From a10eea6e4ce647061813519d5b0ea496f29495b9 Mon Sep 17 00:00:00 2001
From: leonard Wu <364452445@qq.com>
Date: 星期四, 09 八月 2018 09:47:08 +0800
Subject: [PATCH] 同步最新svn内容
---
Assets/Plugins/PostProcessing/Resources/Shaders/ACES.cginc | 2666 +++++++++++++++++++++++++++++-----------------------------
1 files changed, 1,333 insertions(+), 1,333 deletions(-)
diff --git a/Assets/Plugins/PostProcessing/Resources/Shaders/ACES.cginc b/Assets/Plugins/PostProcessing/Resources/Shaders/ACES.cginc
index fa996b9..7be42b6 100644
--- a/Assets/Plugins/PostProcessing/Resources/Shaders/ACES.cginc
+++ b/Assets/Plugins/PostProcessing/Resources/Shaders/ACES.cginc
@@ -1,1333 +1,1333 @@
-#ifndef __ACES__
-#define __ACES__
-
-/**
- * https://github.com/ampas/aces-dev
- *
- * Academy Color Encoding System (ACES) software and tools are provided by the
- * Academy under the following terms and conditions: A worldwide, royalty-free,
- * non-exclusive right to copy, modify, create derivatives, and use, in source and
- * binary forms, is hereby granted, subject to acceptance of this license.
- *
- * Copyright 2015 Academy of Motion Picture Arts and Sciences (A.M.P.A.S.).
- * Portions contributed by others as indicated. All rights reserved.
- *
- * Performance of any of the aforementioned acts indicates acceptance to be bound
- * by the following terms and conditions:
- *
- * * Copies of source code, in whole or in part, must retain the above copyright
- * notice, this list of conditions and the Disclaimer of Warranty.
- *
- * * Use in binary form must retain the above copyright notice, this list of
- * conditions and the Disclaimer of Warranty in the documentation and/or other
- * materials provided with the distribution.
- *
- * * Nothing in this license shall be deemed to grant any rights to trademarks,
- * copyrights, patents, trade secrets or any other intellectual property of
- * A.M.P.A.S. or any contributors, except as expressly stated herein.
- *
- * * Neither the name "A.M.P.A.S." nor the name of any other contributors to this
- * software may be used to endorse or promote products derivative of or based on
- * this software without express prior written permission of A.M.P.A.S. or the
- * contributors, as appropriate.
- *
- * This license shall be construed pursuant to the laws of the State of
- * California, and any disputes related thereto shall be subject to the
- * jurisdiction of the courts therein.
- *
- * Disclaimer of Warranty: THIS SOFTWARE IS PROVIDED BY A.M.P.A.S. AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- * THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
- * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL A.M.P.A.S., OR ANY
- * CONTRIBUTORS OR DISTRIBUTORS, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, RESITUTIONARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
- * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, THE ACADEMY SPECIFICALLY
- * DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER RELATED TO PATENT OR
- * OTHER INTELLECTUAL PROPERTY RIGHTS IN THE ACADEMY COLOR ENCODING SYSTEM, OR
- * APPLICATIONS THEREOF, HELD BY PARTIES OTHER THAN A.M.P.A.S.,WHETHER DISCLOSED OR
- * UNDISCLOSED.
- */
-
-//#define CUSTOM_WHITE_POINT
-
-/*
- Basic usage :
-
- half4 color = tex2D(_MainTex, i.uv);
- half3 aces = unity_to_ACES(color.rgb);
- half3 oces = RRT(aces);
- half3 odt = ODT_RGBmonitor_100nits_dim(oces);
- return half4(odt, color.a);
-
- If you want to customize the white point, uncomment the previous define and set uniforms accordingly:
-
- float whitePoint = 48f; // Default ACES value
- material.SetFloat("CINEMA_WHITE", whitePoint);
