42] 1000 [[3,10,0]]
|
| | | 1291 0 1 [802] 1 [[3,10,0]]
|
| | | 1292 0 4 [41] 35 [[3,10,0]]
|
| | | 1293 0 7 [] 10 [[3,10,0]]
|
| | | 1294 0 3 [] 10 [[3,10,0]]
|
| | | 1295 0 8 [42] 1000 [[3,10,0]]
|
| | | 1296 0 1 [803] 1 [[3,10,0]]
|
| | | 1297 0 4 [41] 35 [[3,10,0]]
|
| | | 1298 0 7 [] 10 [[3,10,0]]
|
| | | 1299 0 3 [] 10 [[3,10,0]]
|
| | | 1300 0 8 [42] 1000 [[3,10,0]]
|
| | | 1301 0 1 [804] 1 [[3,10,0]]
|
| | | 1302 0 4 [41] 35 [[3,10,0]]
|
| | | 1303 0 7 [] 10 [[3,10,0]]
|
| | | 1304 0 3 [] 10 [[3,10,0]]
|
| | | 1305 0 8 [42] 1000 [[3,10,0]]
|
| | | 1306 0 1 [805] 1 [[3,10,0]]
|
| | | 1307 0 4 [41] 35 [[3,10,0]]
|
| | | 1308 0 7 [] 10 [[3,10,0]]
|
| | | 1309 0 3 [] 10 [[3,10,0]]
|
| | | 1310 0 8 [42] 1000 [[3,10,0]]
|
| | | 1311 0 1 [806] 1 [[3,10,0]]
|
| | | 1312 0 4 [41] 35 [[3,10,0]]
|
| | | 1313 0 7 [] 10 [[3,10,0]]
|
| | | 1314 0 3 [] 10 [[3,10,0]]
|
| | | 1315 0 8 [42] 1000 [[3,10,0]]
|
| | | 1316 0 1 [807] 1 [[3,10,0]]
|
| | | 1317 0 4 [41] 35 [[3,10,0]]
|
| | | 1318 0 7 [] 10 [[3,10,0]]
|
| | | 1319 0 3 [] 10 [[3,10,0]]
|
| | | 1320 0 8 [42] 1000 [[3,10,0]]
|
| | | 1321 0 1 [808] 1 [[3,10,0]]
|
| | | 1322 0 4 [41] 35 [[3,10,0]]
|
| | | 1323 0 7 [] 10 [[3,10,0]]
|
| | | 1324 0 3 [] 10 [[3,10,0]]
|
| | | 1325 0 8 [42] 1000 [[3,10,0]]
|
| | | 1326 0 1 [809] 1 [[3,10,0]]
|
| | | 1327 0 4 [41] 35 [[3,10,0]]
|
| | | 1328 0 7 [] 10 [[3,10,0]]
|
| | | 1329 0 3 [] 10 [[3,10,0]]
|
| | | 1330 0 8 [42] 1000 [[3,10,0]]
|
| | | 1331 0 1 [810] 1 [[3,10,0]]
|
| | | 1332 0 4 [41] 35 [[3,10,0]]
|
| | | 1333 0 8 [42] 1000 [[3,10,0]]
|
| | | 1334 0 7 [] 10 [[3,10,0]]
|
| | | 1335 0 3 [] 10 [[3,10,0]]
|
| | | 1336 0 1 [901] 1 [[3,10,0]]
|
| | | 1337 0 4 [41] 35 [[3,10,0]]
|
| | | 1338 0 7 [] 10 [[3,10,0]]
|
| | | 1339 0 3 [] 10 [[3,10,0]]
|
| | | 1340 0 8 [42] 1000 [[3,10,0]]
|
| | | 1341 0 1 [902] 1 [[3,10,0]]
|
| | | 1342 0 4 [41] 35 [[3,10,0]]
|
| | | 1343 0 7 [] 10 [[3,10,0]]
|
| | | 1344 0 3 [] 10 [[3,10,0]]
|
| | | 1345 0 8 [42] 1000 [[3,10,0]]
|
| | | 1346 0 1 [903] 1 [[3,10,0]]
|
| | | 1347 0 4 [41] 35 [[3,10,0]]
|
| | | 1348 0 7 [] 10 [[3,10,0]]
|
| | | 1349 0 3 [] 10 [[3,10,0]]
|
| | | 1350 0 8 [42] 1000 [[3,10,0]]
|
| | | 1351 0 1 [904] 1 [[3,10,0]]
|
| | | 1352 0 4 [41] 35 [[3,10,0]]
|
| | | 1353 0 7 [] 10 [[3,10,0]]
|
| | | 1354 0 3 [] 10 [[3,10,0]]
|
| | | 1355 0 8 [42] 1000 [[3,10,0]]
|
| | | 1356 0 1 [905] 1 [[3,10,0]]
|
| | | 1357 0 4 [41] 35 [[3,10,0]]
|
| | | 1358 0 7 [] 10 [[3,10,0]]
|
| | | 1359 0 3 [] 10 [[3,10,0]]
|
| | | 1360 0 8 [42] 1000 [[3,10,0]]
|
| | | 1361 0 1 [906] 1 [[3,10,0]]
|
| | | 1362 0 4 [41] 35 [[3,10,0]]
|
| | | 1363 0 7 [] 10 [[3,10,0]]
|
| | | 1364 0 3 [] 10 [[3,10,0]]
|
| | | 1365 0 8 [42] 1000 [[3,10,0]]
|
| | | 1366 0 1 [907] 1 [[3,10,0]]
|
| | | 1367 0 4 [41] 35 [[3,10,0]]
|
| | | 1368 0 7 [] 10 [[3,10,0]]
|
| | | 1369 0 3 [] 10 [[3,10,0]]
|
| | | 1370 0 8 [42] 1000 [[3,10,0]]
|
| | | 1371 0 1 [908] 1 [[3,10,0]]
|
| | | 1372 0 4 [41] 35 [[3,10,0]]
|
| | | 1373 0 7 [] 10 [[3,10,0]]
|
| | | 1374 0 3 [] 10 [[3,10,0]]
|
| | | 1375 0 8 [42] 1000 [[3,10,0]]
|
| | | 1376 0 1 [909] 1 [[3,10,0]]
|
| | | 1377 0 4 [41] 35 [[3,10,0]]
|
| | | 1378 0 7 [] 10 [[3,10,0]]
|
| | | 1379 0 3 [] 10 [[3,10,0]]
|
| | | 1380 0 8 [42] 1000 [[3,10,0]]
|
| | | 1381 0 1 [910] 1 [[3,10,0]]
|
| | | 1382 0 4 [41] 35 [[3,10,0]]
|
| | | 1383 0 8 [42] 1000 [[3,10,0]]
|
| | | 1384 0 7 [] 10 [[3,10,0]]
|
| | | 1385 0 3 [] 10 [[3,10,0]]
|
| | | 1386 0 1 [1001] 1 [[3,10,0]]
|
| | | 1387 0 4 [41] 35 [[3,10,0]]
|
| | | 1388 0 7 [] 10 [[3,10,0]]
|
| | | 1389 0 3 [] 10 [[3,10,0]]
|
| | | 1390 0 8 [42] 1000 [[3,10,0]]
|
| | | 1391 0 1 [1002] 1 [[3,10,0]]
|
| | | 1392 0 4 [41] 35 [[3,10,0]]
|
| | | 1393 0 7 [] 10 [[3,10,0]]
|
| | | 1394 0 3 [] 10 [[3,10,0]]
|
| | | 1395 0 8 [42] 1000 [[3,10,0]]
|
| | | 1396 0 1 [1003] 1 [[3,10,0]]
|
| | | 1397 0 4 [41] 35 [[3,10,0]]
|
| | | 1398 0 7 [] 10 [[3,10,0]]
|
| | | 1399 0 3 [] 10 [[3,10,0]]
|
| | | 1400 0 8 [42] 1000 [[3,10,0]]
|
| | | 1401 0 1 [1004] 1 [[3,10,0]]
|
| | | 1402 0 4 [41] 35 [[3,10,0]]
|
| | | 1403 0 7 [] 10 [[3,10,0]]
|
| | | 1404 0 3 [] 10 [[3,10,0]]
|
| | | 1405 0 8 [42] 1000 [[3,10,0]]
|
| | | 1406 0 1 [1005] 1 [[3,10,0]]
|
| | | 1407 0 4 [41] 35 [[3,10,0]]
|
| | | 1408 0 7 [] 10 [[3,10,0]]
|
| | | 1409 0 3 [] 10 [[3,10,0]]
|
| | | 1410 0 8 [42] 1000 [[3,10,0]]
|
| | | 1411 0 1 [1006] 1 [[3,10,0]]
|
| | | 1412 0 4 [41] 35 [[3,10,0]]
|
| | | 1413 0 7 [] 10 [[3,10,0]]
|
| | | 1414 0 3 [] 10 [[3,10,0]]
|
| | | 1415 0 8 [42] 1000 [[3,10,0]]
|
| | | 1416 0 1 [1007] 1 [[3,10,0]]
|
| | | 1417 0 4 [41] 35 [[3,10,0]]
|
| | | 1418 0 7 [] 10 [[3,10,0]]
|
| | | 1419 0 3 [] 10 [[3,10,0]]
|
| | | 1420 0 8 [42] 1000 [[3,10,0]]
|
| | | 1421 0 1 [1008] 1 [[3,10,0]]
|
| | | 1422 0 4 [41] 35 [[3,10,0]]
|
| | | 1423 0 7 [] 10 [[3,10,0]]
|
| | | 1424 0 3 [] 10 [[3,10,0]]
|
| | | 1425 0 8 [42] 1000 [[3,10,0]]
|
| | | 1426 0 1 [1009] 1 [[3,10,0]]
|
| | | 1427 0 4 [41] 35 [[3,10,0]]
|
| | | 1428 0 7 [] 10 [[3,10,0]]
|
| | | 1429 0 3 [] 10 [[3,10,0]]
|
| | | 1430 0 8 [42] 1000 [[3,10,0]]
|
| | | 1431 0 1 [1010] 1 [[3,10,0]]
|
| | | 1432 0 4 [41] 35 [[3,10,0]]
|
| | | 1433 0 7 [] 10 [[3,10,0]]
|
| | | 1434 0 3 [] 10 [[3,10,0]]
|
| | | 1435 0 8 [42] 1000 [[3,10,0]]
|
| | | 1436 0 1 [1101] 1 [[3,10,0]]
|
| | | 1437 0 4 [41] 35 [[3,10,0]]
|
| | | 1438 0 7 [] 10 [[3,10,0]]
|
| | | 1439 0 3 [] 10 [[3,10,0]]
|
| | | 1440 0 8 [42] 1000 [[3,10,0]]
|
| | | 1441 0 1 [1102] 1 [[3,10,0]]
|
| | | 1442 0 4 [41] 35 [[3,10,0]]
|
| | | 1443 0 7 [] 10 [[3,10,0]]
|
| | | 1444 0 3 [] 10 [[3,10,0]]
|
| | | 1445 0 8 [42] 1000 [[3,10,0]]
|
| | | 1446 0 1 [1103] 1 [[3,10,0]]
|
| | | 1447 0 4 [41] 35 [[3,10,0]]
|
| | | 1448 0 7 [] 10 [[3,10,0]]
|
| | | 1449 0 3 [] 10 [[3,10,0]]
|
| | | 1450 0 8 [42] 1000 [[3,10,0]]
|
| | | 1451 0 1 [1104] 1 [[3,10,0]]
|
| | | 1452 0 4 [41] 35 [[3,10,0]]
|
| | | 1453 0 7 [] 10 [[3,10,0]]
|
| | | 1454 0 3 [] 10 [[3,10,0]]
|
| | | 1455 0 8 [42] 1000 [[3,10,0]]
|
| | | 1456 0 1 [1105] 1 [[3,10,0]]
|
| | | 1457 0 4 [41] 35 [[3,10,0]]
|
| | | 1458 0 7 [] 10 [[3,10,0]]
|
| | | 1459 0 3 [] 10 [[3,10,0]]
|
| | | 1460 0 8 [42] 1000 [[3,10,0]]
|
| | | 1461 0 1 [1106] 1 [[3,10,0]]
|
| | | 1462 0 4 [41] 35 [[3,10,0]]
|
| | | 1463 0 7 [] 10 [[3,10,0]]
|
| | | 1464 0 3 [] 10 [[3,10,0]]
|
| | | 1465 0 8 [42] 1000 [[3,10,0]]
|
| | | 1466 0 1 [1107] 1 [[3,10,0]]
|
| | | 1467 0 4 [41] 35 [[3,10,0]]
|
| | | 1468 0 7 [] 10 [[3,10,0]]
|
| | | 1469 0 3 [] 10 [[3,10,0]]
|
| | | 1470 0 8 [42] 1000 [[3,10,0]]
|
| | | 1471 0 1 [1108] 1 [[3,10,0]]
|
| | | 1472 0 4 [41] 35 [[3,10,0]]
|
| | | 1473 0 7 [] 10 [[3,10,0]]
|
| | | 1474 0 3 [] 10 [[3,10,0]]
|
| | | 1475 0 8 [42] 1000 [[3,10,0]]
|
| | | 1476 0 1 [1109] 1 [[3,10,0]]
|
| | | 1477 0 4 [41] 35 [[3,10,0]]
|
| | | 1478 0 7 [] 10 [[3,10,0]]
|
| | | 1479 0 3 [] 10 [[3,10,0]]
|
| | | 1480 0 8 [42] 1000 [[3,10,0]]
|
| | | 1481 0 1 [1110] 1 [[3,10,0]]
|
| | | 1482 0 4 [41] 35 [[3,10,0]]
|
| | | 1483 0 7 [] 10 [[3,10,0]]
|
| | | 1484 0 3 [] 10 [[3,10,0]]
|
| | | 1485 0 8 [42] 1000 [[3,10,0]]
|
| | | 1486 0 1 [1201] 1 [[3,10,0]]
|
| | | 1487 0 4 [41] 35 [[3,10,0]]
|
| | | 1488 0 7 [] 10 [[3,10,0]]
|
| | | 1489 0 3 [] 10 [[3,10,0]]
|
| | | 1490 0 8 [42] 1000 [[3,10,0]]
|
| | | 1491 0 1 [1202] 1 [[3,10,0]]
|
| | | 1492 0 4 [41] 35 [[3,10,0]]
|
| | | 1493 0 7 [] 10 [[3,10,0]]
|
| | | 1494 0 3 [] 10 [[3,10,0]]
|
| | | 1495 0 8 [42] 1000 [[3,10,0]]
|
| | | 1496 0 1 [1203] 1 [[3,10,0]]
|
| | | 1497 0 4 [41] 35 [[3,10,0]]
|
| | | 1498 0 7 [] 10 [[3,10,0]]
|
| | | 1499 0 3 [] 10 [[3,10,0]]
|
| | | 1500 0 8 [42] 1000 [[3,10,0]]
|
| | | 1501 0 1 [1204] 1 [[3,10,0]]
|
| | | 1502 0 4 [41] 35 [[3,10,0]]
|
| | | 1503 0 7 [] 10 [[3,10,0]]
|
| | | 1504 0 3 [] 10 [[3,10,0]]
|
| | | 1505 0 8 [42] 1000 [[3,10,0]]
|
| | | 1506 0 1 [1205] 1 [[3,10,0]]
|
| | | 1507 0 4 [41] 35 [[3,10,0]]
|
| | | 1508 0 7 [] 10 [[3,10,0]]
|
| | | 1509 0 3 [] 10 [[3,10,0]]
|
| | | 1510 0 8 [42] 1000 [[3,10,0]]
|
| | | 1511 0 1 [1206] 1 [[3,10,0]]
|
| | | 1512 0 4 [41] 35 [[3,10,0]]
|
| | | 1513 0 7 [] 10 [[3,10,0]]
|
| | | 1514 0 3 [] 10 [[3,10,0]]
|
| | | 1515 0 8 [42] 1000 [[3,10,0]]
|
| | | 1516 0 1 [1207] 1 [[3,10,0]]
|
| | | 1517 0 4 [41] 35 [[3,10,0]]
|
| | | 1518 0 7 [] 10 [[3,10,0]]
|
| | | 1519 0 3 [] 10 [[3,10,0]]
|
| | | 1520 0 8 [42] 1000 [[3,10,0]]
|
| | | 1521 0 1 [1208] 1 [[3,10,0]]
|
| | | 1522 0 4 [41] 35 [[3,10,0]]
|
| | | 1523 0 7 [] 10 [[3,10,0]]
|
| | | 1524 0 3 [] 10 [[3,10,0]]
|
| | | 1525 0 8 [42] 1000 [[3,10,0]]
|
| | | 1526 0 1 [1209] 1 [[3,10,0]]
|
| | | 1527 0 4 [41] 35 [[3,10,0]]
|
| | | 1528 0 7 [] 10 [[3,10,0]]
|
| | | 1529 0 3 [] 10 [[3,10,0]]
|
| | | 1530 0 8 [42] 1000 [[3,10,0]]
|
| | | 1531 0 1 [1210] 1 [[3,10,0]]
|
| | | 1532 0 4 [41] 35 [[3,10,0]]
|
| | | 1533 0 7 [] 10 [[3,10,0]]
|
| | | 1534 0 3 [] 10 [[3,10,0]]
|
| | | 1535 0 8 [42] 1000 [[3,10,0]]
|
| | | 1536 0 1 [1301] 1 [[3,10,0]]
|
| | | 1537 0 4 [41] 35 [[3,10,0]]
|
| | | 1538 0 7 [] 10 [[3,10,0]]
|
| | | 1539 0 3 [] 10 [[3,10,0]]
|
| | | 1540 0 8 [42] 1000 [[3,10,0]]
|
| | | 1541 0 1 [1302] 1 [[3,10,0]]
|
| | | 1542 0 4 [41] 35 [[3,10,0]]
|
| | | 1543 0 7 [] 10 [[3,10,0]]
|
| | | 1544 0 3 [] 10 [[3,10,0]]
|
| | | 1545 0 8 [42] 1000 [[3,10,0]]
|
| | | 1546 0 1 [1303] 1 [[3,10,0]]
|
| | | 1547 0 4 [41] 35 [[3,10,0]]
|
| | | 1548 0 7 [] 10 [[3,10,0]]
|
| | | 1549 0 3 [] 10 [[3,10,0]]
|
| | | 1550 0 8 [42] 1000 [[3,10,0]]
|
| | | 1551 0 1 [1304] 1 [[3,10,0]]
|
| | | 1552 0 4 [41] 35 [[3,10,0]]
|
| | | 1553 0 7 [] 10 [[3,10,0]]
|
| | | 1554 0 3 [] 10 [[3,10,0]]
|
| | | 1555 0 8 [42] 1000 [[3,10,0]]
|
| | | 1556 0 1 [1305] 1 [[3,10,0]]
|
| | | 1557 0 4 [41] 35 [[3,10,0]]
|
| | | 1558 0 7 [] 10 [[3,10,0]]
|
| | | 1559 0 3 [] 10 [[3,10,0]]
|
| | | 1560 0 8 [42] 1000 [[3,10,0]]
|
| | | 1561 0 1 [1306] 1 [[3,10,0]]
|
| | | 1562 0 4 [41] 35 [[3,10,0]]
|
| | | 1563 0 7 [] 10 [[3,10,0]]
|
| | | 1564 0 3 [] 10 [[3,10,0]]
|
| | | 1565 0 8 [42] 1000 [[3,10,0]]
|
| | | 1566 0 1 [1307] 1 [[3,10,0]]
|
| | | 1567 0 4 [41] 35 [[3,10,0]]
|
| | | 1568 0 7 [] 10 [[3,10,0]]
|
| | | 1569 0 3 [] 10 [[3,10,0]]
|