- material.SetFloat("CINEMA_DARK", whitePoint / 2400f);
- */
-
-#include "Common.cginc"
-
-#define ACEScc_MAX 1.4679964
-#define ACEScc_MIDGRAY 0.4135884
-
-//
-// Precomputed matrices (pre-transposed)
-// See https://github.com/ampas/aces-dev/blob/master/transforms/ctl/README-MATRIX.md
-//
-static const half3x3 sRGB_2_AP0 = {
- 0.4397010, 0.3829780, 0.1773350,
- 0.0897923, 0.8134230, 0.0967616,
- 0.0175440, 0.1115440, 0.8707040
-};
-
-static const half3x3 sRGB_2_AP1 = {
- 0.61319, 0.33951, 0.04737,
- 0.07021, 0.91634, 0.01345,
- 0.02062, 0.10957, 0.86961
-};
-
-static const half3x3 AP0_2_sRGB = {
- 2.52169, -1.13413, -0.38756,
- -0.27648, 1.37272, -0.09624,
- -0.01538, -0.15298, 1.16835,
-};
-
-static const half3x3 AP1_2_sRGB = {
- 1.70505, -0.62179, -0.08326,
- -0.13026, 1.14080, -0.01055,
- -0.02400, -0.12897, 1.15297,
-};
-
-static const half3x3 AP0_2_AP1_MAT = {
- 1.4514393161, -0.2365107469, -0.2149285693,
- -0.0765537734, 1.1762296998, -0.0996759264,
- 0.0083161484, -0.0060324498, 0.9977163014
-};
-
-static const half3x3 AP1_2_AP0_MAT = {
- 0.6954522414, 0.1406786965, 0.1638690622,
- 0.0447945634, 0.8596711185, 0.0955343182,
- -0.0055258826, 0.0040252103, 1.0015006723
-};
-
-static const half3x3 AP1_2_XYZ_MAT = {
- 0.6624541811, 0.1340042065, 0.1561876870,
- 0.2722287168, 0.6740817658, 0.0536895174,
- -0.0055746495, 0.0040607335, 1.0103391003
-};
-
-static const half3x3 XYZ_2_AP1_MAT = {
- 1.6410233797, -0.3248032942, -0.2364246952,
- -0.6636628587, 1.6153315917, 0.0167563477,
- 0.0117218943, -0.0082844420, 0.9883948585
-};
-
-static const half3x3 XYZ_2_REC709_MAT = {
- 3.2409699419, -1.5373831776, -0.4986107603,
- -0.9692436363, 1.8759675015, 0.0415550574,
- 0.0556300797, -0.2039769589, 1.0569715142
-};
-
-static const half3x3 XYZ_2_REC2020_MAT = {
- 1.7166511880, -0.3556707838, -0.2533662814,
- -0.6666843518, 1.6164812366, 0.0157685458,
- 0.0176398574, -0.0427706133, 0.9421031212
-};
-
-static const half3x3 XYZ_2_DCIP3_MAT = {
- 2.7253940305, -1.0180030062, -0.4401631952,
- -0.7951680258, 1.6897320548, 0.0226471906,
- 0.0412418914, -0.0876390192, 1.1009293786
-};
-
-static const half3 AP1_RGB2Y = half3(0.272229, 0.674082, 0.0536895);
-
-static const half3x3 RRT_SAT_MAT = {
- 0.9708890, 0.0269633, 0.00214758,
- 0.0108892, 0.9869630, 0.00214758,
- 0.0108892, 0.0269633, 0.96214800
-};
-
-static const half3x3 ODT_SAT_MAT = {
- 0.949056, 0.0471857, 0.00375827,
- 0.019056, 0.9771860, 0.00375827,
- 0.019056, 0.0471857, 0.93375800
-};
-
-static const half3x3 D60_2_D65_CAT = {
- 0.98722400, -0.00611327, 0.0159533,
- -0.00759836, 1.00186000, 0.0053302,
- 0.00307257, -0.00509595, 1.0816800
-};
-
-//
-// Unity to ACES
-//
-// converts Unity raw (sRGB primaries) to
-// ACES2065-1 (AP0 w/ linear encoding)
-//
-half3 unity_to_ACES(half3 x)
-{
- x = mul(sRGB_2_AP0, x);
- return x;
-}
-
-//
-// ACES to Unity
-//
-// converts ACES2065-1 (AP0 w/ linear encoding)
-// Unity raw (sRGB primaries) to
-//
-half3 ACES_to_unity(half3 x)
-{
- x = mul(AP0_2_sRGB, x);
- return x;
-}
-
-//
-// Unity to ACEScg
-//
-// converts Unity raw (sRGB primaries) to
-// ACEScg (AP1 w/ linear encoding)
-//
-half3 unity_to_ACEScg(half3 x)
-{
- x = mul(sRGB_2_AP1, x);
- return x;
-}
-
-//
-// ACEScg to Unity
-//
-// converts ACEScg (AP1 w/ linear encoding) to
-// Unity raw (sRGB primaries)
-//
-half3 ACEScg_to_unity(half3 x)
-{
- x = mul(AP1_2_sRGB, x);
- return x;
-}
-
-//
-// ACES Color Space Conversion - ACES to ACEScc
-//
-// converts ACES2065-1 (AP0 w/ linear encoding) to
-// ACEScc (AP1 w/ logarithmic encoding)
-//
-// This transform follows the formulas from section 4.4 in S-2014-003
-//
-half ACES_to_ACEScc(half x)
-{
- if (x <= 0.0)
- return -0.35828683; // = (log2(pow(2.0, -15.0) * 0.5) + 9.72) / 17.52
- else if (x < pow(2.0, -15.0))
- return (log2(pow(2.0, -16.0) + x * 0.5) + 9.72) / 17.52;
- else // (x >= pow(2.0, -15.0))
- return (log2(x) + 9.72) / 17.52;
-}
-
-half3 ACES_to_ACEScc(half3 x)
-{
- x = clamp(x, 0.0, HALF_MAX);
-
- // x is clamped to [0, HALF_MAX], skip the <= 0 check
- return (x < 0.00003051757) ? (log2(0.00001525878 + x * 0.5) + 9.72) / 17.52 : (log2(x) + 9.72) / 17.52;
-
- /*
- return half3(
- ACES_to_ACEScc(x.r),
- ACES_to_ACEScc(x.g),
- ACES_to_ACEScc(x.b)
- );
- */
-}
-
-//
-// ACES Color Space Conversion - ACEScc to ACES
-//
-// converts ACEScc (AP1 w/ ACESlog encoding) to
-// ACES2065-1 (AP0 w/ linear encoding)
-//
-// This transform follows the formulas from section 4.4 in S-2014-003
-//
-half ACEScc_to_ACES(half x)
-{
- // TODO: Optimize me
- if (x < -0.3013698630) // (9.72 - 15) / 17.52
- return (pow(2.0, x * 17.52 - 9.72) - pow(2.0, -16.0)) * 2.0;
- else if (x < (log2(HALF_MAX) + 9.72) / 17.52)
- return pow(2.0, x * 17.52 - 9.72);
- else // (x >= (log2(HALF_MAX) + 9.72) / 17.52)
- return HALF_MAX;
-}
-
-half3 ACEScc_to_ACES(half3 x)
-{
- return half3(
- ACEScc_to_ACES(x.r),
- ACEScc_to_ACES(x.g),
- ACEScc_to_ACES(x.b)
- );
-}
-
-//
-// ACES Color Space Conversion - ACES to ACEScg
-//
-// converts ACES2065-1 (AP0 w/ linear encoding) to
-// ACEScg (AP1 w/ linear encoding)
-//
-half3 ACES_to_ACEScg(half3 x)
-{
- return mul(AP0_2_AP1_MAT, x);
-}
-
-//
-// ACES Color Space Conversion - ACEScg to ACES
-//
-// converts ACEScg (AP1 w/ linear encoding) to
-// ACES2065-1 (AP0 w/ linear encoding)
-//
-half3 ACEScg_to_ACES(half3 x)
-{
- return mul(AP1_2_AP0_MAT, x);
-}
-
-//
-// Reference Rendering Transform (RRT)
-//
-// Input is ACES
-// Output is OCES
-//
-half rgb_2_saturation(half3 rgb)
-{
- const half TINY = 1e-10;
- half mi = Min3(rgb);
- half ma = Max3(rgb);
- return (max(ma, TINY) - max(mi, TINY)) / max(ma, 1e-2);
-}
-
-half rgb_2_yc(half3 rgb)
-{
- const half ycRadiusWeight = 1.75;
-
- // Converts RGB to a luminance proxy, here called YC
- // YC is ~ Y + K * Chroma
- // Constant YC is a cone-shaped surface in RGB space, with the tip on the
- // neutral axis, towards white.
- // YC is normalized: RGB 1 1 1 maps to YC = 1
- //
- // ycRadiusWeight defaults to 1.75, although can be overridden in function
- // call to rgb_2_yc
- // ycRadiusWeight = 1 -> YC for pure cyan, magenta, yellow == YC for neutral
- // of same value
- // ycRadiusWeight = 2 -> YC for pure red, green, blue == YC for neutral of
- // same value.
-
- half r = rgb.x;
- half g = rgb.y;
- half b = rgb.z;
- half chroma = sqrt(b * (b - g) + g * (g - r) + r * (r - b));
- return (b + g + r + ycRadiusWeight * chroma) / 3.0;
-}
-
-half rgb_2_hue(half3 rgb)
-{
- // Returns a geometric hue angle in degrees (0-360) based on RGB values.
- // For neutral colors, hue is undefined and the function will return a quiet NaN value.
- half hue;
- if (rgb.x == rgb.y && rgb.y == rgb.z)
- hue = 0.0; // RGB triplets where RGB are equal have an undefined hue
- else
- hue = (180.0 / UNITY_PI) * atan2(sqrt(3.0) * (rgb.y - rgb.z), 2.0 * rgb.x - rgb.y - rgb.z);
-
- if (hue < 0.0) hue = hue + 360.0;
-
- return hue;
-}
-
-half center_hue(half hue, half centerH)
-{
- half hueCentered = hue - centerH;
- if (hueCentered < -180.0) hueCentered = hueCentered + 360.0;
- else if (hueCentered > 180.0) hueCentered = hueCentered - 360.0;
- return hueCentered;
-}
-
-half sigmoid_shaper(half x)
-{
- // Sigmoid function in the range 0 to 1 spanning -2 to +2.