| | | 1570 0 8 [42] 1000 [[3,10,0]]
|
| | | 1571 0 1 [1308] 1 [[3,10,0]]
|
| | | 1572 0 4 [41] 35 [[3,10,0]]
|
| | | 1573 0 7 [] 10 [[3,10,0]]
|
| | | 1574 0 3 [] 10 [[3,10,0]]
|
| | | 1575 0 8 [42] 1000 [[3,10,0]]
|
| | | 1576 0 1 [1309] 1 [[3,10,0]]
|
| | | 1577 0 4 [41] 35 [[3,10,0]]
|
| | | 1578 0 7 [] 10 [[3,10,0]]
|
| | | 1579 0 3 [] 10 [[3,10,0]]
|
| | | 1580 0 8 [42] 1000 [[3,10,0]]
|
| | | 1581 0 1 [1310] 1 [[3,10,0]]
|
| | | 1582 0 4 [41] 35 [[3,10,0]]
|
| | | 1583 0 7 [] 10 [[3,10,0]]
|
| | | 1584 0 3 [] 10 [[3,10,0]]
|
| | | 1585 0 8 [42] 1000 [[3,10,0]]
|
| | | 1586 0 1 [1401] 1 [[3,10,0]]
|
| | | 1587 0 4 [41] 35 [[3,10,0]]
|
| | | 1588 0 7 [] 10 [[3,10,0]]
|
| | | 1589 0 3 [] 10 [[3,10,0]]
|
| | | 1590 0 8 [42] 1000 [[3,10,0]]
|
| | | 1591 0 1 [1402] 1 [[3,10,0]]
|
| | | 1592 0 4 [41] 35 [[3,10,0]]
|
| | | 1593 0 7 [] 10 [[3,10,0]]
|
| | | 1594 0 3 [] 10 [[3,10,0]]
|
| | | 1595 0 8 [42] 1000 [[3,10,0]]
|
| | | 1596 0 1 [1403] 1 [[3,10,0]]
|
| | | 1597 0 4 [41] 35 [[3,10,0]]
|
| | | 1598 0 7 [] 10 [[3,10,0]]
|
| | | 1599 0 3 [] 10 [[3,10,0]]
|
| | | 1600 0 8 [42] 1000 [[3,10,0]]
|
| | | 1601 0 1 [1404] 1 [[3,10,0]]
|
| | | 1602 0 4 [41] 35 [[3,10,0]]
|
| | | 1603 0 7 [] 10 [[3,10,0]]
|
| | | 1604 0 3 [] 10 [[3,10,0]]
|
| | | 1605 0 8 [42] 1000 [[3,10,0]]
|
| | | 1606 0 1 [1405] 1 [[3,10,0]]
|
| | | 1607 0 4 [41] 35 [[3,10,0]]
|
| | | 1608 0 7 [] 10 [[3,10,0]]
|
| | | 1609 0 3 [] 10 [[3,10,0]]
|
| | | 1610 0 8 [42] 1000 [[3,10,0]]
|
| | | 1611 0 1 [1406] 1 [[3,10,0]]
|
| | | 1612 0 4 [41] 35 [[3,10,0]]
|
| | | 1613 0 7 [] 10 [[3,10,0]]
|
| | | 1614 0 3 [] 10 [[3,10,0]]
|
| | | 1615 0 8 [42] 1000 [[3,10,0]]
|
| | | 1616 0 1 [1407] 1 [[3,10,0]]
|
| | | 1617 0 4 [41] 35 [[3,10,0]]
|
| | | 1618 0 7 [] 10 [[3,10,0]]
|
| | | 1619 0 3 [] 10 [[3,10,0]]
|
| | | 1620 0 8 [42] 1000 [[3,10,0]]
|
| | | 1621 0 1 [1408] 1 [[3,10,0]]
|
| | | 1622 0 4 [41] 35 [[3,10,0]]
|
| | | 1623 0 7 [] 10 [[3,10,0]]
|
| | | 1624 0 3 [] 10 [[3,10,0]]
|
| | | 1625 0 8 [42] 1000 [[3,10,0]]
|
| | | 1626 0 1 [1409] 1 [[3,10,0]]
|
| | | 1627 0 4 [41] 35 [[3,10,0]]
|
| | | 1628 0 7 [] 10 [[3,10,0]]
|
| | | 1629 0 3 [] 10 [[3,10,0]]
|
| | | 1630 0 8 [42] 1000 [[3,10,0]]
|
| | | 1631 0 1 [1410] 1 [[3,10,0]]
|
| | | 1632 0 4 [41] 35 [[3,10,0]]
|
| | | 1633 0 7 [] 10 [[3,10,0]]
|
| | | 1634 0 3 [] 10 [[3,10,0]]
|
| | | 1635 0 8 [42] 1000 [[3,10,0]]
|
| | | 1636 0 1 [1501] 1 [[3,10,0]]
|
| | | 1637 0 4 [41] 35 [[3,10,0]]
|
| | | 1638 0 7 [] 10 [[3,10,0]]
|
| | | 1639 0 3 [] 10 [[3,10,0]]
|
| | | 1640 0 8 [42] 1000 [[3,10,0]]
|
| | | 1641 0 1 [1502] 1 [[3,10,0]]
|
| | | 1642 0 4 [41] 35 [[3,10,0]]
|
| | | 1643 0 7 [] 10 [[3,10,0]]
|
| | | 1644 0 3 [] 10 [[3,10,0]]
|
| | | 1645 0 8 [42] 1000 [[3,10,0]]
|
| | | 1646 0 1 [1503] 1 [[3,10,0]]
|
| | | 1647 0 4 [41] 35 [[3,10,0]]
|
| | | 1648 0 7 [] 10 [[3,10,0]]
|
| | | 1649 0 3 [] 10 [[3,10,0]]
|
| | | 1650 0 8 [42] 1000 [[3,10,0]]
|
| | | 1651 0 1 [1504] 1 [[3,10,0]]
|
| | | 1652 0 4 [41] 35 [[3,10,0]]
|
| | | 1653 0 7 [] 10 [[3,10,0]]
|
| | | 1654 0 3 [] 10 [[3,10,0]]
|
| | | 1655 0 8 [42] 1000 [[3,10,0]]
|
| | | 1656 0 1 [1505] 1 [[3,10,0]]
|
| | | 1657 0 4 [41] 35 [[3,10,0]]
|
| | | 1658 0 7 [] 10 [[3,10,0]]
|
| | | 1659 0 3 [] 10 [[3,10,0]]
|
| | | 1660 0 8 [42] 1000 [[3,10,0]]
|
| | | 1661 0 1 [1506] 1 [[3,10,0]]
|
| | | 1662 0 4 [41] 35 [[3,10,0]]
|
| | | 1663 0 7 [] 10 [[3,10,0]]
|
| | | 1664 0 3 [] 10 [[3,10,0]]
|
| | | 1665 0 8 [42] 1000 [[3,10,0]]
|
| | | 1666 0 1 [1507] 1 [[3,10,0]]
|
| | | 1667 0 4 [41] 35 [[3,10,0]]
|
| | | 1668 0 7 [] 10 [[3,10,0]]
|
| | | 1669 0 3 [] 10 [[3,10,0]]
|
| | | 1670 0 8 [42] 1000 [[3,10,0]]
|
| | | 1671 0 1 [1508] 1 [[3,10,0]]
|
| | | 1672 0 4 [41] 35 [[3,10,0]]
|
| | | 1673 0 7 [] 10 [[3,10,0]]
|
| | | 1674 0 3 [] 10 [[3,10,0]]
|
| | | 1675 0 8 [42] 1000 [[3,10,0]]
|
| | | 1676 0 1 [1509] 1 [[3,10,0]]
|
| | | 1677 0 4 [41] 35 [[3,10,0]]
|
| | | 1678 0 7 [] 10 [[3,10,0]]
|
| | | 1679 0 3 [] 10 [[3,10,0]]
|
| | | 1680 0 8 [42] 1000 [[3,10,0]]
|
| | | 1681 0 1 [1510] 1 [[3,10,0]]
|
| | | 1682 0 4 [41] 35 [[3,10,0]]
|
| | | 1683 0 7 [] 10 [[3,10,0]]
|
| | | 1684 0 3 [] 10 [[3,10,0]]
|
| | | 1685 0 8 [42] 1000 [[3,10,0]]
|
| | | 1686 0 1 [1601] 1 [[3,10,0]]
|
| | | 1687 0 4 [41] 35 [[3,10,0]]
|
| | | 1688 0 7 [] 10 [[3,10,0]]
|
| | | 1689 0 3 [] 10 [[3,10,0]]
|
| | | 1690 0 8 [42] 1000 [[3,10,0]]
|
| | | 1691 0 1 [1602] 1 [[3,10,0]]
|
| | | 1692 0 4 [41] 35 [[3,10,0]]
|
| | | 1693 0 7 [] 10 [[3,10,0]]
|
| | | 1694 0 3 [] 10 [[3,10,0]]
|
| | | 1695 0 8 [42] 1000 [[3,10,0]]
|
| | | 1696 0 1 [1603] 1 [[3,10,0]]
|
| | | 1697 0 4 [41] 35 [[3,10,0]]
|
| | | 1698 0 7 [] 10 [[3,10,0]]
|
| | | 1699 0 3 [] 10 [[3,10,0]]
|
| | | 1700 0 8 [42] 1000 [[3,10,0]]
|
| | | 1701 0 1 [1604] 1 [[3,10,0]]
|
| | | 1702 0 4 [41] 35 [[3,10,0]]
|
| | | 1703 0 7 [] 10 [[3,10,0]]
|
| | | 1704 0 3 [] 10 [[3,10,0]]
|
| | | 1705 0 8 [42] 1000 [[3,10,0]]
|
| | | 1706 0 1 [1605] 1 [[3,10,0]]
|
| | | 1707 0 4 [41] 35 [[3,10,0]]
|
| | | 1708 0 7 [] 10 [[3,10,0]]
|
| | | 1709 0 3 [] 10 [[3,10,0]]
|
| | | 1710 0 8 [42] 1000 [[3,10,0]]
|
| | | 1711 0 1 [1606] 1 [[3,10,0]]
|
| | | 1712 0 4 [41] 35 [[3,10,0]]
|
| | | 1713 0 7 [] 10 [[3,10,0]]
|
| | | 1714 0 3 [] 10 [[3,10,0]]
|
| | | 1715 0 8 [42] 1000 [[3,10,0]]
|
| | | 1716 0 1 [1607] 1 [[3,10,0]]
|
| | | 1717 0 4 [41] 35 [[3,10,0]]
|
| | | 1718 0 7 [] 10 [[3,10,0]]
|
| | | 1719 0 3 [] 10 [[3,10,0]]
|
| | | 1720 0 8 [42] 1000 [[3,10,0]]
|
| | | 1721 0 1 [1608] 1 [[3,10,0]]
|
| | | 1722 0 4 [41] 35 [[3,10,0]]
|
| | | 1723 0 7 [] 10 [[3,10,0]]
|
| | | 1724 0 3 [] 10 [[3,10,0]]
|
| | | 1725 0 8 [42] 1000 [[3,10,0]]
|
| | | 1726 0 1 [1609] 1 [[3,10,0]]
|
| | | 1727 0 4 [41] 35 [[3,10,0]]
|
| | | 1728 0 7 [] 10 [[3,10,0]]
|
| | | 1729 0 3 [] 10 [[3,10,0]]
|
| | | 1730 0 8 [42] 1000 [[3,10,0]]
|
| | | 1731 0 1 [1610] 1 [[3,10,0]]
|
| | | 1732 0 4 [41] 35 [[3,10,0]]
|
| | | 1733 0 7 [] 10 [[3,10,0]]
|
| | | 1734 0 3 [] 10 [[3,10,0]]
|
| | | 1735 0 8 [42] 1000 [[3,10,0]]
|
| | | 1736 0 1 [1701] 1 [[3,10,0]]
|
| | | 1737 0 4 [41] 35 [[3,10,0]]
|
| | | 1738 0 7 [] 10 [[3,10,0]]
|
| | | 1739 0 3 [] 10 [[3,10,0]]
|
| | | 1740 0 8 [42] 1000 [[3,10,0]]
|
| | | 1741 0 1 [1702] 1 [[3,10,0]]
|
| | | 1742 0 4 [41] 35 [[3,10,0]]
|
| | | 1743 0 7 [] 10 [[3,10,0]]
|
| | | 1744 0 3 [] 10 [[3,10,0]]
|
| | | 1745 0 8 [42] 1000 [[3,10,0]]
|
| | | 1746 0 1 [1703] 1 [[3,10,0]]
|
| | | 1747 0 4 [41] 35 [[3,10,0]]
|
| | | 1748 0 7 [] 10 [[3,10,0]]
|
| | | 1749 0 3 [] 10 [[3,10,0]]
|
| | | 1750 0 8 [42] 1000 [[3,10,0]]
|
| | | 1751 0 1 [1704] 1 [[3,10,0]]
|
| | | 1752 0 4 [41] 35 [[3,10,0]]
|
| | | 1753 0 7 [] 10 [[3,10,0]]
|
| | | 1754 0 3 [] 10 [[3,10,0]]
|
| | | 1755 0 8 [42] 1000 [[3,10,0]]
|
| | | 1756 0 1 [1705] 1 [[3,10,0]]
|
| | | 1757 0 4 [41] 35 [[3,10,0]]
|
| | | 1758 0 7 [] 10 [[3,10,0]]
|
| | | 1759 0 3 [] 10 [[3,10,0]]
|
| | | 1760 0 8 [42] 1000 [[3,10,0]]
|
| | | 1761 0 1 [1706] 1 [[3,10,0]]
|
| | | 1762 0 4 [41] 35 [[3,10,0]]
|
| | | 1763 0 7 [] 10 [[3,10,0]]
|
| | | 1764 0 3 [] 10 [[3,10,0]]
|
| | | 1765 0 8 [42] 1000 [[3,10,0]]
|
| | | 1766 0 1 [1707] 1 [[3,10,0]]
|
| | | 1767 0 4 [41] 35 [[3,10,0]]
|
| | | 1768 0 7 [] 10 [[3,10,0]]
|
| | | 1769 0 3 [] 10 [[3,10,0]]
|
| | | 1770 0 8 [42] 1000 [[3,10,0]]
|
| | | 1771 0 1 [1708] 1 [[3,10,0]]
|
| | | 1772 0 4 [41] 35 [[3,10,0]]
|
| | | 1773 0 7 [] 10 [[3,10,0]]
|
| | | 1774 0 3 [] 10 [[3,10,0]]
|
| | | 1775 0 8 [42] 1000 [[3,10,0]]
|
| | | 1776 0 1 [1709] 1 [[3,10,0]]
|
| | | 1777 0 4 [41] 35 [[3,10,0]]
|
| | | 1778 0 7 [] 10 [[3,10,0]]
|
| | | 1779 0 3 [] 10 [[3,10,0]]
|
| | | 1780 0 8 [42] 1000 [[3,10,0]]
|
| | | 1781 0 1 [1710] 1 [[3,10,0]]
|
| | | 1782 0 4 [41] 35 [[3,10,0]]
|
| | | 1783 0 7 [] 10 [[3,10,0]]
|
| | | 1784 0 3 [] 10 [[3,10,0]]
|
| | | 1785 0 8 [42] 1000 [[3,10,0]]
|
| | | 1786 0 1 [1801] 1 [[3,10,0]]
|
| | | 1787 0 4 [41] 35 [[3,10,0]]
|
| | | 1788 0 7 [] 10 [[3,10,0]]
|
| | | 1789 0 3 [] 10 [[3,10,0]]
|
| | | 1790 0 8 [42] 1000 [[3,10,0]]
|
| | | 1791 0 1 [1802] 1 [[3,10,0]]
|
| | | 1792 0 4 [41] 35 [[3,10,0]]
|
| | | 1793 0 7 [] 10 [[3,10,0]]
|
| | | 1794 0 3 [] 10 [[3,10,0]]
|
| | | 1795 0 8 [42] 1000 [[3,10,0]]
|
| | | 1796 0 1 [1803] 1 [[3,10,0]]
|
| | | 1797 0 4 [41] 35 [[3,10,0]]
|
| | | 1798 0 7 [] 10 [[3,10,0]]
|
| | | 1799 0 3 [] 10 [[3,10,0]]
|
| | | 1800 0 8 [42] 1000 [[3,10,0]]
|
| | | 1801 0 1 [1804] 1 [[3,10,0]]
|
| | | 1802 0 4 [41] 35 [[3,10,0]]
|
| | | 1803 0 7 [] 10 [[3,10,0]]
|
| | | 1804 0 3 [] 10 [[3,10,0]]
|
| | | 1805 0 8 [42] 1000 [[3,10,0]]
|
| | | 1806 0 1 [1805] 1 [[3,10,0]]
|
| | | 1807 0 4 [41] 35 [[3,10,0]]
|
| | | 1808 0 7 [] 10 [[3,10,0]]
|
| | | 1809 0 3 [] 10 [[3,10,0]]
|
| | | 1810 0 8 [42] 1000 [[3,10,0]]
|
| | | 1811 0 1 [1806] 1 [[3,10,0]]
|
| | | 1812 0 4 [41] 35 [[3,10,0]]
|
| | | 1813 0 7 [] 10 [[3,10,0]]
|
| | | 1814 0 3 [] 10 [[3,10,0]]
|
| | | 1815 0 8 [42] 1000 [[3,10,0]]
|
| | | 1816 0 1 [1807] 1 [[3,10,0]]
|
| | | 1817 0 4 [41] 35 [[3,10,0]]
|
| | | 1818 0 7 [] 10 [[3,10,0]]
|
| | | 1819 0 3 [] 10 [[3,10,0]]
|
| | | 1820 0 8 [42] 1000 [[3,10,0]]
|
| | | 1821 0 1 [1808] 1 [[3,10,0]]
|
| | | 1822 0 4 [41] 35 [[3,10,0]]
|
| | | 1823 0 7 [] 10 [[3,10,0]]
|
| | | 1824 0 3 [] 10 [[3,10,0]]
|
| | | 1825 0 8 [42] 1000 [[3,10,0]]
|
| | | 1826 0 1 [1809] 1 [[3,10,0]]
|
| | | 1827 0 4 [41] 35 [[3,10,0]]
|
| | | 1828 0 7 [] 10 [[3,10,0]]
|
| | | 1829 0 3 [] 10 [[3,10,0]]
|
| | | 1830 0 8 [42] 1000 [[3,10,0]]
|
| | | 1831 0 1 [1810] 1 [[3,10,0]]
|
| | | 1832 0 4 [41] 35 [[3,10,0]]
|
| | | 1833 0 7 [] 10 [[3,10,0]]
|
| | | 1834 0 3 [] 10 [[3,10,0]]
|
| | | 1835 0 8 [42] 1000 [[3,10,0]]
|
| | | 1836 0 1 [1901] 1 [[3,10,0]]
|
| | | 1837 0 4 [41] 35 [[3,10,0]]
|
| | | 1838 0 7 [] 10 [[3,10,0]]
|
| | | 1839 0 3 [] 10 [[3,10,0]]
|
| | | 1840 0 8 [42] 1000 [[3,10,0]]
|
| | | 1841 0 1 [1902] 1 [[3,10,0]]
|
| | | 1842 0 4 [41] 35 [[3,10,0]]
|
| | | 1843 0 7 [] 10 [[3,10,0]]
|
| | | 1844 0 3 [] 10 [[3,10,0]]
|
| | | 1845 0 8 [42] 1000 [[3,10,0]]
|
| | | 1846 0 1 [1903] 1 [[3,10,0]]
|
| | | 1847 0 4 [41] 35 [[3,10,0]]
|
| | | 1848 0 7 [] 10 [[3,10,0]]
|