-
- half t = max(1.0 - abs(x / 2.0), 0.0);
- half y = 1.0 + sign(x) * (1.0 - t * t);
-
- return y / 2.0;
-}
-
-half glow_fwd(half ycIn, half glowGainIn, half glowMid)
-{
- half glowGainOut;
-
- if (ycIn <= 2.0 / 3.0 * glowMid)
- glowGainOut = glowGainIn;
- else if (ycIn >= 2.0 * glowMid)
- glowGainOut = 0.0;
- else
- glowGainOut = glowGainIn * (glowMid / ycIn - 1.0 / 2.0);
-
- return glowGainOut;
-}
-
-/*
-half cubic_basis_shaper
-(
- half x,
- half w // full base width of the shaper function (in degrees)
-)
-{
- half M[4][4] = {
- { -1.0 / 6, 3.0 / 6, -3.0 / 6, 1.0 / 6 },
- { 3.0 / 6, -6.0 / 6, 3.0 / 6, 0.0 / 6 },
- { -3.0 / 6, 0.0 / 6, 3.0 / 6, 0.0 / 6 },
- { 1.0 / 6, 4.0 / 6, 1.0 / 6, 0.0 / 6 }
- };
-
- half knots[5] = {
- -w / 2.0,
- -w / 4.0,
- 0.0,
- w / 4.0,
- w / 2.0
- };
-
- half y = 0.0;
- if ((x > knots[0]) && (x < knots[4]))
- {
- half knot_coord = (x - knots[0]) * 4.0 / w;
- int j = knot_coord;
- half t = knot_coord - j;
-
- half monomials[4] = { t*t*t, t*t, t, 1.0 };
-
- // (if/else structure required for compatibility with CTL < v1.5.)
- if (j == 3)
- {
- y = monomials[0] * M[0][0] + monomials[1] * M[1][0] +
- monomials[2] * M[2][0] + monomials[3] * M[3][0];
- }
- else if (j == 2)
- {
- y = monomials[0] * M[0][1] + monomials[1] * M[1][1] +
- monomials[2] * M[2][1] + monomials[3] * M[3][1];
- }
- else if (j == 1)
- {
- y = monomials[0] * M[0][2] + monomials[1] * M[1][2] +
- monomials[2] * M[2][2] + monomials[3] * M[3][2];
- }
- else if (j == 0)
- {
- y = monomials[0] * M[0][3] + monomials[1] * M[1][3] +
- monomials[2] * M[2][3] + monomials[3] * M[3][3];
- }
- else
- {
- y = 0.0;
- }
- }
-
- return y * 3.0 / 2.0;
-}
-*/
-
-static const half3x3 M = {
- 0.5, -1.0, 0.5,
- -1.0, 1.0, 0.0,
- 0.5, 0.5, 0.0
-};
-
-half segmented_spline_c5_fwd(half x)
-{
- const half coefsLow[6] = { -4.0000000000, -4.0000000000, -3.1573765773, -0.4852499958, 1.8477324706, 1.8477324706 }; // coefs for B-spline between minPoint and midPoint (units of log luminance)
- const half coefsHigh[6] = { -0.7185482425, 2.0810307172, 3.6681241237, 4.0000000000, 4.0000000000, 4.0000000000 }; // coefs for B-spline between midPoint and maxPoint (units of log luminance)
- const half2 minPoint = half2(0.18 * exp2(-15.0), 0.0001); // {luminance, luminance} linear extension below this
- const half2 midPoint = half2(0.18, 0.48); // {luminance, luminance}
- const half2 maxPoint = half2(0.18 * exp2(18.0), 10000.0); // {luminance, luminance} linear extension above this
- const half slopeLow = 0.0; // log-log slope of low linear extension
- const half slopeHigh = 0.0; // log-log slope of high linear extension
-
- const int N_KNOTS_LOW = 4;
- const int N_KNOTS_HIGH = 4;
-
- // Check for negatives or zero before taking the log. If negative or zero,
- // set to ACESMIN.1
- float xCheck = x;
- if (xCheck <= 0.0) xCheck = 0.00006103515; // = pow(2.0, -14.0);
-
- half logx = log10(xCheck);
- half logy;
-
- if (logx <= log10(minPoint.x))
- {
- logy = logx * slopeLow + (log10(minPoint.y) - slopeLow * log10(minPoint.x));
- }
- else if ((logx > log10(minPoint.x)) && (logx < log10(midPoint.x)))
- {
- half knot_coord = (N_KNOTS_LOW - 1) * (logx - log10(minPoint.x)) / (log10(midPoint.x) - log10(minPoint.x));
- int j = knot_coord;
- half t = knot_coord - j;
-
- half3 cf = half3(coefsLow[j], coefsLow[j + 1], coefsLow[j + 2]);
- half3 monomials = half3(t * t, t, 1.0);
- logy = dot(monomials, mul(M, cf));
- }
- else if ((logx >= log10(midPoint.x)) && (logx < log10(maxPoint.x)))
- {
- half knot_coord = (N_KNOTS_HIGH - 1) * (logx - log10(midPoint.x)) / (log10(maxPoint.x) - log10(midPoint.x));
- int j = knot_coord;
- half t = knot_coord - j;
-
- half3 cf = half3(coefsHigh[j], coefsHigh[j + 1], coefsHigh[j + 2]);
- half3 monomials = half3(t * t, t, 1.0);
- logy = dot(monomials, mul(M, cf));
- }
- else
- { //if (logIn >= log10(maxPoint.x)) {
- logy = logx * slopeHigh + (log10(maxPoint.y) - slopeHigh * log10(maxPoint.x));
- }
-
- return pow(10.0, logy);
-}
-
-half segmented_spline_c9_fwd(half x)
-{
- const half coefsLow[10] = { -1.6989700043, -1.6989700043, -1.4779000000, -1.2291000000, -0.8648000000, -0.4480000000, 0.0051800000, 0.4511080334, 0.9113744414, 0.9113744414 }; // coefs for B-spline between minPoint and midPoint (units of log luminance)
- const half coefsHigh[10] = { 0.5154386965, 0.8470437783, 1.1358000000, 1.3802000000, 1.5197000000, 1.5985000000, 1.6467000000, 1.6746091357, 1.6878733390, 1.6878733390 }; // coefs for B-spline between midPoint and maxPoint (units of log luminance)
- const half2 minPoint = half2(segmented_spline_c5_fwd(0.18 * exp2(-6.5)), 0.02); // {luminance, luminance} linear extension below this
- const half2 midPoint = half2(segmented_spline_c5_fwd(0.18), 4.8); // {luminance, luminance}
- const half2 maxPoint = half2(segmented_spline_c5_fwd(0.18 * exp2(6.5)), 48.0); // {luminance, luminance} linear extension above this
- const half slopeLow = 0.0; // log-log slope of low linear extension
- const half slopeHigh = 0.04; // log-log slope of high linear extension
-
- const int N_KNOTS_LOW = 8;
- const int N_KNOTS_HIGH = 8;
-
- // Check for negatives or zero before taking the log. If negative or zero,
- // set to OCESMIN.
- half xCheck = x;
- if (xCheck <= 0.0) xCheck = 1e-4;
-
- half logx = log10(xCheck);
- half logy;
-
- if (logx <= log10(minPoint.x))
- {
- logy = logx * slopeLow + (log10(minPoint.y) - slopeLow * log10(minPoint.x));
- }
- else if ((logx > log10(minPoint.x)) && (logx < log10(midPoint.x)))
- {
- half knot_coord = (N_KNOTS_LOW - 1) * (logx - log10(minPoint.x)) / (log10(midPoint.x) - log10(minPoint.x));
- int j = knot_coord;
- half t = knot_coord - j;
-
- half3 cf = half3(coefsLow[j], coefsLow[j + 1], coefsLow[j + 2]);
- half3 monomials = half3(t * t, t, 1.0);
- logy = dot(monomials, mul(M, cf));
- }
- else if ((logx >= log10(midPoint.x)) && (logx < log10(maxPoint.x)))
- {
- half knot_coord = (N_KNOTS_HIGH - 1) * (logx - log10(midPoint.x)) / (log10(maxPoint.x) - log10(midPoint.x));
- int j = knot_coord;
- half t = knot_coord - j;
-
- half3 cf = half3(coefsHigh[j], coefsHigh[j + 1], coefsHigh[j + 2]);
- half3 monomials = half3(t * t, t, 1.0);
- logy = dot(monomials, mul(M, cf));
- }
- else
- { //if (logIn >= log10(maxPoint.x)) {
- logy = logx * slopeHigh + (log10(maxPoint.y) - slopeHigh * log10(maxPoint.x));
- }
-
- return pow(10.0, logy);
-}
-
-static const half RRT_GLOW_GAIN = 0.05;
-static const half RRT_GLOW_MID = 0.08;
-
-static const half RRT_RED_SCALE = 0.82;
-static const half RRT_RED_PIVOT = 0.03;
-static const half RRT_RED_HUE = 0.0;
-static const half RRT_RED_WIDTH = 135.0;
-
-static const half RRT_SAT_FACTOR = 0.96;
-
-half3 RRT(half3 aces)
-{
- // --- Glow module --- //
- half saturation = rgb_2_saturation(aces);
- half ycIn = rgb_2_yc(aces);
- half s = sigmoid_shaper((saturation - 0.4) / 0.2);
- half addedGlow = 1.0 + glow_fwd(ycIn, RRT_GLOW_GAIN * s, RRT_GLOW_MID);
- aces *= addedGlow;
-
- // --- Red modifier --- //
- half hue = rgb_2_hue(aces);
- half centeredHue = center_hue(hue, RRT_RED_HUE);
- half hueWeight;
- {
- //hueWeight = cubic_basis_shaper(centeredHue, RRT_RED_WIDTH);
- hueWeight = smoothstep(0.0, 1.0, 1.0 - abs(2.0 * centeredHue / RRT_RED_WIDTH));
- hueWeight *= hueWeight;
- }
-
- aces.r += hueWeight * saturation * (RRT_RED_PIVOT - aces.r) * (1.0 - RRT_RED_SCALE);
-
- // --- ACES to RGB rendering space --- //
- aces = clamp(aces, 0.0, HALF_MAX); // avoids saturated negative colors from becoming positive in the matrix
- half3 rgbPre = mul(AP0_2_AP1_MAT, aces);