| | | 1849 0 3 [] 10 [[3,10,0]]
|
| | | 1850 0 8 [42] 1000 [[3,10,0]]
|
| | | 1851 0 1 [1904] 1 [[3,10,0]]
|
| | | 1852 0 4 [41] 35 [[3,10,0]]
|
| | | 1853 0 7 [] 10 [[3,10,0]]
|
| | | 1854 0 3 [] 10 [[3,10,0]]
|
| | | 1855 0 8 [42] 1000 [[3,10,0]]
|
| | | 1856 0 1 [1905] 1 [[3,10,0]]
|
| | | 1857 0 4 [41] 35 [[3,10,0]]
|
| | | 1858 0 7 [] 10 [[3,10,0]]
|
| | | 1859 0 3 [] 10 [[3,10,0]]
|
| | | 1860 0 8 [42] 1000 [[3,10,0]]
|
| | | 1861 0 1 [1906] 1 [[3,10,0]]
|
| | | 1862 0 4 [41] 35 [[3,10,0]]
|
| | | 1863 0 7 [] 10 [[3,10,0]]
|
| | | 1864 0 3 [] 10 [[3,10,0]]
|
| | | 1865 0 8 [42] 1000 [[3,10,0]]
|
| | | 1866 0 1 [1907] 1 [[3,10,0]]
|
| | | 1867 0 4 [41] 35 [[3,10,0]]
|
| | | 1868 0 7 [] 10 [[3,10,0]]
|
| | | 1869 0 3 [] 10 [[3,10,0]]
|
| | | 1870 0 8 [42] 1000 [[3,10,0]]
|
| | | 1871 0 1 [1908] 1 [[3,10,0]]
|
| | | 1872 0 4 [41] 35 [[3,10,0]]
|
| | | 1873 0 7 [] 10 [[3,10,0]]
|
| | | 1874 0 3 [] 10 [[3,10,0]]
|
| | | 1875 0 8 [42] 1000 [[3,10,0]]
|
| | | 1876 0 1 [1909] 1 [[3,10,0]]
|
| | | 1877 0 4 [41] 35 [[3,10,0]]
|
| | | 1878 0 7 [] 10 [[3,10,0]]
|
| | | 1879 0 3 [] 10 [[3,10,0]]
|
| | | 1880 0 8 [42] 1000 [[3,10,0]]
|
| | | 1881 0 1 [1910] 1 [[3,10,0]]
|
| | | 1882 0 4 [41] 35 [[3,10,0]]
|
| | | 1883 0 7 [] 10 [[3,10,0]]
|
| | | 1884 0 3 [] 10 [[3,10,0]]
|
| | | 1885 0 8 [42] 1000 [[3,10,0]]
|
| | | 1886 0 1 [2001] 1 [[3,10,0]]
|
| | | 1887 0 4 [41] 35 [[3,10,0]]
|
| | | 1888 0 7 [] 10 [[3,10,0]]
|
| | | 1889 0 3 [] 10 [[3,10,0]]
|
| | | 1890 0 8 [42] 1000 [[3,10,0]]
|
| | | 1891 0 1 [2002] 1 [[3,10,0]]
|
| | | 1892 0 4 [41] 35 [[3,10,0]]
|
| | | 1893 0 7 [] 10 [[3,10,0]]
|
| | | 1894 0 3 [] 10 [[3,10,0]]
|
| | | 1895 0 8 [42] 1000 [[3,10,0]]
|
| | | 1896 0 1 [2003] 1 [[3,10,0]]
|
| | | 1897 0 4 [41] 35 [[3,10,0]]
|
| | | 1898 0 7 [] 10 [[3,10,0]]
|
| | | 1899 0 3 [] 10 [[3,10,0]]
|
| | | 1900 0 8 [42] 1000 [[3,10,0]]
|
| | | 1901 0 1 [2004] 1 [[3,10,0]]
|
| | | 1902 0 4 [41] 35 [[3,10,0]]
|
| | | 1903 0 7 [] 10 [[3,10,0]]
|
| | | 1904 0 3 [] 10 [[3,10,0]]
|
| | | 1905 0 8 [42] 1000 [[3,10,0]]
|
| | | 1906 0 1 [2005] 1 [[3,10,0]]
|
| | | 1907 0 4 [41] 35 [[3,10,0]]
|
| | | 1908 0 7 [] 10 [[3,10,0]]
|
| | | 1909 0 3 [] 10 [[3,10,0]]
|
| | | 1910 0 8 [42] 1000 [[3,10,0]]
|
| | | 1911 0 1 [2006] 1 [[3,10,0]]
|
| | | 1912 0 4 [41] 35 [[3,10,0]]
|
| | | 1913 0 7 [] 10 [[3,10,0]]
|
| | | 1914 0 3 [] 10 [[3,10,0]]
|
| | | 1915 0 8 [42] 1000 [[3,10,0]]
|
| | | 1916 0 1 [2007] 1 [[3,10,0]]
|
| | | 1917 0 4 [41] 35 [[3,10,0]]
|
| | | 1918 0 7 [] 10 [[3,10,0]]
|
| | | 1919 0 3 [] 10 [[3,10,0]]
|
| | | 1920 0 8 [42] 1000 [[3,10,0]]
|
| | | 1921 0 1 [2008] 1 [[3,10,0]]
|
| | | 1922 0 4 [41] 35 [[3,10,0]]
|
| | | 1923 0 7 [] 10 [[3,10,0]]
|
| | | 1924 0 3 [] 10 [[3,10,0]]
|
| | | 1925 0 8 [42] 1000 [[3,10,0]]
|
| | | 1926 0 1 [2009] 1 [[3,10,0]]
|
| | | 1927 0 4 [41] 35 [[3,10,0]]
|
| | | 1928 0 7 [] 10 [[3,10,0]]
|
| | | 1929 0 3 [] 10 [[3,10,0]]
|
| | | 1930 0 8 [42] 1000 [[3,10,0]]
|
| | | 1931 0 1 [2010] 1 [[3,10,0]]
|
| | | 1932 0 4 [41] 35 [[3,10,0]]
|
| | | 1933 0 7 [] 10 [[3,10,0]]
|
| | | 1934 0 3 [] 10 [[3,10,0]]
|
| | | 1935 0 8 [42] 1000 [[3,10,0]]
|
| | | 1936 0 1 [2101] 1 [[3,10,0]]
|
| | | 1937 0 4 [41] 35 [[3,10,0]]
|
| | | 1938 0 7 [] 10 [[3,10,0]]
|
| | | 1939 0 3 [] 10 [[3,10,0]]
|
| | | 1940 0 8 [42] 1000 [[3,10,0]]
|
| | | 1941 0 1 [2102] 1 [[3,10,0]]
|
| | | 1942 0 4 [41] 35 [[3,10,0]]
|
| | | 1943 0 7 [] 10 [[3,10,0]]
|
| | | 1944 0 3 [] 10 [[3,10,0]]
|
| | | 1945 0 8 [42] 1000 [[3,10,0]]
|
| | | 1946 0 1 [2103] 1 [[3,10,0]]
|
| | | 1947 0 4 [41] 35 [[3,10,0]]
|
| | | 1948 0 7 [] 10 [[3,10,0]]
|
| | | 1949 0 3 [] 10 [[3,10,0]]
|
| | | 1950 0 8 [42] 1000 [[3,10,0]]
|
| | | 1951 0 1 [2104] 1 [[3,10,0]]
|
| | | 1952 0 4 [41] 35 [[3,10,0]]
|
| | | 1953 0 7 [] 10 [[3,10,0]]
|
| | | 1954 0 3 [] 10 [[3,10,0]]
|
| | | 1955 0 8 [42] 1000 [[3,10,0]]
|
| | | 1956 0 1 [2105] 1 [[3,10,0]]
|
| | | 1957 0 4 [41] 35 [[3,10,0]]
|
| | | 1958 0 7 [] 10 [[3,10,0]]
|
| | | 1959 0 3 [] 10 [[3,10,0]]
|
| | | 1960 0 8 [42] 1000 [[3,10,0]]
|
| | | 1961 0 1 [2106] 1 [[3,10,0]]
|
| | | 1962 0 4 [41] 35 [[3,10,0]]
|
| | | 1963 0 7 [] 10 [[3,10,0]]
|
| | | 1964 0 3 [] 10 [[3,10,0]]
|
| | | 1965 0 8 [42] 1000 [[3,10,0]]
|
| | | 1966 0 1 [2107] 1 [[3,10,0]]
|
| | | 1967 0 4 [41] 35 [[3,10,0]]
|
| | | 1968 0 7 [] 10 [[3,10,0]]
|
| | | 1969 0 3 [] 10 [[3,10,0]]
|
| | | 1970 0 8 [42] 1000 [[3,10,0]]
|
| | | 1971 0 1 [2108] 1 [[3,10,0]]
|
| | | 1972 0 4 [41] 35 [[3,10,0]]
|
| | | 1973 0 7 [] 10 [[3,10,0]]
|
| | | 1974 0 3 [] 10 [[3,10,0]]
|
| | | 1975 0 8 [42] 1000 [[3,10,0]]
|
| | | 1976 0 1 [2109] 1 [[3,10,0]]
|
| | | 1977 0 4 [41] 35 [[3,10,0]]
|
| | | 1978 0 7 [] 10 [[3,10,0]]
|
| | | 1979 0 3 [] 10 [[3,10,0]]
|
| | | 1980 0 8 [42] 1000 [[3,10,0]]
|
| | | 1981 0 1 [2110] 1 [[3,10,0]]
|
| | | 1982 0 4 [41] 35 [[3,10,0]]
|
| | | 1983 0 7 [] 10 [[3,10,0]]
|
| | | 1984 0 3 [] 10 [[3,10,0]]
|
| | | 1985 0 8 [42] 1000 [[3,10,0]]
|
| | | 1986 0 1 [2201] 1 [[3,10,0]]
|
| | | 1987 0 4 [41] 35 [[3,10,0]]
|
| | | 1988 0 7 [] 10 [[3,10,0]]
|
| | | 1989 0 3 [] 10 [[3,10,0]]
|
| | | 1990 0 8 [42] 1000 [[3,10,0]]
|
| | | 1991 0 1 [2202] 1 [[3,10,0]]
|
| | | 1992 0 4 [41] 35 [[3,10,0]]
|
| | | 1993 0 7 [] 10 [[3,10,0]]
|
| | | 1994 0 3 [] 10 [[3,10,0]]
|
| | | 1995 0 8 [42] 1000 [[3,10,0]]
|
| | | 1996 0 1 [2203] 1 [[3,10,0]]
|
| | | 1997 0 4 [41] 35 [[3,10,0]]
|
| | | 1998 0 7 [] 10 [[3,10,0]]
|
| | | 1999 0 3 [] 10 [[3,10,0]]
|
| | | 2000 0 8 [42] 1000 [[3,10,0]]
|
| | | 2001 0 1 [2204] 1 [[3,10,0]]
|
| | | 2002 0 4 [41] 35 [[3,10,0]]
|
| | | 2003 0 7 [] 10 [[3,10,0]]
|
| | | 2004 0 3 [] 10 [[3,10,0]]
|
| | | 2005 0 8 [42] 1000 [[3,10,0]]
|
| | | 2006 0 1 [2205] 1 [[3,10,0]]
|
| | | 2007 0 4 [41] 35 [[3,10,0]]
|
| | | 2008 0 7 [] 10 [[3,10,0]]
|
| | | 2009 0 3 [] 10 [[3,10,0]]
|
| | | 2010 0 8 [42] 1000 [[3,10,0]]
|
| | | 2011 0 1 [2206] 1 [[3,10,0]]
|
| | | 2012 0 4 [41] 35 [[3,10,0]]
|
| | | 2013 0 7 [] 10 [[3,10,0]]
|
| | | 2014 0 3 [] 10 [[3,10,0]]
|
| | | 2015 0 8 [42] 1000 [[3,10,0]]
|
| | | 2016 0 1 [2207] 1 [[3,10,0]]
|
| | | 2017 0 4 [41] 35 [[3,10,0]]
|
| | | 2018 0 7 [] 10 [[3,10,0]]
|
| | | 2019 0 3 [] 10 [[3,10,0]]
|
| | | 2020 0 8 [42] 1000 [[3,10,0]]
|
| | | 2021 0 1 [2208] 1 [[3,10,0]]
|
| | | 2022 0 4 [41] 35 [[3,10,0]]
|
| | | 2023 0 7 [] 10 [[3,10,0]]
|
| | | 2024 0 3 [] 10 [[3,10,0]]
|
| | | 2025 0 8 [42] 1000 [[3,10,0]]
|
| | | 2026 0 1 [2209] 1 [[3,10,0]]
|
| | | 2027 0 4 [41] 35 [[3,10,0]]
|
| | | 2028 0 7 [] 10 [[3,10,0]]
|
| | | 2029 0 3 [] 10 [[3,10,0]]
|
| | | 2030 0 8 [42] 1000 [[3,10,0]]
|
| | | 2031 0 1 [2210] 1 [[3,10,0]]
|
| | | 2032 0 4 [41] 35 [[3,10,0]]
|
| | | 2033 0 7 [] 10 [[3,10,0]]
|
| | | 2034 0 3 [] 10 [[3,10,0]]
|
| | | 2035 0 8 [42] 1000 [[3,10,0]]
|
| | | 2036 0 1 [2301] 1 [[3,10,0]]
|
| | | 2037 0 4 [41] 35 [[3,10,0]]
|
| | | 2038 0 7 [] 10 [[3,10,0]]
|
| | | 2039 0 3 [] 10 [[3,10,0]]
|
| | | 2040 0 8 [42] 1000 [[3,10,0]]
|
| | | 2041 0 1 [2302] 1 [[3,10,0]]
|
| | | 2042 0 4 [41] 35 [[3,10,0]]
|
| | | 2043 0 7 [] 10 [[3,10,0]]
|
| | | 2044 0 3 [] 10 [[3,10,0]]
|
| | | 2045 0 8 [42] 1000 [[3,10,0]]
|
| | | 2046 0 1 [2303] 1 [[3,10,0]]
|
| | | 2047 0 4 [41] 35 [[3,10,0]]
|
| | | 2048 0 7 [] 10 [[3,10,0]]
|
| | | 2049 0 3 [] 10 [[3,10,0]]
|
| | | 2050 0 8 [42] 1000 [[3,10,0]]
|
| | | 2051 0 1 [2304] 1 [[3,10,0]]
|
| | | 2052 0 4 [41] 35 [[3,10,0]]
|
| | | 2053 0 7 [] 10 [[3,10,0]]
|
| | | 2054 0 3 [] 10 [[3,10,0]]
|
| | | 2055 0 8 [42] 1000 [[3,10,0]]
|
| | | 2056 0 1 [2305] 1 [[3,10,0]]
|
| | | 2057 0 4 [41] 35 [[3,10,0]]
|
| | | 2058 0 7 [] 10 [[3,10,0]]
|
| | | 2059 0 3 [] 10 [[3,10,0]]
|
| | | 2060 0 8 [42] 1000 [[3,10,0]]
|
| | | 2061 0 1 [2306] 1 [[3,10,0]]
|
| | | 2062 0 4 [41] 35 [[3,10,0]]
|
| | | 2063 0 7 [] 10 [[3,10,0]]
|
| | | 2064 0 3 [] 10 [[3,10,0]]
|
| | | 2065 0 8 [42] 1000 [[3,10,0]]
|
| | | 2066 0 1 [2307] 1 [[3,10,0]]
|
| | | 2067 0 4 [41] 35 [[3,10,0]]
|
| | | 2068 0 7 [] 10 [[3,10,0]]
|
| | | 2069 0 3 [] 10 [[3,10,0]]
|
| | | 2070 0 8 [42] 1000 [[3,10,0]]
|
| | | 2071 0 1 [2308] 1 [[3,10,0]]
|
| | | 2072 0 4 [41] 35 [[3,10,0]]
|
| | | 2073 0 7 [] 10 [[3,10,0]]
|
| | | 2074 0 3 [] 10 [[3,10,0]]
|
| | | 2075 0 8 [42] 1000 [[3,10,0]]
|
| | | 2076 0 1 [2309] 1 [[3,10,0]]
|
| | | 2077 0 4 [41] 35 [[3,10,0]]
|
| | | 2078 0 7 [] 10 [[3,10,0]]
|
| | | 2079 0 3 [] 10 [[3,10,0]]
|
| | | 2080 0 8 [42] 1000 [[3,10,0]]
|
| | | 2081 0 1 [2310] 1 [[3,10,0]]
|
| | | 2082 0 4 [41] 35 [[3,10,0]]
|
| | | 2083 0 7 [] 10 [[3,10,0]]
|
| | | 2084 0 3 [] 10 [[3,10,0]]
|
| | | 2085 0 8 [42] 1000 [[3,10,0]]
|
| | | 2086 0 1 [2401] 1 [[3,10,0]]
|
| | | 2087 0 4 [41] 35 [[3,10,0]]
|
| | | 2088 0 7 [] 10 [[3,10,0]]
|
| | | 2089 0 3 [] 10 [[3,10,0]]
|
| | | 2090 0 8 [42] 1000 [[3,10,0]]
|
| | | 2091 0 1 [2402] 1 [[3,10,0]]
|
| | | 2092 0 4 [41] 35 [[3,10,0]]
|
| | | 2093 0 7 [] 10 [[3,10,0]]
|
| | | 2094 0 3 [] 10 [[3,10,0]]
|
| | | 2095 0 8 [42] 1000 [[3,10,0]]
|
| | | 2096 0 1 [2403] 1 [[3,10,0]]
|
| | | 2097 0 4 [41] 35 [[3,10,0]]
|
| | | 2098 0 7 [] 10 [[3,10,0]]
|
| | | 2099 0 3 [] 10 [[3,10,0]]
|
| | | 2100 0 8 [42] 1000 [[3,10,0]]
|
| | | 2101 0 1 [2404] 1 [[3,10,0]]
|
| | | 2102 0 4 [41] 35 [[3,10,0]]
|
| | | 2103 0 7 [] 10 [[3,10,0]]
|
| | | 2104 0 3 [] 10 [[3,10,0]]
|
| | | 2105 0 8 [42] 1000 [[3,10,0]]
|
| | | 2106 0 1 [2405] 1 [[3,10,0]]
|
| | | 2107 0 4 [41] 35 [[3,10,0]]
|
| | | 2108 0 7 [] 10 [[3,10,0]]
|
| | | 2109 0 3 [] 10 [[3,10,0]]
|
| | | 2110 0 8 [42] 1000 [[3,10,0]]
|
| | | 2111 0 1 [2406] 1 [[3,10,0]]
|
| | | 2112 0 4 [41] 35 [[3,10,0]]
|
| | | 2113 0 7 [] 10 [[3,10,0]]
|
| | | 2114 0 3 [] 10 [[3,10,0]]
|
| | | 2115 0 8 [42] 1000 [[3,10,0]]
|
| | | 2116 0 1 [2407] 1 [[3,10,0]]
|
| | | 2117 0 4 [41] 35 [[3,10,0]]
|
| | | 2118 0 7 [] 10 [[3,10,0]]
|
| | | 2119 0 3 [] 10 [[3,10,0]]
|
| | | 2120 0 8 [42] 1000 [[3,10,0]]
|
| | | 2121 0 1 [2408] 1 [[3,10,0]]
|
| | | 2122 0 4 [41] 35 [[3,10,0]]
|
| | | 2123 0 7 [] 10 [[3,10,0]]
|
| | | 2124 0 3 [] 10 [[3,10,0]]
|
| | | 2125 0 8 [42] 1000 [[3,10,0]]
|
| | | 2126 0 1 [2409] 1 [[3,10,0]]
|
| | | 2127 0 4 [41] 35 [[3,10,0]]
|
| | | 2128 0 7 [] 10 [[3,10,0]]