- rgbPre = clamp(rgbPre, 0, HALF_MAX);
-
- // --- Global desaturation --- //
- //rgbPre = mul(RRT_SAT_MAT, rgbPre);
- rgbPre = lerp(dot(rgbPre, AP1_RGB2Y).xxx, rgbPre, RRT_SAT_FACTOR.xxx);
-
- // --- Apply the tonescale independently in rendering-space RGB --- //
- half3 rgbPost;
- rgbPost.x = segmented_spline_c5_fwd(rgbPre.x);
- rgbPost.y = segmented_spline_c5_fwd(rgbPre.y);
- rgbPost.z = segmented_spline_c5_fwd(rgbPre.z);
-
- // --- RGB rendering space to OCES --- //
- half3 rgbOces = mul(AP1_2_AP0_MAT, rgbPost);
-
- return rgbOces;
-}
-
-//
-// Output Device Transform
-//
-half3 Y_2_linCV(half3 Y, half Ymax, half Ymin)
-{
- return (Y - Ymin) / (Ymax - Ymin);
-}
-
-half3 XYZ_2_xyY(half3 XYZ)
-{
- half divisor = max(dot(XYZ, (1.0).xxx), 1e-4);
- return half3(XYZ.xy / divisor, XYZ.y);
-}
-
-half3 xyY_2_XYZ(half3 xyY)
-{
- half m = xyY.z / max(xyY.y, 1e-4);
- half3 XYZ = half3(xyY.xz, (1.0 - xyY.x - xyY.y));
- XYZ.xz *= m;
- return XYZ;
-}
-
-static const half DIM_SURROUND_GAMMA = 0.9811;
-
-half3 darkSurround_to_dimSurround(half3 linearCV)
-{
- half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
-
- half3 xyY = XYZ_2_xyY(XYZ);
- xyY.z = clamp(xyY.z, 0.0, HALF_MAX);
- xyY.z = pow(xyY.z, DIM_SURROUND_GAMMA);
- XYZ = xyY_2_XYZ(xyY);
-
- return mul(XYZ_2_AP1_MAT, XYZ);
-}
-
-half moncurve_r(half y, half gamma, half offs)
-{
- // Reverse monitor curve
- half x;
- const half yb = pow(offs * gamma / ((gamma - 1.0) * (1.0 + offs)), gamma);
- const half rs = pow((gamma - 1.0) / offs, gamma - 1.0) * pow((1.0 + offs) / gamma, gamma);
- if (y >= yb)
- x = (1.0 + offs) * pow(y, 1.0 / gamma) - offs;
- else
- x = y * rs;
- return x;
-}
-
-half bt1886_r(half L, half gamma, half Lw, half Lb)
-{
- // The reference EOTF specified in Rec. ITU-R BT.1886
- // L = a(max[(V+b),0])^g
- half a = pow(pow(Lw, 1.0 / gamma) - pow(Lb, 1.0 / gamma), gamma);
- half b = pow(Lb, 1.0 / gamma) / (pow(Lw, 1.0 / gamma) - pow(Lb, 1.0 / gamma));
- half V = pow(max(L / a, 0.0), 1.0 / gamma) - b;
- return V;
-}
-
-half roll_white_fwd(
- half x, // color value to adjust (white scaled to around 1.0)
- half new_wht, // white adjustment (e.g. 0.9 for 10% darkening)
- half width // adjusted width (e.g. 0.25 for top quarter of the tone scale)
- )
-{
- const half x0 = -1.0;
- const half x1 = x0 + width;
- const half y0 = -new_wht;
- const half y1 = x1;
- const half m1 = (x1 - x0);
- const half a = y0 - y1 + m1;
- const half b = 2.0 * (y1 - y0) - m1;
- const half c = y0;
- const half t = (-x - x0) / (x1 - x0);
- half o = 0.0;
- if (t < 0.0)
- o = -(t * b + c);
- else if (t > 1.0)
- o = x;
- else
- o = -((t * a + b) * t + c);
- return o;
-}
-
-half3 linear_to_sRGB(half3 x)
-{
- return (x <= 0.0031308 ? (x * 12.9232102) : 1.055 * pow(x, 1.0 / 2.4) - 0.055);
-}
-
-half3 linear_to_bt1886(half3 x, half gamma, half Lw, half Lb)
-{
- // Good enough approximation for now, may consider using the exact formula instead
- // TODO: Experiment
- return pow(max(x, 0.0), 1.0 / 2.4);
-
- // Correct implementation (Reference EOTF specified in Rec. ITU-R BT.1886) :
- // L = a(max[(V+b),0])^g
- half invgamma = 1.0 / gamma;
- half p_Lw = pow(Lw, invgamma);
- half p_Lb = pow(Lb, invgamma);
- half3 a = pow(p_Lw - p_Lb, gamma).xxx;
- half3 b = (p_Lb / p_Lw - p_Lb).xxx;
- half3 V = pow(max(x / a, 0.0), invgamma.xxx) - b;
- return V;
-}
-
-#if defined(CUSTOM_WHITE_POINT)
-half CINEMA_WHITE;
-half CINEMA_BLACK;
-#else
-static const half CINEMA_WHITE = 48.0;
-static const half CINEMA_BLACK = CINEMA_WHITE / 2400.0;
-#endif
-
-static const half ODT_SAT_FACTOR = 0.93;
-
-// <ACEStransformID>ODT.Academy.RGBmonitor_100nits_dim.a1.0.3</ACEStransformID>
-// <ACESuserName>ACES 1.0 Output - sRGB</ACESuserName>
-
-//
-// Output Device Transform - RGB computer monitor