|
| | | 2129 0 3 [] 10 [[3,10,0]]
|
| | | 2130 0 8 [42] 1000 [[3,10,0]]
|
| | | 2131 0 1 [2410] 1 [[3,10,0]]
|
| | | 2132 0 4 [41] 35 [[3,10,0]]
|
| | | 2133 0 7 [] 10 [[3,10,0]]
|
| | | 2134 0 3 [] 10 [[3,10,0]]
|
| | | 2135 0 8 [42] 1000 [[3,10,0]]
|
| | | 2136 0 1 [2501] 1 [[3,10,0]]
|
| | | 2137 0 4 [41] 35 [[3,10,0]]
|
| | | 2138 0 7 [] 10 [[3,10,0]]
|
| | | 2139 0 3 [] 10 [[3,10,0]]
|
| | | 2140 0 8 [42] 1000 [[3,10,0]]
|
| | | 2141 0 1 [2502] 1 [[3,10,0]]
|
| | | 2142 0 4 [41] 35 [[3,10,0]]
|
| | | 2143 0 7 [] 10 [[3,10,0]]
|
| | | 2144 0 3 [] 10 [[3,10,0]]
|
| | | 2145 0 8 [42] 1000 [[3,10,0]]
|
| | | 2146 0 1 [2503] 1 [[3,10,0]]
|
| | | 2147 0 4 [41] 35 [[3,10,0]]
|
| | | 2148 0 7 [] 10 [[3,10,0]]
|
| | | 2149 0 3 [] 10 [[3,10,0]]
|
| | | 2150 0 8 [42] 1000 [[3,10,0]]
|
| | | 2151 0 1 [2504] 1 [[3,10,0]]
|
| | | 2152 0 4 [41] 35 [[3,10,0]]
|
| | | 2153 0 7 [] 10 [[3,10,0]]
|
| | | 2154 0 3 [] 10 [[3,10,0]]
|
| | | 2155 0 8 [42] 1000 [[3,10,0]]
|
| | | 2156 0 1 [2505] 1 [[3,10,0]]
|
| | | 2157 0 4 [41] 35 [[3,10,0]]
|
| | | 2158 0 7 [] 10 [[3,10,0]]
|
| | | 2159 0 3 [] 10 [[3,10,0]]
|
| | | 2160 0 8 [42] 1000 [[3,10,0]]
|
| | | 2161 0 1 [2506] 1 [[3,10,0]]
|
| | | 2162 0 4 [41] 35 [[3,10,0]]
|
| | | 2163 0 7 [] 10 [[3,10,0]]
|
| | | 2164 0 3 [] 10 [[3,10,0]]
|
| | | 2165 0 8 [42] 1000 [[3,10,0]]
|
| | | 2166 0 1 [2507] 1 [[3,10,0]]
|
| | | 2167 0 4 [41] 35 [[3,10,0]]
|
| | | 2168 0 7 [] 10 [[3,10,0]]
|
| | | 2169 0 3 [] 10 [[3,10,0]]
|
| | | 2170 0 8 [42] 1000 [[3,10,0]]
|
| | | 2171 0 1 [2508] 1 [[3,10,0]]
|
| | | 2172 0 4 [41] 35 [[3,10,0]]
|
| | | 2173 0 7 [] 10 [[3,10,0]]
|
| | | 2174 0 3 [] 10 [[3,10,0]]
|
| | | 2175 0 8 [42] 1000 [[3,10,0]]
|
| | | 2176 0 1 [2509] 1 [[3,10,0]]
|
| | | 2177 0 4 [41] 35 [[3,10,0]]
|
| | | 2178 0 7 [] 10 [[3,10,0]]
|
| | | 2179 0 3 [] 10 [[3,10,0]]
|
| | | 2180 0 8 [42] 1000 [[3,10,0]]
|
| | | 2181 0 1 [2510] 1 [[3,10,0]]
|
| | | 2182 0 4 [41] 35 [[3,10,0]]
|
| | | 2183 0 7 [] 10 [[3,10,0]]
|
| | | 2184 0 3 [] 10 [[3,10,0]]
|
| | | 2185 0 8 [42] 1000 [[3,10,0]]
|
| | | 2186 0 1 [2601] 1 [[3,10,0]]
|
| | | 2187 0 4 [41] 35 [[3,10,0]]
|
| | | 2188 0 7 [] 10 [[3,10,0]]
|
| | | 2189 0 3 [] 10 [[3,10,0]]
|
| | | 2190 0 8 [42] 1000 [[3,10,0]]
|
| | | 2191 0 1 [2602] 1 [[3,10,0]]
|
| | | 2192 0 4 [41] 35 [[3,10,0]]
|
| | | 2193 0 7 [] 10 [[3,10,0]]
|
| | | 2194 0 3 [] 10 [[3,10,0]]
|
| | | 2195 0 8 [42] 1000 [[3,10,0]]
|
| | | 2196 0 1 [2603] 1 [[3,10,0]]
|
| | | 2197 0 4 [41] 35 [[3,10,0]]
|
| | | 2198 0 7 [] 10 [[3,10,0]]
|
| | | 2199 0 3 [] 10 [[3,10,0]]
|
| | | 2200 0 8 [42] 1000 [[3,10,0]]
|
| | | 2201 0 1 [2604] 1 [[3,10,0]]
|
| | | 2202 0 4 [41] 35 [[3,10,0]]
|
| | | 2203 0 7 [] 10 [[3,10,0]]
|
| | | 2204 0 3 [] 10 [[3,10,0]]
|
| | | 2205 0 8 [42] 1000 [[3,10,0]]
|
| | | 2206 0 1 [2605] 1 [[3,10,0]]
|
| | | 2207 0 4 [41] 35 [[3,10,0]]
|
| | | 2208 0 7 [] 10 [[3,10,0]]
|
| | | 2209 0 3 [] 10 [[3,10,0]]
|
| | | 2210 0 8 [42] 1000 [[3,10,0]]
|
| | | 2211 0 1 [2606] 1 [[3,10,0]]
|
| | | 2212 0 4 [41] 35 [[3,10,0]]
|
| | | 2213 0 7 [] 10 [[3,10,0]]
|
| | | 2214 0 3 [] 10 [[3,10,0]]
|
| | | 2215 0 8 [42] 1000 [[3,10,0]]
|
| | | 2216 0 1 [2607] 1 [[3,10,0]]
|
| | | 2217 0 4 [41] 35 [[3,10,0]]
|
| | | 2218 0 7 [] 10 [[3,10,0]]
|
| | | 2219 0 3 [] 10 [[3,10,0]]
|
| | | 2220 0 8 [42] 1000 [[3,10,0]]
|
| | | 2221 0 1 [2608] 1 [[3,10,0]]
|
| | | 2222 0 4 [41] 35 [[3,10,0]]
|
| | | 2223 0 7 [] 10 [[3,10,0]]
|
| | | 2224 0 3 [] 10 [[3,10,0]]
|
| | | 2225 0 8 [42] 1000 [[3,10,0]]
|
| | | 2226 0 1 [2609] 1 [[3,10,0]]
|
| | | 2227 0 4 [41] 35 [[3,10,0]]
|
| | | 2228 0 7 [] 10 [[3,10,0]]
|
| | | 2229 0 3 [] 10 [[3,10,0]]
|
| | | 2230 0 8 [42] 1000 [[3,10,0]]
|
| | | 2231 0 1 [2610] 1 [[3,10,0]]
|
| | | 2232 0 4 [41] 35 [[3,10,0]]
|
| | | 2233 0 7 [] 10 [[3,10,0]]
|
| | | 2234 0 3 [] 10 [[3,10,0]]
|
| | | 2235 0 8 [42] 1000 [[3,10,0]]
|
| | | 2236 0 1 [2701] 1 [[3,10,0]]
|
| | | 2237 0 4 [41] 35 [[3,10,0]]
|
| | | 2238 0 7 [] 10 [[3,10,0]]
|
| | | 2239 0 3 [] 10 [[3,10,0]]
|
| | | 2240 0 8 [42] 1000 [[3,10,0]]
|
| | | 2241 0 1 [2702] 1 [[3,10,0]]
|
| | | 2242 0 4 [41] 35 [[3,10,0]]
|
| | | 2243 0 7 [] 10 [[3,10,0]]
|
| | | 2244 0 3 [] 10 [[3,10,0]]
|
| | | 2245 0 8 [42] 1000 [[3,10,0]]
|
| | | 2246 0 1 [2703] 1 [[3,10,0]]
|
| | | 2247 0 4 [41] 35 [[3,10,0]]
|
| | | 2248 0 7 [] 10 [[3,10,0]]
|
| | | 2249 0 3 [] 10 [[3,10,0]]
|
| | | 2250 0 8 [42] 1000 [[3,10,0]]
|
| | | 2251 0 1 [2704] 1 [[3,10,0]]
|
| | | 2252 0 4 [41] 35 [[3,10,0]]
|
| | | 2253 0 7 [] 10 [[3,10,0]]
|
| | | 2254 0 3 [] 10 [[3,10,0]]
|
| | | 2255 0 8 [42] 1000 [[3,10,0]]
|
| | | 2256 0 1 [2705] 1 [[3,10,0]]
|
| | | 2257 0 4 [41] 35 [[3,10,0]]
|
| | | 2258 0 7 [] 10 [[3,10,0]]
|
| | | 2259 0 3 [] 10 [[3,10,0]]
|
| | | 2260 0 8 [42] 1000 [[3,10,0]]
|
| | | 2261 0 1 [2706] 1 [[3,10,0]]
|
| | | 2262 0 4 [41] 35 [[3,10,0]]
|
| | | 2263 0 7 [] 10 [[3,10,0]]
|
| | | 2264 0 3 [] 10 [[3,10,0]]
|
| | | 2265 0 8 [42] 1000 [[3,10,0]]
|
| | | 2266 0 1 [2707] 1 [[3,10,0]]
|
| | | 2267 0 4 [41] 35 [[3,10,0]]
|
| | | 2268 0 7 [] 10 [[3,10,0]]
|
| | | 2269 0 3 [] 10 [[3,10,0]]
|
| | | 2270 0 8 [42] 1000 [[3,10,0]]
|
| | | 2271 0 1 [2708] 1 [[3,10,0]]
|
| | | 2272 0 4 [41] 35 [[3,10,0]]
|
| | | 2273 0 7 [] 10 [[3,10,0]]
|
| | | 2274 0 3 [] 10 [[3,10,0]]
|
| | | 2275 0 8 [42] 1000 [[3,10,0]]
|
| | | 2276 0 1 [2709] 1 [[3,10,0]]
|
| | | 2277 0 4 [41] 35 [[3,10,0]]
|
| | | 2278 0 7 [] 10 [[3,10,0]]
|
| | | 2279 0 3 [] 10 [[3,10,0]]
|
| | | 2280 0 8 [42] 1000 [[3,10,0]]
|
| | | 2281 0 1 [2710] 1 [[3,10,0]]
|
| | | 2282 0 4 [41] 35 [[3,10,0]]
|
| | | 2283 0 7 [] 10 [[3,10,0]]
|
| | | 2284 0 3 [] 10 [[3,10,0]]
|
| | | 2285 0 8 [42] 1000 [[3,10,0]]
|
| | | 2286 0 1 [2801] 1 [[3,10,0]]
|
| | | 2287 0 4 [41] 35 [[3,10,0]]
|
| | | 2288 0 7 [] 10 [[3,10,0]]
|
| | | 2289 0 3 [] 10 [[3,10,0]]
|
| | | 2290 0 8 [42] 1000 [[3,10,0]]
|
| | | 2291 0 1 [2802] 1 [[3,10,0]]
|
| | | 2292 0 4 [41] 35 [[3,10,0]]
|
| | | 2293 0 7 [] 10 [[3,10,0]]
|
| | | 2294 0 3 [] 10 [[3,10,0]]
|
| | | 2295 0 8 [42] 1000 [[3,10,0]]
|
| | | 2296 0 1 [2803] 1 [[3,10,0]]
|
| | | 2297 0 4 [41] 35 [[3,10,0]]
|
| | | 2298 0 7 [] 10 [[3,10,0]]
|
| | | 2299 0 3 [] 10 [[3,10,0]]
|
| | | 2300 0 8 [42] 1000 [[3,10,0]]
|
| | | 2301 0 1 [2804] 1 [[3,10,0]]
|
| | | 2302 0 4 [41] 35 [[3,10,0]]
|
| | | 2303 0 7 [] 10 [[3,10,0]]
|
| | | 2304 0 3 [] 10 [[3,10,0]]
|
| | | 2305 0 8 [42] 1000 [[3,10,0]]
|
| | | 2306 0 1 [2805] 1 [[3,10,0]]
|
| | | 2307 0 4 [41] 35 [[3,10,0]]
|
| | | 2308 0 7 [] 10 [[3,10,0]]
|
| | | 2309 0 3 [] 10 [[3,10,0]]
|
| | | 2310 0 8 [42] 1000 [[3,10,0]]
|
| | | 2311 0 1 [2806] 1 [[3,10,0]]
|
| | | 2312 0 4 [41] 35 [[3,10,0]]
|
| | | 2313 0 7 [] 10 [[3,10,0]]
|
| | | 2314 0 3 [] 10 [[3,10,0]]
|
| | | 2315 0 8 [42] 1000 [[3,10,0]]
|
| | | 2316 0 1 [2807] 1 [[3,10,0]]
|
| | | 2317 0 4 [41] 35 [[3,10,0]]
|
| | | 2318 0 7 [] 10 [[3,10,0]]
|
| | | 2319 0 3 [] 10 [[3,10,0]]
|
| | | 2320 0 8 [42] 1000 [[3,10,0]]
|
| | | 2321 0 1 [2808] 1 [[3,10,0]]
|
| | | 2322 0 4 [41] 35 [[3,10,0]]
|
| | | 2323 0 7 [] 10 [[3,10,0]]
|
| | | 2324 0 3 [] 10 [[3,10,0]]
|
| | | 2325 0 8 [42] 1000 [[3,10,0]]
|
| | | 2326 0 1 [2809] 1 [[3,10,0]]
|
| | | 2327 0 4 [41] 35 [[3,10,0]]
|
| | | 2328 0 7 [] 10 [[3,10,0]]
|
| | | 2329 0 3 [] 10 [[3,10,0]]
|
| | | 2330 0 8 [42] 1000 [[3,10,0]]
|
| | | 2331 0 1 [2810] 1 [[3,10,0]]
|
| | | 2332 0 4 [41] 35 [[3,10,0]]
|
| | | 2333 0 7 [] 10 [[3,10,0]]
|
| | | 2334 0 3 [] 10 [[3,10,0]]
|
| | | 2335 0 8 [42] 1000 [[3,10,0]]
|
| | | 2336 0 1 [2901] 1 [[3,10,0]]
|
| | | 2337 0 4 [41] 35 [[3,10,0]]
|
| | | 2338 0 7 [] 10 [[3,10,0]]
|
| | | 2339 0 3 [] 10 [[3,10,0]]
|
| | | 2340 0 8 [42] 1000 [[3,10,0]]
|
| | | 2341 0 1 [2902] 1 [[3,10,0]]
|
| | | 2342 0 4 [41] 35 [[3,10,0]]
|
| | | 2343 0 7 [] 10 [[3,10,0]]
|
| | | 2344 0 3 [] 10 [[3,10,0]]
|
| | | 2345 0 8 [42] 1000 [[3,10,0]]
|
| | | 2346 0 1 [2903] 1 [[3,10,0]]
|
| | | 2347 0 4 [41] 35 [[3,10,0]]
|
| | | 2348 0 7 [] 10 [[3,10,0]]
|
| | | 2349 0 3 [] 10 [[3,10,0]]
|
| | | 2350 0 8 [42] 1000 [[3,10,0]]
|
| | | 2351 0 1 [2904] 1 [[3,10,0]]
|
| | | 2352 0 4 [41] 35 [[3,10,0]]
|
| | | 2353 0 7 [] 10 [[3,10,0]]
|
| | | 2354 0 3 [] 10 [[3,10,0]]
|
| | | 2355 0 8 [42] 1000 [[3,10,0]]
|
| | | 2356 0 1 [2905] 1 [[3,10,0]]
|
| | | 2357 0 4 [41] 35 [[3,10,0]]
|
| | | 2358 0 7 [] 10 [[3,10,0]]
|
| | | 2359 0 3 [] 10 [[3,10,0]]
|
| | | 2360 0 8 [42] 1000 [[3,10,0]]
|
| | | 2361 0 1 [2906] 1 [[3,10,0]]
|
| | | 2362 0 4 [41] 35 [[3,10,0]]
|
| | | 2363 0 7 [] 10 [[3,10,0]]
|
| | | 2364 0 3 [] 10 [[3,10,0]]
|
| | | 2365 0 8 [42] 1000 [[3,10,0]]
|
| | | 2366 0 1 [2907] 1 [[3,10,0]]
|
| | | 2367 0 4 [41] 35 [[3,10,0]]
|
| | | 2368 0 7 [] 10 [[3,10,0]]
|
| | | 2369 0 3 [] 10 [[3,10,0]]
|
| | | 2370 0 8 [42] 1000 [[3,10,0]]
|
| | | 2371 0 1 [2908] 1 [[3,10,0]]
|
| | | 2372 0 4 [41] 35 [[3,10,0]]
|
| | | 2373 0 7 [] 10 [[3,10,0]]
|
| | | 2374 0 3 [] 10 [[3,10,0]]
|
| | | 2375 0 8 [42] 1000 [[3,10,0]]
|
| | | 2376 0 1 [2909] 1 [[3,10,0]]
|
| | | 2377 0 4 [41] 35 [[3,10,0]]
|
| | | 2378 0 7 [] 10 [[3,10,0]]
|
| | | 2379 0 3 [] 10 [[3,10,0]]
|
| | | 2380 0 8 [42] 1000 [[3,10,0]]
|
| | | 2381 0 1 [2910] 1 [[3,10,0]]
|
| | | 2382 0 4 [41] 35 [[3,10,0]]
|
| | | 2383 0 7 [] 10 [[3,10,0]]
|
| | | 2384 0 3 [] 10 [[3,10,0]]
|
| | | 2385 0 8 [42] 1000 [[3,10,0]]
|
| | | 2386 0 1 [3001] 1 [[3,10,0]]
|
| | | 2387 0 4 [41] 35 [[3,10,0]]
|
| | | 2388 0 7 [] 10 [[3,10,0]]
|
| | | 2389 0 3 [] 10 [[3,10,0]]
|
| | | 2390 0 8 [42] 1000 [[3,10,0]]
|
| | | 2391 0 1 [3002] 1 [[3,10,0]]
|
| | | 2392 0 4 [41] 35 [[3,10,0]]
|
| | | 2393 0 7 [] 10 [[3,10,0]]
|
| | | 2394 0 3 [] 10 [[3,10,0]]
|
| | | 2395 0 8 [42] 1000 [[3,10,0]]
|
| | | 2396 0 1 [3003] 1 [[3,10,0]]
|
| | | 2397 0 4 [41] 35 [[3,10,0]]
|
| | | 2398 0 7 [] 10 [[3,10,0]]
|
| | | 2399 0 3 [] 10 [[3,10,0]]
|
| | | 2400 0 8 [42] 1000 [[3,10,0]]
|
| | | 2401 0 1 [3004] 1 [[3,10,0]]
|
| | | 2402 0 4 [41] 35 [[3,10,0]]
|
| | | 2403 0 7 [] 10 [[3,10,0]]
|
| | | 2404 0 3 [] 10 [[3,10,0]]
|
| | | 2405 0 8 [42] 1000 [[3,10,0]]
|
| | | 2406 0 1 [3005] 1 [[3,10,0]]
|
| | | 2407 0 4 [41] 35 [[3,10,0]]
|
| | | 2408 0 7 [] 10 [[3,10,0]]
|
| | | 2409 0 3 [] 10 [[3,10,0]]
|
| | | 2410 0 8 [42] 1000 [[3,10,0]]
|
| | | 2411 0 1 [3006] 1 [[3,10,0]]
|
| | | 2412 0 4 [41] 35 [[3,10,0]]
|
| | | 2413 0 7 [] 10 [[3,10,0]]
|
| | | 2414 0 3 [] 10 [[3,10,0]]
|
| | | 2415 0 8 [42] 1000 [[3,10,0]]
|
| | | 2416 0 1 [3007] 1 [[3,10,0]]
|
| | | 2417 0 4 [41] 35 [[3,10,0]]
|
| | | 2418 0 7 [] 10 [[3,10,0]]
|
| | | 2419 0 3 [] 10 [[3,10,0]]
|
| | | 2420 0 8 [42] 1000 [[3,10,0]]
|
| | | 2421 0 1 [3008] 1 [[3,10,0]]
|
| | | 2422 0 4 [41] 35 [[3,10,0]]
|
| | | 2423 0 7 [] 10 [[3,10,0]]
|
| | | 2424 0 3 [] 10 [[3,10,0]]
|
| | | 2425 0 8 [42] 1000 [[3,10,0]]
|
| | | 2426 0 1 [3009] 1 [[3,10,0]]
|
| | | 2427 0 4 [41] 35 [[3,10,0]]
|
| | | 2428 0 7 [] 10 [[3,10,0]]
|
| | | 2429 0 3 [] 10 [[3,10,0]]
|
| | | 2430 0 8 [42] 1000 [[3,10,0]]
|
| | | 2431 0 1 [3010] 1 [[3,10,0]]
|
| | | 2432 0 4 [41] 35 [[3,10,0]]
|
| | | 2433 0 7 [] 10 [[3,10,0]]
|
| | | 2434 0 3 [] 10 [[3,10,0]]
|
| | | 2435 0 8 [42] 1000 [[3,10,0]]
|
| | | 2436 0 1 [3101] 1 [[3,10,0]]
|
| | | 2437 0 4 [41] 35 [[3,10,0]]
|
| | | 2438 0 7 [] 10 [[3,10,0]]
|
| | | 2439 0 3 [] 10 [[3,10,0]]
|
| | | 2440 0 8 [42] 1000 [[3,10,0]]
|
| | | 2441 0 1 [3102] 1 [[3,10,0]]
|
| | | 2442 0 4 [41] 35 [[3,10,0]]
|
| | | 2443 0 7 [] 10 [[3,10,0]]
|
| | | 2444 0 3 [] 10 [[3,10,0]]
|
| | | 2445 0 8 [42] 1000 [[3,10,0]]
|
| | | 2446 0 1 [3103] 1 [[3,10,0]]
|
| | | 2447 0 4 [41] 35 [[3,10,0]]
|
| | | 2448 0 7 [] 10 [[3,10,0]]
|
| | | 2449 0 3 [] 10 [[3,10,0]]
|
| | | 2450 0 8 [42] 1000 [[3,10,0]]
|
| | | 2451 0 1 [3104] 1 [[3,10,0]]
|
| | | 2452 0 4 [41] 35 [[3,10,0]]
|
| | | 2453 0 7 [] 10 [[3,10,0]]
|
| | | 2454 0 3 [] 10 [[3,10,0]]
|
| | | 2455 0 8 [42] 1000 [[3,10,0]]
|
| | | 2456 0 1 [3105] 1 [[3,10,0]]
|
| | | 2457 0 4 [41] 35 [[3,10,0]]
|
| | | 2458 0 7 [] 10 [[3,10,0]]
|
| | | 2459 0 3 [] 10 [[3,10,0]]
|
| | | 2460 0 8 [42] 1000 [[3,10,0]]
|
| | | 2461 0 1 [3106] 1 [[3,10,0]]
|
| | | 2462 0 4 [41] 35 [[3,10,0]]
|
| | | 2463 0 7 [] 10 [[3,10,0]]
|
| | | 2464 0 3 [] 10 [[3,10,0]]
|
| | | 2465 0 8 [42] 1000 [[3,10,0]]
|
| | | 2466 0 1 [3107] 1 [[3,10,0]]
|
| | | 2467 0 4 [41] 35 [[3,10,0]]
|
| | | 2468 0 7 [] 10 [[3,10,0]]
|
| | | 2469 0 3 [] 10 [[3,10,0]]
|
| | | 2470 0 8 [42] 1000 [[3,10,0]]
|
| | | 2471 0 1 [3108] 1 [[3,10,0]]
|
| | | 2472 0 4 [41] 35 [[3,10,0]]
|
| | | 2473 0 7 [] 10 [[3,10,0]]
|
| | | 2474 0 3 [] 10 [[3,10,0]]
|
| | | 2475 0 8 [42] 1000 [[3,10,0]]
|
| | | 2476 0 1 [3109] 1 [[3,10,0]]
|
| | | 2477 0 4 [41] 35 [[3,10,0]]
|
| | | 2478 0 7 [] 10 [[3,10,0]]
|
| | | 2479 0 3 [] 10 [[3,10,0]]
|
| | | 2480 0 8 [42] 1000 [[3,10,0]]
|
| | | 2481 0 1 [3110] 1 [[3,10,0]]
|
| | | 2482 0 4 [41] 35 [[3,10,0]]
|
| | | 2483 0 7 [] 10 [[3,10,0]]
|
| | | 2484 0 3 [] 10 [[3,10,0]]
|
| | | 2485 0 8 [42] 1000 [[3,10,0]]
|
| | | 2486 0 1 [3201] 1 [[3,10,0]]
|
| | | 2487 0 4 [41] 35 [[3,10,0]]
|
| | | 2488 0 7 [] 10 [[3,10,0]]
|
| | | 2489 0 3 [] 10 [[3,10,0]]
|
| | | 2490 0 8 [42] 1000 [[3,10,0]]
|
| | | 2491 0 1 [3202] 1 [[3,10,0]]
|
| | | 2492 0 4 [41] 35 [[3,10,0]]
|
| | | 2493 0 7 [] 10 [[3,10,0]]
|
| | | 2494 0 3 [] 10 [[3,10,0]]
|
| | | 2495 0 8 [42] 1000 [[3,10,0]]
|
| | | 2496 0 1 [3203] 1 [[3,10,0]]
|
| | | 2497 0 4 [41] 35 [[3,10,0]]
|
| | | 2498 0 7 [] 10 [[3,10,0]]
|
| | | 2499 0 3 [] 10 [[3,10,0]]
|
| | | 2500 0 8 [42] 1000 [[3,10,0]]
|
| | | 2501 0 1 [3204] 1 [[3,10,0]]
|
| | | 2502 0 4 [41] 35 [[3,10,0]]
|
| | | 2503 0 7 [] 10 [[3,10,0]]
|
| | | 2504 0 3 [] 10 [[3,10,0]]
|
| | | 2505 0 8 [42] 1000 [[3,10,0]]
|
| | | 2506 0 1 [3205] 1 [[3,10,0]]
|
| | | 2507 0 4 [41] 35 [[3,10,0]]
|
| | | 2508 0 7 [] 10 [[3,10,0]]
|
| | | 2509 0 3 [] 10 [[3,10,0]]
|
| | | 2510 0 8 [42] 1000 [[3,10,0]]
|
| | | 2511 0 1 [3206] 1 [[3,10,0]]
|
| | | 2512 0 4 [41] 35 [[3,10,0]]
|
| | | 2513 0 7 [] 10 [[3,10,0]]
|
| | | 2514 0 3 [] 10 [[3,10,0]]
|
| | | 2515 0 8 [42] 1000 [[3,10,0]]
|
| | | 2516 0 1 [3207] 1 [[3,10,0]]
|
| | | 2517 0 4 [41] 35 [[3,10,0]]
|
| | | 2518 0 7 [] 10 [[3,10,0]]
|
| | | 2519 0 3 [] 10 [[3,10,0]]
|
| | | 2520 0 8 [42] 1000 [[3,10,0]]
|
| | | 2521 0 1 [3208] 1 [[3,10,0]]
|
| | | 2522 0 4 [41] 35 [[3,10,0]]
|
| | | 2523 0 7 [] 10 [[3,10,0]]
|
| | | 2524 0 3 [] 10 [[3,10,0]]
|
| | | 2525 0 8 [42] 1000 [[3,10,0]]
|
| | | 2526 0 1 [3209] 1 [[3,10,0]]
|
| | | 2527 0 4 [41] 35 [[3,10,0]]
|
| | | 2528 0 7 [] 10 [[3,10,0]]
|
| | | 2529 0 3 [] 10 [[3,10,0]]
|
| | | 2530 0 8 [42] 1000 [[3,10,0]]
|
| | | 2531 0 1 [3210] 1 [[3,10,0]]
|
| | | 2532 0 4 [41] 35 [[3,10,0]]
|
| | | 2533 0 7 [] 10 [[3,10,0]]
|
| | | 2534 0 3 [] 10 [[3,10,0]]
|
| | | 2535 0 8 [42] 1000 [[3,10,0]]
|
| | | 2536 0 1 [3301] 1 [[3,10,0]]
|
| | | 2537 0 4 [41] 35 [[3,10,0]]
|
| | | 2538 0 7 [] 10 [[3,10,0]]
|
| | | 2539 0 3 [] 10 [[3,10,0]]
|
| | | 2540 0 8 [42] 1000 [[3,10,0]]
|
| | | 2541 0 1 [3302] 1 [[3,10,0]]
|
| | | 2542 0 4 [41] 35 [[3,10,0]]
|
| | | 2543 0 7 [] 10 [[3,10,0]]
|
| | | 2544 0 3 [] 10 [[3,10,0]]
|
| | | 2545 0 8 [42] 1000 [[3,10,0]]
|
| | | 2546 0 1 [3303] 1 [[3,10,0]]
|
| | | 2547 0 4 [41] 35 [[3,10,0]]
|
| | | 2548 0 7 [] 10 [[3,10,0]]
|
| | | 2549 0 3 [] 10 [[3,10,0]]
|
| | | 2550 0 8 [42] 1000 [[3,10,0]]
|
| | | 2551 0 1 [3304] 1 [[3,10,0]]
|
| | | 2552 0 4 [41] 35 [[3,10,0]]
|
| | | 2553 0 7 [] 10 [[3,10,0]]
|
| | | 2554 0 3 [] 10 [[3,10,0]]
|
| | | 2555 0 8 [42] 1000 [[3,10,0]]
|
| | | 2556 0 1 [3305] 1 [[3,10,0]]
|
| | | 2557 0 4 [41] 35 [[3,10,0]]
|
| | | 2558 0 7 [] 10 [[3,10,0]]
|
| | | 2559 0 3 [] 10 [[3,10,0]]
|
| | | 2560 0 8 [42] 1000 [[3,10,0]]
|
| | | 2561 0 1 [3306] 1 [[3,10,0]]
|
| | | 2562 0 4 [41] 35 [[3,10,0]]
|
| | | 2563 0 7 [] 10 [[3,10,0]]
|
| | | 2564 0 3 [] 10 [[3,10,0]]
|
| | | 2565 0 8 [42] 1000 [[3,10,0]]
|
| | | 2566 0 1 [3307] 1 [[3,10,0]]
|
| | | 2567 0 4 [41] 35 [[3,10,0]]
|
| | | 2568 0 7 [] 10 [[3,10,0]]
|
| | | 2569 0 3 [] 10 [[3,10,0]]
|
| | | 2570 0 8 [42] 1000 [[3,10,0]]
|
| | | 2571 0 1 [3308] 1 [[3,10,0]]
|
| | | 2572 0 4 [41] 35 [[3,10,0]]
|
| | | 2573 0 7 [] 10 [[3,10,0]]
|
| | | 2574 0 3 [] 10 [[3,10,0]]
|
| | | 2575 0 8 [42] 1000 [[3,10,0]]
|
| | | 2576 0 1 [3309] 1 [[3,10,0]]
|
| | | 2577 0 4 [41] 35 [[3,10,0]]
|
| | | 2578 0 7 [] 10 [[3,10,0]]
|
| | | 2579 0 3 [] 10 [[3,10,0]]
|
| | | 2580 0 8 [42] 1000 [[3,10,0]]
|
| | | 2581 0 1 [3310] 1 [[3,10,0]]
|
| | | 2582 0 4 [41] 35 [[3,10,0]]
|
| | | 2583 0 7 [] 10 [[3,10,0]]
|
| | | 2584 0 3 [] 10 [[3,10,0]]
|
| | | 2585 0 8 [42] 1000 [[3,10,0]]
|
| | | 2586 0 1 [3401] 1 [[3,10,0]]
|
| | | 2587 0 4 [41] 35 [[3,10,0]]
|
| | | 2588 0 7 [] 10 [[3,10,0]]
|
| | | 2589 0 3 [] 10 [[3,10,0]]
|
| | | 2590 0 8 [42] 1000 [[3,10,0]]
|
| | | 2591 0 1 [3402] 1 [[3,10,0]]
|
| | | 2592 0 4 [41] 35 [[3,10,0]]
|
| | | 2593 0 7 [] 10 [[3,10,0]]
|
| | | 2594 0 3 [] 10 [[3,10,0]]
|
| | | 2595 0 8 [42] 1000 [[3,10,0]]
|
| | | 2596 0 1 [3403] 1 [[3,10,0]]
|
| | | 2597 0 4 [41] 35 [[3,10,0]]
|
| | | 2598 0 7 [] 10 [[3,10,0]]
|
| | | 2599 0 3 [] 10 [[3,10,0]]
|
| | | 2600 0 8 [42] 1000 [[3,10,0]]
|
| | | 2601 0 1 [3404] 1 [[3,10,0]]
|
| | | 2602 0 4 [41] 35 [[3,10,0]]
|
| | | 2603 0 7 [] 10 [[3,10,0]]
|
| | | 2604 0 3 [] 10 [[3,10,0]]
|
| | | 2605 0 8 [42] 1000 [[3,10,0]]
|
| | | 2606 0 1 [3405] 1 [[3,10,0]]
|
| | | 2607 0 4 [41] 35 [[3,10,0]]
|
| | | 2608 0 7 [] 10 [[3,10,0]]
|
| | | 2609 0 3 [] 10 [[3,10,0]]
|
| | | 2610 0 8 [42] 1000 [[3,10,0]]
|
| | | 2611 0 1 [3406] 1 [[3,10,0]]
|
| | | 2612 0 4 [41] 35 [[3,10,0]]
|
| | | 2613 0 7 [] 10 [[3,10,0]]
|
| | | 2614 0 3 [] 10 [[3,10,0]]
|
| | | 2615 0 8 [42] 1000 [[3,10,0]]
|
| | | 2616 0 1 [3407] 1 [[3,10,0]]
|
| | | 2617 0 4 [41] 35 [[3,10,0]]
|
| | | 2618 0 7 [] 10 [[3,10,0]]
|
| | | 2619 0 3 [] 10 [[3,10,0]]
|
| | | 2620 0 8 [42] 1000 [[3,10,0]]
|
| | | 2621 0 1 [3408] 1 [[3,10,0]]
|
| | | 2622 0 4 [41] 35 [[3,10,0]]
|
| | | 2623 0 7 [] 10 [[3,10,0]]
|
| | | 2624 0 3 [] 10 [[3,10,0]]
|
| | | 2625 0 8 [42] 1000 [[3,10,0]]
|
| | | 2626 0 1 [3409] 1 [[3,10,0]]
|
| | | 2627 0 4 [41] 35 [[3,10,0]]
|
| | | 2628 0 7 [] 10 [[3,10,0]]
|
| | | 2629 0 3 [] 10 [[3,10,0]]
|
| | | 2630 0 8 [42] 1000 [[3,10,0]]
|
| | | 2631 0 1 [3410] 1 [[3,10,0]]
|
| | | 2632 0 4 [41] 35 [[3,10,0]]
|
| | | 2633 0 7 [] 10 [[3,10,0]]
|
| | | 2634 0 3 [] 10 [[3,10,0]]
|
| | | 2635 0 8 [42] 1000 [[3,10,0]]
|
| | | 2636 0 1 [3501] 1 [[3,10,0]]
|
| | | 2637 0 4 [41] 35 [[3,10,0]]
|
| | | 2638 0 7 [] 10 [[3,10,0]]
|
| | | 2639 0 3 [] 10 [[3,10,0]]
|
| | | 2640 0 8 [42] 1000 [[3,10,0]]
|
| | | 2641 0 1 [3502] 1 [[3,10,0]]
|
| | | 2642 0 4 [41] 35 [[3,10,0]]
|
| | | 2643 0 7 [] 10 [[3,10,0]]
|
| | | 2644 0 3 [] 10 [[3,10,0]]
|
| | | 2645 0 8 [42] 1000 [[3,10,0]]
|
| | | 2646 0 1 [3503] 1 [[3,10,0]]
|
| | | 2647 0 4 [41] 35 [[3,10,0]]
|
| | | 2648 0 7 [] 10 [[3,10,0]]
|
| | | 2649 0 3 [] 10 [[3,10,0]]
|
| | | 2650 0 8 [42] 1000 [[3,10,0]]
|
| | | 2651 0 1 [3504] 1 [[3,10,0]]
|
| | | 2652 0 4 [41] 35 [[3,10,0]]
|
| | | 2653 0 7 [] 10 [[3,10,0]]
|
| | | 2654 0 3 [] 10 [[3,10,0]]
|
| | | 2655 0 8 [42] 1000 [[3,10,0]]
|
| | | 2656 0 1 [3505] 1 [[3,10,0]]
|
| | | 2657 0 4 [41] 35 [[3,10,0]]
|
| | | 2658 0 7 [] 10 [[3,10,0]]
|
| | | 2659 0 3 [] 10 [[3,10,0]]
|
| | | 2660 0 8 [42] 1000 [[3,10,0]]
|
| | | 2661 0 1 [3506] 1 [[3,10,0]]
|
| | | 2662 0 4 [41] 35 [[3,10,0]]
|
| | | 2663 0 7 [] 10 [[3,10,0]]
|
| | | 2664 0 3 [] 10 [[3,10,0]]
|
| | | 2665 0 8 [42] 1000 [[3,10,0]]
|
| | | 2666 0 1 [3507] 1 [[3,10,0]]
|
| | | 2667 0 4 [41] 35 [[3,10,0]]
|
| | | 2668 0 7 [] 10 [[3,10,0]]
|
| | | 2669 0 3 [] 10 [[3,10,0]]
|
| | | 2670 0 8 [42] 1000 [[3,10,0]]
|
| | | 2671 0 1 [3508] 1 [[3,10,0]]
|
| | | 2672 0 4 [41] 35 [[3,10,0]]
|
| | | 2673 0 7 [] 10 [[3,10,0]]
|
| | | 2674 0 3 [] 10 [[3,10,0]]
|
| | | 2675 0 8 [42] 1000 [[3,10,0]]
|
| | | 2676 0 1 [3509] 1 [[3,10,0]]
|
| | | 2677 0 4 [41] 35 [[3,10,0]]
|
| | | 2678 0 7 [] 10 [[3,10,0]]
|
| | | 2679 0 3 [] 10 [[3,10,0]]
|
| | | 2680 0 8 [42] 1000 [[3,10,0]]
|
| | | 2681 0 1 [3510] 1 [[3,10,0]]
|
| | | 2682 0 4 [41] 35 [[3,10,0]]
|
| | | 2683 0 7 [] 10 [[3,10,0]]
|
| | | 2684 0 3 [] 10 [[3,10,0]]
|
| | | 2685 0 8 [42] 1000 [[3,10,0]]
|
| | | 2686 0 1 [3601] 1 [[3,10,0]]