-//
-
-//
-// Summary :
-// This transform is intended for mapping OCES onto a desktop computer monitor
-// typical of those used in motion picture visual effects production. These
-// monitors may occasionally be referred to as "sRGB" displays, however, the
-// monitor for which this transform is designed does not exactly match the
-// specifications in IEC 61966-2-1:1999.
-//
-// The assumed observer adapted white is D65, and the viewing environment is
-// that of a dim surround.
-//
-// The monitor specified is intended to be more typical of those found in
-// visual effects production.
-//
-// Device Primaries :
-// Primaries are those specified in Rec. ITU-R BT.709
-// CIE 1931 chromaticities: x y Y
-// Red: 0.64 0.33
-// Green: 0.3 0.6
-// Blue: 0.15 0.06
-// White: 0.3127 0.329 100 cd/m^2
-//
-// Display EOTF :
-// The reference electro-optical transfer function specified in
-// IEC 61966-2-1:1999.
-//
-// Signal Range:
-// This transform outputs full range code values.
-//
-// Assumed observer adapted white point:
-// CIE 1931 chromaticities: x y
-// 0.3127 0.329
-//
-// Viewing Environment:
-// This ODT has a compensation for viewing environment variables more typical
-// of those associated with video mastering.
-//
-half3 ODT_RGBmonitor_100nits_dim(half3 oces)
-{
- // OCES to RGB rendering space
- half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
-
- // Apply the tonescale independently in rendering-space RGB
- half3 rgbPost;
- rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
- rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
- rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
-
- // Scale luminance to linear code value
- half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
-
- // Apply gamma adjustment to compensate for dim surround
- linearCV = darkSurround_to_dimSurround(linearCV);
-
- // Apply desaturation to compensate for luminance difference
- //linearCV = mul(ODT_SAT_MAT, linearCV);
- linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
-
- // Convert to display primary encoding
- // Rendering space RGB to XYZ
- half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
-
- // Apply CAT from ACES white point to assumed observer adapted white point
- XYZ = mul(D60_2_D65_CAT, XYZ);
-
- // CIE XYZ to display primaries
- linearCV = mul(XYZ_2_REC709_MAT, XYZ);
-
- // Handle out-of-gamut values
- // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
- linearCV = saturate(linearCV);
-
- // TODO: Revisit when it is possible to deactivate Unity default framebuffer encoding
- // with sRGB opto-electrical transfer function (OETF).
- /*
- // Encode linear code values with transfer function
- half3 outputCV;
- // moncurve_r with gamma of 2.4 and offset of 0.055 matches the EOTF found in IEC 61966-2-1:1999 (sRGB)
- const half DISPGAMMA = 2.4;
- const half OFFSET = 0.055;
- outputCV.x = moncurve_r(linearCV.x, DISPGAMMA, OFFSET);
- outputCV.y = moncurve_r(linearCV.y, DISPGAMMA, OFFSET);
- outputCV.z = moncurve_r(linearCV.z, DISPGAMMA, OFFSET);
-
- outputCV = linear_to_sRGB(linearCV);
- */
-
- // Unity already draws to a sRGB target
- return linearCV;
-}
-
-// <ACEStransformID>ODT.Academy.RGBmonitor_D60sim_100nits_dim.a1.0.3</ACEStransformID>
-// <ACESuserName>ACES 1.0 Output - sRGB (D60 sim.)</ACESuserName>
-
-//
-// Output Device Transform - RGB computer monitor (D60 simulation)
-//
-
-//
-// Summary :
-// This transform is intended for mapping OCES onto a desktop computer monitor
-// typical of those used in motion picture visual effects production. These
-// monitors may occasionally be referred to as "sRGB" displays, however, the
-// monitor for which this transform is designed does not exactly match the
-// specifications in IEC 61966-2-1:1999.