|
| | | 2687 0 4 [41] 35 [[3,10,0]]
|
| | | 2688 0 7 [] 10 [[3,10,0]]
|
| | | 2689 0 3 [] 10 [[3,10,0]]
|
| | | 2690 0 8 [42] 1000 [[3,10,0]]
|
| | | 2691 0 1 [3602] 1 [[3,10,0]]
|
| | | 2692 0 4 [41] 35 [[3,10,0]]
|
| | | 2693 0 7 [] 10 [[3,10,0]]
|
| | | 2694 0 3 [] 10 [[3,10,0]]
|
| | | 2695 0 8 [42] 1000 [[3,10,0]]
|
| | | 2696 0 1 [3603] 1 [[3,10,0]]
|
| | | 2697 0 4 [41] 35 [[3,10,0]]
|
| | | 2698 0 7 [] 10 [[3,10,0]]
|
| | | 2699 0 3 [] 10 [[3,10,0]]
|
| | | 2700 0 8 [42] 1000 [[3,10,0]]
|
| | | 2701 0 1 [3604] 1 [[3,10,0]]
|
| | | 2702 0 4 [41] 35 [[3,10,0]]
|
| | | 2703 0 7 [] 10 [[3,10,0]]
|
| | | 2704 0 3 [] 10 [[3,10,0]]
|
| | | 2705 0 8 [42] 1000 [[3,10,0]]
|
| | | 2706 0 1 [3605] 1 [[3,10,0]]
|
| | | 2707 0 4 [41] 35 [[3,10,0]]
|
| | | 2708 0 7 [] 10 [[3,10,0]]
|
| | | 2709 0 3 [] 10 [[3,10,0]]
|
| | | 2710 0 8 [42] 1000 [[3,10,0]]
|
| | | 2711 0 1 [3606] 1 [[3,10,0]]
|
| | | 2712 0 4 [41] 35 [[3,10,0]]
|
| | | 2713 0 7 [] 10 [[3,10,0]]
|
| | | 2714 0 3 [] 10 [[3,10,0]]
|
| | | 2715 0 8 [42] 1000 [[3,10,0]]
|
| | | 2716 0 1 [3607] 1 [[3,10,0]]
|
| | | 2717 0 4 [41] 35 [[3,10,0]]
|
| | | 2718 0 7 [] 10 [[3,10,0]]
|
| | | 2719 0 3 [] 10 [[3,10,0]]
|
| | | 2720 0 8 [42] 1000 [[3,10,0]]
|
| | | 2721 0 1 [3608] 1 [[3,10,0]]
|
| | | 2722 0 4 [41] 35 [[3,10,0]]
|
| | | 2723 0 7 [] 10 [[3,10,0]]
|
| | | 2724 0 3 [] 10 [[3,10,0]]
|
| | | 2725 0 8 [42] 1000 [[3,10,0]]
|
| | | 2726 0 1 [3609] 1 [[3,10,0]]
|
| | | 2727 0 4 [41] 35 [[3,10,0]]
|
| | | 2728 0 7 [] 10 [[3,10,0]]
|
| | | 2729 0 3 [] 10 [[3,10,0]]
|
| | | 2730 0 8 [42] 1000 [[3,10,0]]
|
| | | 2731 0 1 [3610] 1 [[3,10,0]]
|
| | | 2732 0 4 [41] 35 [[3,10,0]]
|
| | | 2733 0 7 [] 10 [[3,10,0]]
|
| | | 2734 0 3 [] 10 [[3,10,0]]
|
| | | 2735 0 8 [42] 1000 [[3,10,0]]
|
| | | 2736 0 1 [3701] 1 [[3,10,0]]
|
| | | 2737 0 4 [41] 35 [[3,10,0]]
|
| | | 2738 0 7 [] 10 [[3,10,0]]
|
| | | 2739 0 3 [] 10 [[3,10,0]]
|
| | | 2740 0 8 [42] 1000 [[3,10,0]]
|
| | | 2741 0 1 [3702] 1 [[3,10,0]]
|
| | | 2742 0 4 [41] 35 [[3,10,0]]
|
| | | 2743 0 7 [] 10 [[3,10,0]]
|
| | | 2744 0 3 [] 10 [[3,10,0]]
|
| | | 2745 0 8 [42] 1000 [[3,10,0]]
|
| | | 2746 0 1 [3703] 1 [[3,10,0]]
|
| | | 2747 0 4 [41] 35 [[3,10,0]]
|
| | | 2748 0 7 [] 10 [[3,10,0]]
|
| | | 2749 0 3 [] 10 [[3,10,0]]
|
| | | 2750 0 8 [42] 1000 [[3,10,0]]
|
| | | 2751 0 1 [3704] 1 [[3,10,0]]
|
| | | 2752 0 4 [41] 35 [[3,10,0]]
|
| | | 2753 0 7 [] 10 [[3,10,0]]
|
| | | 2754 0 3 [] 10 [[3,10,0]]
|
| | | 2755 0 8 [42] 1000 [[3,10,0]]
|
| | | 2756 0 1 [3705] 1 [[3,10,0]]
|
| | | 2757 0 4 [41] 35 [[3,10,0]]
|
| | | 2758 0 7 [] 10 [[3,10,0]]
|
| | | 2759 0 3 [] 10 [[3,10,0]]
|
| | | 2760 0 8 [42] 1000 [[3,10,0]]
|
| | | 2761 0 1 [3706] 1 [[3,10,0]]
|
| | | 2762 0 4 [41] 35 [[3,10,0]]
|
| | | 2763 0 7 [] 10 [[3,10,0]]
|
| | | 2764 0 3 [] 10 [[3,10,0]]
|
| | | 2765 0 8 [42] 1000 [[3,10,0]]
|
| | | 2766 0 1 [3707] 1 [[3,10,0]]
|
| | | 2767 0 4 [41] 35 [[3,10,0]]
|
| | | 2768 0 7 [] 10 [[3,10,0]]
|
| | | 2769 0 3 [] 10 [[3,10,0]]
|
| | | 2770 0 8 [42] 1000 [[3,10,0]]
|
| | | 2771 0 1 [3708] 1 [[3,10,0]]
|
| | | 2772 0 4 [41] 35 [[3,10,0]]
|
| | | 2773 0 7 [] 10 [[3,10,0]]
|
| | | 2774 0 3 [] 10 [[3,10,0]]
|
| | | 2775 0 8 [42] 1000 [[3,10,0]]
|
| | | 2776 0 1 [3709] 1 [[3,10,0]]
|
| | | 2777 0 4 [41] 35 [[3,10,0]]
|
| | | 2778 0 7 [] 10 [[3,10,0]]
|
| | | 2779 0 3 [] 10 [[3,10,0]]
|
| | | 2780 0 8 [42] 1000 [[3,10,0]]
|
| | | 2781 0 1 [3710] 1 [[3,10,0]]
|
| | | 2782 0 4 [41] 35 [[3,10,0]]
|
| | | 2783 0 7 [] 10 [[3,10,0]]
|
| | | 2784 0 3 [] 10 [[3,10,0]]
|
| | | 2785 0 8 [42] 1000 [[3,10,0]]
|
| | | 2786 0 1 [3801] 1 [[3,10,0]]
|
| | | 2787 0 4 [41] 35 [[3,10,0]]
|
| | | 2788 0 7 [] 10 [[3,10,0]]
|
| | | 2789 0 3 [] 10 [[3,10,0]]
|
| | | 2790 0 8 [42] 1000 [[3,10,0]]
|
| | | 2791 0 1 [3802] 1 [[3,10,0]]
|
| | | 2792 0 4 [41] 35 [[3,10,0]]
|
| | | 2793 0 7 [] 10 [[3,10,0]]
|
| | | 2794 0 3 [] 10 [[3,10,0]]
|
| | | 2795 0 8 [42] 1000 [[3,10,0]]
|
| | | 2796 0 1 [3803] 1 [[3,10,0]]
|
| | | 2797 0 4 [41] 35 [[3,10,0]]
|
| | | 2798 0 7 [] 10 [[3,10,0]]
|
| | | 2799 0 3 [] 10 [[3,10,0]]
|
| | | 2800 0 8 [42] 1000 [[3,10,0]]
|
| | | 2801 0 1 [3804] 1 [[3,10,0]]
|
| | | 2802 0 4 [41] 35 [[3,10,0]]
|
| | | 2803 0 7 [] 10 [[3,10,0]]
|
| | | 2804 0 3 [] 10 [[3,10,0]]
|
| | | 2805 0 8 [42] 1000 [[3,10,0]]
|
| | | 2806 0 1 [3805] 1 [[3,10,0]]
|
| | | 2807 0 4 [41] 35 [[3,10,0]]
|
| | | 2808 0 7 [] 10 [[3,10,0]]
|
| | | 2809 0 3 [] 10 [[3,10,0]]
|
| | | 2810 0 8 [42] 1000 [[3,10,0]]
|
| | | 2811 0 1 [3806] 1 [[3,10,0]]
|
| | | 2812 0 4 [41] 35 [[3,10,0]]
|
| | | 2813 0 7 [] 10 [[3,10,0]]
|
| | | 2814 0 3 [] 10 [[3,10,0]]
|
| | | 2815 0 8 [42] 1000 [[3,10,0]]
|
| | | 2816 0 1 [3807] 1 [[3,10,0]]
|
| | | 2817 0 4 [41] 35 [[3,10,0]]
|
| | | 2818 0 7 [] 10 [[3,10,0]]
|
| | | 2819 0 3 [] 10 [[3,10,0]]
|
| | | 2820 0 8 [42] 1000 [[3,10,0]]
|
| | | 2821 0 1 [3808] 1 [[3,10,0]]
|
| | | 2822 0 4 [41] 35 [[3,10,0]]
|
| | | 2823 0 7 [] 10 [[3,10,0]]
|
| | | 2824 0 3 [] 10 [[3,10,0]]
|
| | | 2825 0 8 [42] 1000 [[3,10,0]]
|
| | | 2826 0 1 [3809] 1 [[3,10,0]]
|
| | | 2827 0 4 [41] 35 [[3,10,0]]
|
| | | 2828 0 7 [] 10 [[3,10,0]]
|
| | | 2829 0 3 [] 10 [[3,10,0]]
|
| | | 2830 0 8 [42] 1000 [[3,10,0]]
|
| | | 2831 0 1 [3810] 1 [[3,10,0]]
|
| | | 2832 0 4 [41] 35 [[3,10,0]]
|
| | | 2833 0 7 [] 10 [[3,10,0]]
|
| | | 2834 0 3 [] 10 [[3,10,0]]
|
| | | 2835 0 8 [42] 1000 [[3,10,0]]
|
| | | 2836 0 1 [3901] 1 [[3,10,0]]
|
| | | 2837 0 4 [41] 35 [[3,10,0]]
|
| | | 2838 0 7 [] 10 [[3,10,0]]
|
| | | 2839 0 3 [] 10 [[3,10,0]]
|
| | | 2840 0 8 [42] 1000 [[3,10,0]]
|
| | | 2841 0 1 [3902] 1 [[3,10,0]]
|
| | | 2842 0 4 [41] 35 [[3,10,0]]
|
| | | 2843 0 7 [] 10 [[3,10,0]]
|
| | | 2844 0 3 [] 10 [[3,10,0]]
|
| | | 2845 0 8 [42] 1000 [[3,10,0]]
|
| | | 2846 0 1 [3903] 1 [[3,10,0]]
|
| | | 2847 0 4 [41] 35 [[3,10,0]]
|
| | | 2848 0 7 [] 10 [[3,10,0]]
|
| | | 2849 0 3 [] 10 [[3,10,0]]
|
| | | 2850 0 8 [42] 1000 [[3,10,0]]
|
| | | 2851 0 1 [3904] 1 [[3,10,0]]
|
| | | 2852 0 4 [41] 35 [[3,10,0]]
|
| | | 2853 0 7 [] 10 [[3,10,0]]
|
| | | 2854 0 3 [] 10 [[3,10,0]]
|
| | | 2855 0 8 [42] 1000 [[3,10,0]]
|
| | | 2856 0 1 [3905] 1 [[3,10,0]]
|
| | | 2857 0 4 [41] 35 [[3,10,0]]
|
| | | 2858 0 7 [] 10 [[3,10,0]]
|
| | | 2859 0 3 [] 10 [[3,10,0]]
|
| | | 2860 0 8 [42] 1000 [[3,10,0]]
|
| | | 2861 0 1 [3906] 1 [[3,10,0]]
|
| | | 2862 0 4 [41] 35 [[3,10,0]]
|
| | | 2863 0 7 [] 10 [[3,10,0]]
|
| | | 2864 0 3 [] 10 [[3,10,0]]
|
| | | 2865 0 8 [42] 1000 [[3,10,0]]
|
| | | 2866 0 1 [3907] 1 [[3,10,0]]
|
| | | 2867 0 4 [41] 35 [[3,10,0]]
|
| | | 2868 0 7 [] 10 [[3,10,0]]
|
| | | 2869 0 3 [] 10 [[3,10,0]]
|
| | | 2870 0 8 [42] 1000 [[3,10,0]]
|
| | | 2871 0 1 [3908] 1 [[3,10,0]]
|
| | | 2872 0 4 [41] 35 [[3,10,0]]
|
| | | 2873 0 7 [] 10 [[3,10,0]]
|
| | | 2874 0 3 [] 10 [[3,10,0]]
|
| | | 2875 0 8 [42] 1000 [[3,10,0]]
|
| | | 2876 0 1 [3909] 1 [[3,10,0]]
|
| | | 2877 0 4 [41] 35 [[3,10,0]]
|
| | | 2878 0 7 [] 10 [[3,10,0]]
|
| | | 2879 0 3 [] 10 [[3,10,0]]
|
| | | 2880 0 8 [42] 1000 [[3,10,0]]
|
| | | 2881 0 1 [3910] 1 [[3,10,0]]
|
| | | 2882 0 4 [41] 35 [[3,10,0]]
|
| | | 2883 0 7 [] 10 [[3,10,0]]
|
| | | 2884 0 3 [] 10 [[3,10,0]]
|
| | | 2885 0 8 [42] 1000 [[3,10,0]]
|
| | | 2886 0 1 [4001] 1 [[3,10,0]]
|
| | | 2887 0 4 [41] 35 [[3,10,0]]
|
| | | 2888 0 7 [] 10 [[3,10,0]]
|
| | | 2889 0 3 [] 10 [[3,10,0]]
|
| | | 2890 0 8 [42] 1000 [[3,10,0]]
|
| | | 2891 0 1 [4002] 1 [[3,10,0]]
|
| | | 2892 0 4 [41] 35 [[3,10,0]]
|
| | | 2893 0 7 [] 10 [[3,10,0]]
|
| | | 2894 0 3 [] 10 [[3,10,0]]
|
| | | 2895 0 8 [42] 1000 [[3,10,0]]
|
| | | 2896 0 1 [4003] 1 [[3,10,0]]
|
| | | 2897 0 4 [41] 35 [[3,10,0]]
|
| | | 2898 0 7 [] 10 [[3,10,0]]
|
| | | 2899 0 3 [] 10 [[3,10,0]]
|
| | | 2900 0 8 [42] 1000 [[3,10,0]]
|
| | | 2901 0 1 [4004] 1 [[3,10,0]]
|
| | | 2902 0 4 [41] 35 [[3,10,0]]
|
| | | 2903 0 7 [] 10 [[3,10,0]]
|
| | | 2904 0 3 [] 10 [[3,10,0]]
|
| | | 2905 0 8 [42] 1000 [[3,10,0]]
|
| | | 2906 0 1 [4005] 1 [[3,10,0]]
|
| | | 2907 0 4 [41] 35 [[3,10,0]]
|
| | | 2908 0 7 [] 10 [[3,10,0]]
|
| | | 2909 0 3 [] 10 [[3,10,0]]
|
| | | 2910 0 8 [42] 1000 [[3,10,0]]
|
| | | 2911 0 1 [4006] 1 [[3,10,0]]
|
| | | 2912 0 4 [41] 35 [[3,10,0]]
|
| | | 2913 0 7 [] 10 [[3,10,0]]
|
| | | 2914 0 3 [] 10 [[3,10,0]]
|
| | | 2915 0 8 [42] 1000 [[3,10,0]]
|
| | | 2916 0 1 [4007] 1 [[3,10,0]]
|
| | | 2917 0 4 [41] 35 [[3,10,0]]
|
| | | 2918 0 7 [] 10 [[3,10,0]]
|
| | | 2919 0 3 [] 10 [[3,10,0]]
|
| | | 2920 0 8 [42] 1000 [[3,10,0]]
|
| | | 2921 0 1 [4008] 1 [[3,10,0]]
|
| | | 2922 0 4 [41] 35 [[3,10,0]]
|
| | | 2923 0 7 [] 10 [[3,10,0]]
|
| | | 2924 0 3 [] 10 [[3,10,0]]
|
| | | 2925 0 8 [42] 1000 [[3,10,0]]
|
| | | 2926 0 1 [4009] 1 [[3,10,0]]
|
| | | 2927 0 4 [41] 35 [[3,10,0]]
|
| | | 2928 0 7 [] 10 [[3,10,0]]
|
| | | 2929 0 3 [] 10 [[3,10,0]]
|
| | | 2930 0 8 [42] 1000 [[3,10,0]]
|
| | | 2931 0 1 [4010] 1 [[3,10,0]]
|
| | | 2932 0 4 [41] 35 [[3,10,0]]
|
| | | 2933 0 7 [] 10 [[3,10,0]]
|
| | | 2934 0 3 [] 10 [[3,10,0]]
|
| | | 2935 0 8 [42] 1000 [[3,10,0]]
|
| | | 2936 0 1 [4101] 1 [[3,10,0]]
|
| | | 2937 0 4 [41] 35 [[3,10,0]]
|
| | | 2938 0 7 [] 10 [[3,10,0]]
|
| | | 2939 0 3 [] 10 [[3,10,0]]
|
| | | 2940 0 8 [42] 1000 [[3,10,0]]
|
| | | 2941 0 1 [4102] 1 [[3,10,0]]
|
| | | 2942 0 4 [41] 35 [[3,10,0]]
|
| | | 2943 0 7 [] 10 [[3,10,0]]
|
| | | 2944 0 3 [] 10 [[3,10,0]]
|
| | | 2945 0 8 [42] 1000 [[3,10,0]]
|
| | | 2946 0 1 [4103] 1 [[3,10,0]]
|
| | | 2947 0 4 [41] 35 [[3,10,0]]
|
| | | 2948 0 7 [] 10 [[3,10,0]]
|
| | | 2949 0 3 [] 10 [[3,10,0]]
|
| | | 2950 0 8 [42] 1000 [[3,10,0]]
|
| | | 2951 0 1 [4104] 1 [[3,10,0]]
|
| | | 2952 0 4 [41] 35 [[3,10,0]]
|
| | | 2953 0 7 [] 10 [[3,10,0]]
|
| | | 2954 0 3 [] 10 [[3,10,0]]
|
| | | 2955 0 8 [42] 1000 [[3,10,0]]
|
| | | 2956 0 1 [4105] 1 [[3,10,0]]
|
| | | 2957 0 4 [41] 35 [[3,10,0]]
|
| | | 2958 0 7 [] 10 [[3,10,0]]
|
| | | 2959 0 3 [] 10 [[3,10,0]]
|
| | | 2960 0 8 [42] 1000 [[3,10,0]]
|
| | | 2961 0 1 [4106] 1 [[3,10,0]]
|
| | | 2962 0 4 [41] 35 [[3,10,0]]
|
| | | 2963 0 7 [] 10 [[3,10,0]]
|
| | | 2964 0 3 [] 10 [[3,10,0]]
|
| | | 2965 0 8 [42] 1000 [[3,10,0]]
|
| | | 2966 0 1 [4107] 1 [[3,10,0]]
|
| | | 2967 0 4 [41] 35 [[3,10,0]]
|
| | | 2968 0 7 [] 10 [[3,10,0]]
|
| | | 2969 0 3 [] 10 [[3,10,0]]
|
| | | 2970 0 8 [42] 1000 [[3,10,0]]
|
| | | 2971 0 1 [4108] 1 [[3,10,0]]
|
| | | 2972 0 4 [41] 35 [[3,10,0]]
|
| | | 2973 0 7 [] 10 [[3,10,0]]
|
| | | 2974 0 3 [] 10 [[3,10,0]]
|
| | | 2975 0 8 [42] 1000 [[3,10,0]]
|
| | | 2976 0 1 [4109] 1 [[3,10,0]]
|
| | | 2977 0 4 [41] 35 [[3,10,0]]
|
| | | 2978 0 7 [] 10 [[3,10,0]]
|
| | | 2979 0 3 [] 10 [[3,10,0]]
|
| | | 2980 0 8 [42] 1000 [[3,10,0]]
|
| | | 2981 0 1 [4110] 1 [[3,10,0]]
|
| | | 2982 0 4 [41] 35 [[3,10,0]]
|
| | | 2983 0 7 [] 10 [[3,10,0]]
|
| | | 2984 0 3 [] 10 [[3,10,0]]
|
| | | 2985 0 8 [42] 1000 [[3,10,0]]
|
| | | 2986 0 1 [4201] 1 [[3,10,0]]
|
| | | 2987 0 4 [41] 35 [[3,10,0]]
|
| | | 2988 0 7 [] 10 [[3,10,0]]
|
| | | 2989 0 3 [] 10 [[3,10,0]]
|
| | | 2990 0 8 [42] 1000 [[3,10,0]]
|
| | | 2991 0 1 [4202] 1 [[3,10,0]]
|
| | | 2992 0 4 [41] 35 [[3,10,0]]
|
| | | 2993 0 7 [] 10 [[3,10,0]]
|
| | | 2994 0 3 [] 10 [[3,10,0]]
|
| | | 2995 0 8 [42] 1000 [[3,10,0]]
|
| | | 2996 0 1 [4203] 1 [[3,10,0]]
|
| | | 2997 0 4 [41] 35 [[3,10,0]]
|
| | | 2998 0 7 [] 10 [[3,10,0]]
|
| | | 2999 0 3 [] 10 [[3,10,0]]
|
| | | 3000 0 8 [42] 1000 [[3,10,0]]
|
| | | 3001 0 1 [4204] 1 [[3,10,0]]
|
| | | 3002 0 4 [41] 35 [[3,10,0]]
|
| | | 3003 0 7 [] 10 [[3,10,0]]
|
| | | 3004 0 3 [] 10 [[3,10,0]]
|
| | | 3005 0 8 [42] 1000 [[3,10,0]]
|
| | | 3006 0 1 [4205] 1 [[3,10,0]]
|
| | | 3007 0 4 [41] 35 [[3,10,0]]
|
| | | 3008 0 7 [] 10 [[3,10,0]]
|
| | | 3009 0 3 [] 10 [[3,10,0]]
|
| | | 3010 0 8 [42] 1000 [[3,10,0]]
|
| | | 3011 0 1 [4206] 1 [[3,10,0]]
|
| | | 3012 0 4 [41] 35 [[3,10,0]]
|
| | | 3013 0 7 [] 10 [[3,10,0]]
|
| | | 3014 0 3 [] 10 [[3,10,0]]
|
| | | 3015 0 8 [42] 1000 [[3,10,0]]
|
| | | 3016 0 1 [4207] 1 [[3,10,0]]
|
| | | 3017 0 4 [41] 35 [[3,10,0]]
|
| | | 3018 0 7 [] 10 [[3,10,0]]
|
| | | 3019 0 3 [] 10 [[3,10,0]]
|
| | | 3020 0 8 [42] 1000 [[3,10,0]]
|
| | | 3021 0 1 [4208] 1 [[3,10,0]]
|
| | | 3022 0 4 [41] 35 [[3,10,0]]
|
| | | 3023 0 7 [] 10 [[3,10,0]]
|
| | | 3024 0 3 [] 10 [[3,10,0]]
|
| | | 3025 0 8 [42] 1000 [[3,10,0]]
|
| | | 3026 0 1 [4209] 1 [[3,10,0]]
|
| | | 3027 0 4 [41] 35 [[3,10,0]]
|
| | | 3028 0 7 [] 10 [[3,10,0]]
|
| | | 3029 0 3 [] 10 [[3,10,0]]
|
| | | 3030 0 8 [42] 1000 [[3,10,0]]
|
| | | 3031 0 1 [4210] 1 [[3,10,0]]
|
| | | 3032 0 4 [41] 35 [[3,10,0]]
|
| | | 3033 0 7 [] 10 [[3,10,0]]
|
| | | 3034 0 3 [] 10 [[3,10,0]]
|
| | | 3035 0 8 [42] 1000 [[3,10,0]]
|
| | | 3036 0 1 [4301] 1 [[3,10,0]]
|
| | | 3037 0 4 [41] 35 [[3,10,0]]
|
| | | 3038 0 7 [] 10 [[3,10,0]]
|
| | | 3039 0 3 [] 10 [[3,10,0]]
|
| | | 3040 0 8 [42] 1000 [[3,10,0]]
|
| | | 3041 0 1 [4302] 1 [[3,10,0]]
|
| | | 3042 0 4 [41] 35 [[3,10,0]]
|
| | | 3043 0 7 [] 10 [[3,10,0]]
|
| | | 3044 0 3 [] 10 [[3,10,0]]
|
| | | 3045 0 8 [42] 1000 [[3,10,0]]
|
| | | 3046 0 1 [4303] 1 [[3,10,0]]
|
| | | 3047 0 4 [41] 35 [[3,10,0]]
|
| | | 3048 0 7 [] 10 [[3,10,0]]
|
| | | 3049 0 3 [] 10 [[3,10,0]]
|
| | | 3050 0 8 [42] 1000 [[3,10,0]]
|
| | | 3051 0 1 [4304] 1 [[3,10,0]]
|
| | | 3052 0 4 [41] 35 [[3,10,0]]
|
| | | 3053 0 7 [] 10 [[3,10,0]]
|
| | | 3054 0 3 [] 10 [[3,10,0]]
|
| | | 3055 0 8 [42] 1000 [[3,10,0]]
|
| | | 3056 0 1 [4305] 1 [[3,10,0]]
|
| | | 3057 0 4 [41] 35 [[3,10,0]]
|
| | | 3058 0 7 [] 10 [[3,10,0]]
|
| | | 3059 0 3 [] 10 [[3,10,0]]
|
| | | 3060 0 8 [42] 1000 [[3,10,0]]
|
| | | 3061 0 1 [4306] 1 [[3,10,0]]
|
| | | 3062 0 4 [41] 35 [[3,10,0]]
|
| | | 3063 0 7 [] 10 [[3,10,0]]
|
| | | 3064 0 3 [] 10 [[3,10,0]]
|
| | | 3065 0 8 [42] 1000 [[3,10,0]]
|
| | | 3066 0 1 [4307] 1 [[3,10,0]]
|
| | | 3067 0 4 [41] 35 [[3,10,0]]
|
| | | 3068 0 7 [] 10 [[3,10,0]]
|
| | | 3069 0 3 [] 10 [[3,10,0]]
|
| | | 3070 0 8 [42] 1000 [[3,10,0]]
|
| | | 3071 0 1 [4308] 1 [[3,10,0]]
|
| | | 3072 0 4 [41] 35 [[3,10,0]]
|
| | | 3073 0 7 [] 10 [[3,10,0]]
|
| | | 3074 0 3 [] 10 [[3,10,0]]
|
| | | 3075 0 8 [42] 1000 [[3,10,0]]
|
| | | 3076 0 1 [4309] 1 [[3,10,0]]
|
| | | 3077 0 4 [41] 35 [[3,10,0]]
|
| | | 3078 0 7 [] 10 [[3,10,0]]
|
| | | 3079 0 3 [] 10 [[3,10,0]]
|
| | | 3080 0 8 [42] 1000 [[3,10,0]]
|
| | | 3081 0 1 [4310] 1 [[3,10,0]]
|
| | | 3082 0 4 [41] 35 [[3,10,0]]
|
| | | 3083 0 7 [] 10 [[3,10,0]]
|
| | | 3084 0 3 [] 10 [[3,10,0]]
|
| | | 3085 0 8 [42] 1000 [[3,10,0]]
|
| | | 3086 0 1 [4401] 1 [[3,10,0]]
|
| | | 3087 0 4 [41] 35 [[3,10,0]]
|
| | | 3088 0 7 [] 10 [[3,10,0]]
|
| | | 3089 0 3 [] 10 [[3,10,0]]
|
| | | 3090 0 8 [42] 1000 [[3,10,0]]
|
| | | 3091 0 1 [4402] 1 [[3,10,0]]
|
| | | 3092 0 4 [41] 35 [[3,10,0]]
|
| | | 3093 0 7 [] 10 [[3,10,0]]
|
| | | 3094 0 3 [] 10 [[3,10,0]]
|
| | | 3095 0 8 [42] 1000 [[3,10,0]]
|
| | | 3096 0 1 [4403] 1 [[3,10,0]]
|
| | | 3097 0 4 [41] 35 [[3,10,0]]
|
| | | 3098 0 7 [] 10 [[3,10,0]]
|
| | | 3099 0 3 [] 10 [[3,10,0]]
|
| | | 3100 0 8 [42] 1000 [[3,10,0]]
|
| | | 3101 0 1 [4404] 1 [[3,10,0]]
|
| | | 3102 0 4 [41] 35 [[3,10,0]]
|
| | | 3103 0 7 [] 10 [[3,10,0]]
|
| | | 3104 0 3 [] 10 [[3,10,0]]
|
| | | 3105 0 8 [42] 1000 [[3,10,0]]
|
| | | 3106 0 1 [4405] 1 [[3,10,0]]
|
| | | 3107 0 4 [41] 35 [[3,10,0]]
|
| | | 3108 0 7 [] 10 [[3,10,0]]
|
| | | 3109 0 3 [] 10 [[3,10,0]]
|
| | | 3110 0 8 [42] 1000 [[3,10,0]]
|
| | | 3111 0 1 [4406] 1 [[3,10,0]]
|
| | | 3112 0 4 [41] 35 [[3,10,0]]
|
| | | 3113 0 7 [] 10 [[3,10,0]]
|
| | | 3114 0 3 [] 10 [[3,10,0]]
|
| | | 3115 0 8 [42] 1000 [[3,10,0]]
|
| | | 3116 0 1 [4407] 1 [[3,10,0]]
|
| | | 3117 0 4 [41] 35 [[3,10,0]]
|
| | | 3118 0 7 [] 10 [[3,10,0]]
|
| | | 3119 0 3 [] 10 [[3,10,0]]
|
| | | 3120 0 8 [42] 1000 [[3,10,0]]
|
| | | 3121 0 1 [4408] 1 [[3,10,0]]
|
| | | 3122 0 4 [41] 35 [[3,10,0]]
|
| | | 3123 0 7 [] 10 [[3,10,0]]
|
| | | 3124 0 3 [] 10 [[3,10,0]]
|
| | | 3125 0 8 [42] 1000 [[3,10,0]]
|
| | | 3126 0 1 [4409] 1 [[3,10,0]]
|
| | | 3127 0 4 [41] 35 [[3,10,0]]
|
| | | 3128 0 7 [] 10 [[3,10,0]]
|
| | | 3129 0 3 [] 10 [[3,10,0]]
|
| | | 3130 0 8 [42] 1000 [[3,10,0]]
|
| | | 3131 0 1 [4410] 1 [[3,10,0]]
|
| | | 3132 0 4 [41] 35 [[3,10,0]]
|
| | | 3133 0 7 [] 10 [[3,10,0]]
|
| | | 3134 0 3 [] 10 [[3,10,0]]
|
| | | 3135 0 8 [42] 1000 [[3,10,0]]
|
| | | 3136 0 1 [4501] 1 [[3,10,0]]
|
| | | 3137 0 4 [41] 35 [[3,10,0]]
|
| | | 3138 0 7 [] 10 [[3,10,0]]
|
| | | 3139 0 3 [] 10 [[3,10,0]]
|
| | | 3140 0 8 [42] 1000 [[3,10,0]]
|
| | | 3141 0 1 [4502] 1 [[3,10,0]]
|
| | | 3142 0 4 [41] 35 [[3,10,0]]
|
| | | 3143 0 7 [] 10 [[3,10,0]]
|
| | | 3144 0 3 [] 10 [[3,10,0]]
|
| | | 3145 0 8 [42] 1000 [[3,10,0]]
|
| | | 3146 0 1 [4503] 1 [[3,10,0]]
|
| | | 3147 0 4 [41] 35 [[3,10,0]]
|
| | | 3148 0 7 [] 10 [[3,10,0]]
|
| | | 3149 0 3 [] 10 [[3,10,0]]
|
| | | 3150 0 8 [42] 1000 [[3,10,0]]
|
| | | 3151 0 1 [4504] 1 [[3,10,0]]
|
| | | 3152 0 4 [41] 35 [[3,10,0]]
|
| | | 3153 0 7 [] 10 [[3,10,0]]
|
| | | 3154 0 3 [] 10 [[3,10,0]]
|
| | | 3155 0 8 [42] 1000 [[3,10,0]]
|
| | | 3156 0 1 [4505] 1 [[3,10,0]]
|
| | | 3157 0 4 [41] 35 [[3,10,0]]
|
| | | 3158 0 7 [] 10 [[3,10,0]]
|
| | | 3159 0 3 [] 10 [[3,10,0]]
|
| | | 3160 0 8 [42] 1000 [[3,10,0]]
|
| | | 3161 0 1 [4506] 1 [[3,10,0]]
|
| | | 3162 0 4 [41] 35 [[3,10,0]]
|
| | | 3163 0 7 [] 10 [[3,10,0]]
|
| | | 3164 0 3 [] 10 [[3,10,0]]
|
| | | 3165 0 8 [42] 1000 [[3,10,0]]
|
| | | 3166 0 1 [4507] 1 [[3,10,0]]
|
| | | 3167 0 4 [41] 35 [[3,10,0]]
|
| | | 3168 0 7 [] 10 [[3,10,0]]
|
| | | 3169 0 3 [] 10 [[3,10,0]]
|
| | | 3170 0 8 [42] 1000 [[3,10,0]]
|
| | | 3171 0 1 [4508] 1 [[3,10,0]]
|
| | | 3172 0 4 [41] 35 [[3,10,0]]
|
| | | 3173 0 7 [] 10 [[3,10,0]]
|
| | | 3174 0 3 [] 10 [[3,10,0]]
|
| | | 3175 0 8 [42] 1000 [[3,10,0]]
|
| | | 3176 0 1 [4509] 1 [[3,10,0]]
|
| | | 3177 0 4 [41] 35 [[3,10,0]]
|
| | | 3178 0 7 [] 10 [[3,10,0]]
|
| | | 3179 0 3 [] 10 [[3,10,0]]
|
| | | 3180 0 8 [42] 1000 [[3,10,0]]
|
| | | 3181 0 1 [4510] 1 [[3,10,0]]
|
| | | 3182 0 4 [41] 35 [[3,10,0]]
|
| | | 3183 0 7 [] 10 [[3,10,0]]
|
| | | 3184 0 3 [] 10 [[3,10,0]]
|
| | | 3185 0 8 [42] 1000 [[3,10,0]]
|
| | | 3186 0 1 [4601] 1 [[3,10,0]]
|
| | | 3187 0 4 [41] 35 [[3,10,0]]
|
| | | 3188 0 7 [] 10 [[3,10,0]]
|
| | | 3189 0 3 [] 10 [[3,10,0]]
|
| | | 3190 0 8 [42] 1000 [[3,10,0]]
|
| | | 3191 0 1 [4602] 1 [[3,10,0]]
|
| | | 3192 0 4 [41] 35 [[3,10,0]]
|
| | | 3193 0 7 [] 10 [[3,10,0]]
|
| | | 3194 0 3 [] 10 [[3,10,0]]
|
| | | 3195 0 8 [42] 1000 [[3,10,0]]
|
| | | 3196 0 1 [4603] 1 [[3,10,0]]
|
| | | 3197 0 4 [41] 35 [[3,10,0]]
|
| | | 3198 0 7 [] 10 [[3,10,0]]
|
| | | 3199 0 3 [] 10 [[3,10,0]]
|
| | | 3200 0 8 [42] 1000 [[3,10,0]]
|
| | | 3201 0 1 [4604] 1 [[3,10,0]]
|
| | | 3202 0 4 [41] 35 [[3,10,0]]
|
| | | 3203 0 7 [] 10 [[3,10,0]]
|
| | | 3204 0 3 [] 10 [[3,10,0]]
|
| | | 3205 0 8 [42] 1000 [[3,10,0]]
|
| | | 3206 0 1 [4605] 1 [[3,10,0]]
|
| | | 3207 0 4 [41] 35 [[3,10,0]]
|
| | | 3208 0 7 [] 10 [[3,10,0]]
|
| | | 3209 0 3 [] 10 [[3,10,0]]
|
| | | 3210 0 8 [42] 1000 [[3,10,0]]
|
| | | 3211 0 1 [4606] 1 [[3,10,0]]
|
| | | 3212 0 4 [41] 35 [[3,10,0]]
|
| | | 3213 0 7 [] 10 [[3,10,0]]
|
| | | 3214 0 3 [] 10 [[3,10,0]]
|
| | | 3215 0 8 [42] 1000 [[3,10,0]]
|
| | | 3216 0 1 [4607] 1 [[3,10,0]]
|
| | | 3217 0 4 [41] 35 [[3,10,0]]
|
| | | 3218 0 7 [] 10 [[3,10,0]]
|
| | | 3219 0 3 [] 10 [[3,10,0]]
|
| | | 3220 0 8 [42] 1000 [[3,10,0]]
|
| | | 3221 0 1 [4608] 1 [[3,10,0]]
|
| | | 3222 0 4 [41] 35 [[3,10,0]]
|
| | | 3223 0 7 [] 10 [[3,10,0]]
|
| | | 3224 0 3 [] 10 [[3,10,0]]
|
| | | 3225 0 8 [42] 1000 [[3,10,0]]
|
| | | 3226 0 1 [4609] 1 [[3,10,0]]
|
| | | 3227 0 4 [41] 35 [[3,10,0]]
|
| | | 3228 0 7 [] 10 [[3,10,0]]
|
| | | 3229 0 3 [] 10 [[3,10,0]]
|
| | | 3230 0 8 [42] 1000 [[3,10,0]]
|
| | | 3231 0 1 [4610] 1 [[3,10,0]]
|
| | | 3232 0 4 [41] 35 [[3,10,0]]
|
| | | 3233 0 7 [] 10 [[3,10,0]]
|
| | | 3234 0 3 [] 10 [[3,10,0]]
|
| | | 3235 0 8 [42] 1000 [[3,10,0]]
|
| | | 3236 0 1 [4701] 1 [[3,10,0]]
|
| | | 3237 0 4 [41] 35 [[3,10,0]]
|
| | | 3238 0 7 [] 10 [[3,10,0]]
|
| | | 3239 0 3 [] 10 [[3,10,0]]
|
| | | 3240 0 8 [42] 1000 [[3,10,0]]
|
| | | 3241 0 1 [4702] 1 [[3,10,0]]
|
| | | 3242 0 4 [41] 35 [[3,10,0]]
|
| | | 3243 0 7 [] 10 [[3,10,0]]
|
| | | 3244 0 3 [] 10 [[3,10,0]]
|
| | | 3245 0 8 [42] 1000 [[3,10,0]]
|
| | | 3246 0 1 [4703] 1 [[3,10,0]]
|
| | | 3247 0 4 [41] 35 [[3,10,0]]
|
| | | 3248 0 7 [] 10 [[3,10,0]]
|
| | | 3249 0 3 [] 10 [[3,10,0]]
|
| | | 3250 0 8 [42] 1000 [[3,10,0]]
|
| | | 3251 0 1 [4704] 1 [[3,10,0]]
|
| | | 3252 0 4 [41] 35 [[3,10,0]]
|
| | | 3253 0 7 [] 10 [[3,10,0]]
|
| | | 3254 0 3 [] 10 [[3,10,0]]
|
| | | 3255 0 8 [42] 1000 [[3,10,0]]
|
| | | 3256 0 1 [4705] 1 [[3,10,0]]
|
| | | 3257 0 4 [41] 35 [[3,10,0]]
|
| | | 3258 0 7 [] 10 [[3,10,0]]
|
| | | 3259 0 3 [] 10 [[3,10,0]]
|
| | | 3260 0 8 [42] 1000 [[3,10,0]]
|
| | | 3261 0 1 [4706] 1 [[3,10,0]]
|
| | | 3262 0 4 [41] 35 [[3,10,0]]
|
| | | 3263 0 7 [] 10 [[3,10,0]]
|
| | | 3264 0 3 [] 10 [[3,10,0]]
|
| | | 3265 0 8 [42] 1000 [[3,10,0]]
|
| | | 3266 0 1 [4707] 1 [[3,10,0]]
|
| | | 3267 0 4 [41] 35 [[3,10,0]]
|
| | | 3268 0 7 [] 10 [[3,10,0]]
|
| | | 3269 0 3 [] 10 [[3,10,0]]
|
| | | 3270 0 8 [42] 1000 [[3,10,0]]
|
| | | 3271 0 1 [4708] 1 [[3,10,0]]
|
| | | 3272 0 4 [41] 35 [[3,10,0]]
|
| | | 3273 0 7 [] 10 [[3,10,0]]
|
| | | 3274 0 3 [] 10 [[3,10,0]]
|
| | | 3275 0 8 [42] 1000 [[3,10,0]]
|
| | | 3276 0 1 [4709] 1 [[3,10,0]]
|
| | | 3277 0 4 [41] 35 [[3,10,0]]
|
| | | 3278 0 7 [] 10 [[3,10,0]]
|
| | | 3279 0 3 [] 10 [[3,10,0]]
|
| | | 3280 0 8 [42] 1000 [[3,10,0]]
|
| | | 3281 0 1 [4710] 1 [[3,10,0]]
|
| | | 3282 0 4 [41] 35 [[3,10,0]]
|
| | | 3283 0 7 [] 10 [[3,10,0]]
|
| | | 3284 0 3 [] 10 [[3,10,0]]
|
| | | 3285 0 8 [42] 1000 [[3,10,0]]
|
| | | 3286 0 1 [4801] 1 [[3,10,0]]
|
| | | 3287 0 4 [41] 35 [[3,10,0]]
|
| | | 3288 0 7 [] 10 [[3,10,0]]
|
| | | 3289 0 3 [] 10 [[3,10,0]]
|
| | | 3290 0 8 [42] 1000 [[3,10,0]]
|
| | | 3291 0 1 [4802] 1 [[3,10,0]]
|
| | | 3292 0 4 [41] 35 [[3,10,0]]
|
| | | 3293 0 7 [] 10 [[3,10,0]]
|
| | | 3294 0 3 [] 10 [[3,10,0]]
|
| | | 3295 0 8 [42] 1000 [[3,10,0]]
|
| | | 3296 0 1 [4803] 1 [[3,10,0]]
|
| | | 3297 0 4 [41] 35 [[3,10,0]]
|
| | | 3298 0 7 [] 10 [[3,10,0]]
|
| | | 3299 0 3 [] 10 [[3,10,0]]
|
| | | 3300 0 8 [42] 1000 [[3,10,0]]
|
| | | 3301 0 1 [4804] 1 [[3,10,0]]
|
| | | 3302 0 4 [41] 35 [[3,10,0]]
|
| | | 3303 0 7 [] 10 [[3,10,0]]
|
| | | 3304 0 3 [] 10 [[3,10,0]]
|
| | | 3305 0 8 [42] 1000 [[3,10,0]]
|
| | | 3306 0 1 [4805] 1 [[3,10,0]]
|
| | | 3307 0 4 [41] 35 [[3,10,0]]
|
| | | 3308 0 7 [] 10 [[3,10,0]]
|
| | | 3309 0 3 [] 10 [[3,10,0]]
|
| | | 3310 0 8 [42] 1000 [[3,10,0]]
|
| | | 3311 0 1 [4806] 1 [[3,10,0]]
|
| | | 3312 0 4 [41] 35 [[3,10,0]]
|
| | | 3313 0 7 [] 10 [[3,10,0]]
|
| | | 3314 0 3 [] 10 [[3,10,0]]
|
| | | 3315 0 8 [42] 1000 [[3,10,0]]
|
| | | 3316 0 1 [4807] 1 [[3,10,0]]
|
| | | 3317 0 4 [41] 35 [[3,10,0]]
|
| | | 3318 0 7 [] 10 [[3,10,0]]
|
| | | 3319 0 3 [] 10 [[3,10,0]]
|
| | | 3320 0 8 [42] 1000 [[3,10,0]]
|
| | | 3321 0 1 [4808] 1 [[3,10,0]]
|
| | | 3322 0 4 [41] 35 [[3,10,0]]
|
| | | 3323 0 7 [] 10 [[3,10,0]]
|
| | | 3324 0 3 [] 10 [[3,10,0]]
|
| | | 3325 0 8 [42] 1000 [[3,10,0]]
|
| | | 3326 0 1 [4809] 1 [[3,10,0]]
|
| | | 3327 0 4 [41] 35 [[3,10,0]]
|
| | | 3328 0 7 [] 10 [[3,10,0]]
|
| | | 3329 0 3 [] 10 [[3,10,0]]
|
| | | 3330 0 8 [42] 1000 [[3,10,0]]
|
| | | 3331 0 1 [4810] 1 [[3,10,0]]
|
| | | 3332 0 4 [41] 35 [[3,10,0]]
|
| | | 3333 0 7 [] 10 [[3,10,0]]
|
| | | 3334 0 3 [] 10 [[3,10,0]]
|
| | | 3335 0 8 [42] 1000 [[3,10,0]]
|
| | | 3336 0 1 [4901] 1 [[3,10,0]]
|
| | | 3337 0 4 [41] 35 [[3,10,0]]
|
| | | 3338 0 7 [] 10 [[3,10,0]]
|
| | | 3339 0 3 [] 10 [[3,10,0]]
|
| | | 3340 0 8 [42] 1000 [[3,10,0]]
|
| | | 3341 0 1 [4902] 1 [[3,10,0]]
|
| | | 3342 0 4 [41] 35 [[3,10,0]]
|
| | | 3343 0 7 [] 10 [[3,10,0]]
|
| | | 3344 0 3 [] 10 [[3,10,0]]
|
| | | 3345 0 8 [42] 1000 [[3,10,0]]
|
| | | 3346 0 1 [4903] 1 [[3,10,0]]
|
| | | 3347 0 4 [41] 35 [[3,10,0]]
|
| | | 3348 0 7 [] 10 [[3,10,0]]
|
| | | 3349 0 3 [] 10 [[3,10,0]]
|
| | | 3350 0 8 [42] 1000 [[3,10,0]]
|
| | | 3351 0 1 [4904] 1 [[3,10,0]]
|
| | | 3352 0 4 [41] 35 [[3,10,0]]
|
| | | 3353 0 7 [] 10 [[3,10,0]]
|
| | | 3354 0 3 [] 10 [[3,10,0]]
|
| | | 3355 0 8 [42] 1000 [[3,10,0]]
|
| | | 3356 0 1 [4905] 1 [[3,10,0]]
|
| | | 3357 0 4 [41] 35 [[3,10,0]]
|
| | | 3358 0 7 [] 10 [[3,10,0]]
|
| | | 3359 0 3 [] 10 [[3,10,0]]
|
| | | 3360 0 8 [42] 1000 [[3,10,0]]
|
| | | 3361 0 1 [4906] 1 [[3,10,0]]
|
| | | 3362 0 4 [41] 35 [[3,10,0]]
|
| | | 3363 0 7 [] 10 [[3,10,0]]
|
| | | 3364 0 3 [] 10 [[3,10,0]]
|
| | | 3365 0 8 [42] 1000 [[3,10,0]]
|
| | | 3366 0 1 [4907] 1 [[3,10,0]]
|
| | | 3367 0 4 [41] 35 [[3,10,0]]
|
| | | 3368 0 7 [] 10 [[3,10,0]]
|
| | | 3369 0 3 [] 10 [[3,10,0]]
|
| | | 3370 0 8 [42] 1000 [[3,10,0]]
|
| | | 3371 0 1 [4908] 1 [[3,10,0]]
|
| | | 3372 0 4 [41] 35 [[3,10,0]]
|
| | | 3373 0 7 [] 10 [[3,10,0]]
|
| | | 3374 0 3 [] 10 [[3,10,0]]
|
| | | 3375 0 8 [42] 1000 [[3,10,0]]
|
| | | 3376 0 1 [4909] 1 [[3,10,0]]
|
| | | 3377 0 4 [41] 35 [[3,10,0]]
|
| | | 3378 0 7 [] 10 [[3,10,0]]
|
| | | 3379 0 3 [] 10 [[3,10,0]]
|
| | | 3380 0 8 [42] 1000 [[3,10,0]]
|
| | | 3381 0 1 [4910] 1 [[3,10,0]]
|
| | | 3382 0 4 [41] 35 [[3,10,0]]
|
| | | 3383 0 7 [] 10 [[3,10,0]]
|
| | | 3384 0 3 [] 10 [[3,10,0]]
|
| | | 3385 0 8 [42] 1000 [[3,10,0]]
|
| | | 3386 0 1 [5001] 1 [[3,10,0]]
|
| | | 3387 0 4 [41] 35 [[3,10,0]]
|
| | | 3388 0 7 [] 10 [[3,10,0]]
|
| | | 3389 0 3 [] 10 [[3,10,0]]
|
| | | 3390 0 8 [42] 1000 [[3,10,0]]
|
| | | 3391 0 1 [5002] 1 [[3,10,0]]
|
| | | 3392 0 4 [41] 35 [[3,10,0]]
|
| | | 3393 0 7 [] 10 [[3,10,0]]
|
| | | 3394 0 3 [] 10 [[3,10,0]]
|
| | | 3395 0 8 [42] 1000 [[3,10,0]]
|
| | | 3396 0 1 [5003] 1 [[3,10,0]]
|
| | | 3397 0 4 [41] 35 [[3,10,0]]
|
| | | 3398 0 7 [] 10 [[3,10,0]]
|
| | | 3399 0 3 [] 10 [[3,10,0]]
|
| | | 3400 0 8 [42] 1000 [[3,10,0]]
|
| | | 3401 0 1 [5004] 1 [[3,10,0]]
|
| | | 3402 0 4 [41] 35 [[3,10,0]]
|
| | | 3403 0 7 [] 10 [[3,10,0]]
|
| | | 3404 0 3 [] 10 [[3,10,0]]
|
| | | 3405 0 8 [42] 1000 [[3,10,0]]
|
| | | 3406 0 1 [5005] 1 [[3,10,0]]
|
| | | 3407 0 4 [41] 35 [[3,10,0]]
|
| | | 3408 0 7 [] 10 [[3,10,0]]
|
| | | 3409 0 3 [] 10 [[3,10,0]]
|
| | | 3410 0 8 [42] 1000 [[3,10,0]]
|
| | | 3411 0 1 [5006] 1 [[3,10,0]]
|
| | | 3412 0 4 [41] 35 [[3,10,0]]
|
| | | 3413 0 7 [] 10 [[3,10,0]]
|
| | | 3414 0 3 [] 10 [[3,10,0]]
|
| | | 3415 0 8 [42] 1000 [[3,10,0]]
|
| | | 3416 0 1 [5007] 1 [[3,10,0]]
|
| | | 3417 0 4 [41] 35 [[3,10,0]]
|
| | | 3418 0 7 [] 10 [[3,10,0]]
|
| | | 3419 0 3 [] 10 [[3,10,0]]
|
| | | 3420 0 8 [42] 1000 [[3,10,0]]
|
| | | 3421 0 1 [5008] 1 [[3,10,0]]
|
| | | 3422 0 4 [41] 35 [[3,10,0]]
|
| | | 3423 0 7 [] 10 [[3,10,0]]
|
| | | 3424 0 3 [] 10 [[3,10,0]]
|
| | | 3425 0 8 [42] 1000 [[3,10,0]]
|
| | | 3426 0 1 [5009] 1 [[3,10,0]]
|
| | | 3427 0 4 [41] 35 [[3,10,0]]
|
| | | 3428 0 7 [] 10 [[3,10,0]]
|
| | | 3429 0 3 [] 10 [[3,10,0]]
|
| | | 3430 0 8 [42] 1000 [[3,10,0]]
|
| | | 3431 0 1 [5010] 1 [[3,10,0]]
|
| | |
| | | TreeLV LVUPNeedMoney LVUPNeedTime EquipColorRateList
|
| | | 1 100 300 [6900,2000,1000,100]
|
| | | 2 600 900 [5399,2500,1800,281,20]
|
| | | 1 300 300 [6900,2000,1000,100]
|
| | | 2 2500 900 [5399,2500,1800,281,20]
|
| | | 3 4500 1800 [4200,3000,2200,540,60]
|
| | | 4 6000 2700 [3100,3499,2600,701,90,10]
|
| | | 5 12000 10200 [1900,3900,3000,1000,180,20]
|
| | | 6 35000 20100 [1400,3600,3400,1300,260,36,4]
|
| | | 7 70000 40200 [900,3300,3800,1600,320,72,8]
|
| | | 8 200000 80100 [363,3000,4200,1900,400,120,15,2]
|
| | | 9 330000 140100 [0,2591,4500,2200,500,180,25,4]
|
| | | 10 550000 240000 [0,1786,4800,2500,620,240,45,8,1]
|
| | | 11 760000 500100 [0,0,5078,3220,880,550,200,63,8,1]
|
| | | 12 1000000 660300 [0,0,0,5141,3052,1012,519,205,62,8,1]
|
| | | 13 1300000 821700 [0,0,0,0,5339,3010,922,461,200,59,8,1]
|
| | | 14 1650000 1018200 [0,0,0,0,0,5340,2965,944,498,186,58,8,1]
|
| | | 15 2100000 1141800 [0,0,0,0,0,0,5152,3098,986,497,195,63,8,1]
|
| | | 16 2550000 1341600 [0,0,0,0,0,0,0,5327,2946,976,491,191,61,7,1]
|
| | | 17 3100000 1481100 [0,0,0,0,0,0,0,0,5501,2794,966,485,187,59,7,1]
|
| | | 18 3600000 1678200 [0,0,0,0,0,0,0,0,0,5676,2642,956,479,183,57,6,1]
|
| | | 19 4150000 1833300 [0,0,0,0,0,0,0,0,0,0,5850,2490,946,473,179,55,6,1]
|
| | | 20 4700000 2017200 [0,0,0,0,0,0,0,0,0,0,0,6025,2338,936,467,175,53,5,1]
|
| | | 21 5300000 2183100 [0,0,0,0,0,0,0,0,0,0,0,0,6199,2186,926,461,171,51,5,1]
|
| | | 22 5900000 2359800 [0,0,0,0,0,0,0,0,0,0,0,0,0,6374,2034,916,455,167,49,4,1]
|
| | | 23 7000000 2626500 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,6548,1882,906,449,163,47,4,1]
|
| | | 24 8500000 3073200 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6723,1730,896,443,159,45,3,1]
|
| | | 25 0 0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6897,1578,886,437,155,43,3,1]
|
| | | 4 10000 2700 [3100,3499,2600,701,90,10]
|
| | | 5 30000 10200 [1900,3900,3000,1000,180,20]
|
| | | 6 70000 20100 [1401,3600,3400,1300,260,35,4]
|
| | | 7 150000 40200 [900,3300,3800,1600,320,72,8]
|
| | | 8 300000 80100 [363,3000,4200,1900,400,120,15,2]
|
| | | 9 450000 140100 [0,2591,4500,2200,500,180,25,4]
|
| | | 10 500000 240000 [0,1786,4800,2500,620,240,45,8,1]
|
| | | 11 650000 500100 [0,0,5298,2956,986,493,198,60,8,1]
|
| | | 12 800000 780000 [0,0,0,5140,3052,1012,519,205,62,9,1]
|
| | | 13 950000 1400100 [0,0,0,0,5339,3010,922,461,200,59,8,1]
|
| | | 14 1100000 2000100 [0,0,0,0,0,5340,2965,944,498,186,58,8,1]
|
| | | 15 1400000 2333100 [0,0,0,0,0,0,5152,3098,986,497,195,63,8,1]
|
| | | 16 1700000 2600100 [0,0,0,0,0,0,0,5233,3022,979,489,206,61,9,1]
|
| | | 17 2200000 2700000 [0,0,0,0,0,0,0,0,5353,2873,1018,497,187,62,9,1]
|
| | | 18 2700000 2800200 [0,0,0,0,0,0,0,0,0,5248,2981,987,510,206,59,8,1]
|
| | | 19 3400000 2900100 [0,0,0,0,0,0,0,0,0,0,5307,2947,1003,481,193,60,8,1]
|
| | | 20 4000000 3000000 [0,0,0,0,0,0,0,0,0,0,0,5307,2947,1003,481,194,60,8,1]
|
| | | 21 5000000 3100200 [0,0,0,0,0,0,0,0,0,0,0,0,5376,2898,977,482,194,64,8,1]
|
| | | 22 5500000 3200100 [0,0,0,0,0,0,0,0,0,0,0,0,0,5412,2896,939,493,188,63,9]
|
| | | 23 6000000 3300000 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,5370,2916,954,501,193,57,8,1]
|
| | | 24 6500000 3400200 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5350,2887,998,503,194,59,8,1]
|