-//
-// The assumed observer adapted white is D60, and the viewing environment is
-// that of a dim surround.
-//
-// The monitor specified is intended to be more typical of those found in
-// visual effects production.
-//
-// Device Primaries :
-// Primaries are those specified in Rec. ITU-R BT.709
-// CIE 1931 chromaticities: x y Y
-// Red: 0.64 0.33
-// Green: 0.3 0.6
-// Blue: 0.15 0.06
-// White: 0.3127 0.329 100 cd/m^2
-//
-// Display EOTF :
-// The reference electro-optical transfer function specified in
-// IEC 61966-2-1:1999.
-//
-// Signal Range:
-// This transform outputs full range code values.
-//
-// Assumed observer adapted white point:
-// CIE 1931 chromaticities: x y
-// 0.32168 0.33767
-//
-// Viewing Environment:
-// This ODT has a compensation for viewing environment variables more typical
-// of those associated with video mastering.
-//
-half3 ODT_RGBmonitor_D60sim_100nits_dim(half3 oces)
-{
- // OCES to RGB rendering space
- half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
-
- // Apply the tonescale independently in rendering-space RGB
- half3 rgbPost;
- rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
- rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
- rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
-
- // Scale luminance to linear code value
- half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
-
- // --- Compensate for different white point being darker --- //
- // This adjustment is to correct an issue that exists in ODTs where the device
- // is calibrated to a white chromaticity other than D60. In order to simulate
- // D60 on such devices, unequal code values are sent to the display to achieve
- // neutrals at D60. In order to produce D60 on a device calibrated to the DCI
- // white point (i.e. equal code values yield CIE x,y chromaticities of 0.314,
- // 0.351) the red channel is higher than green and blue to compensate for the
- // "greenish" DCI white. This is the correct behavior but it means that as
- // highlight increase, the red channel will hit the device maximum first and
- // clip, resulting in a chromaticity shift as the green and blue channels
- // continue to increase.
- // To avoid this clipping error, a slight scale factor is applied to allow the
- // ODTs to simulate D60 within the D65 calibration white point.
-
- // Scale and clamp white to avoid casted highlights due to D60 simulation
- const half SCALE = 0.955;
- linearCV = min(linearCV, 1.0) * SCALE;
-
- // Apply gamma adjustment to compensate for dim surround
- linearCV = darkSurround_to_dimSurround(linearCV);
-
- // Apply desaturation to compensate for luminance difference
- //linearCV = mul(ODT_SAT_MAT, linearCV);
- linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
-
- // Convert to display primary encoding
- // Rendering space RGB to XYZ
- half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
-
- // CIE XYZ to display primaries
- linearCV = mul(XYZ_2_REC709_MAT, XYZ);
-
- // Handle out-of-gamut values
- // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
- linearCV = saturate(linearCV);
-
- // TODO: Revisit when it is possible to deactivate Unity default framebuffer encoding
- // with sRGB opto-electrical transfer function (OETF).
- /*
- // Encode linear code values with transfer function
- half3 outputCV;
- // moncurve_r with gamma of 2.4 and offset of 0.055 matches the EOTF found in IEC 61966-2-1:1999 (sRGB)
- const half DISPGAMMA = 2.4;
- const half OFFSET = 0.055;
- outputCV.x = moncurve_r(linearCV.x, DISPGAMMA, OFFSET);
- outputCV.y = moncurve_r(linearCV.y, DISPGAMMA, OFFSET);
- outputCV.z = moncurve_r(linearCV.z, DISPGAMMA, OFFSET);
-
- outputCV = linear_to_sRGB(linearCV);
- */
-
- // Unity already draws to a sRGB target
- return linearCV;
-}
-
-// <ACEStransformID>ODT.Academy.Rec709_100nits_dim.a1.0.3</ACEStransformID>
-// <ACESuserName>ACES 1.0 Output - Rec.709</ACESuserName>
-
-//
-// Output Device Transform - Rec709
-//
-
-//
-// Summary :
-// This transform is intended for mapping OCES onto a Rec.709 broadcast monitor
-// that is calibrated to a D65 white point at 100 cd/m^2. The assumed observer
-// adapted white is D65, and the viewing environment is a dim surround.
-//
-// A possible use case for this transform would be HDTV/video mastering.
-//
-// Device Primaries :
-// Primaries are those specified in Rec. ITU-R BT.709
-// CIE 1931 chromaticities: x y Y
-// Red: 0.64 0.33
-// Green: 0.3 0.6
-// Blue: 0.15 0.06
-// White: 0.3127 0.329 100 cd/m^2
-//
-// Display EOTF :
-// The reference electro-optical transfer function specified in
-// Rec. ITU-R BT.1886.
-//
-// Signal Range:
-// By default, this transform outputs full range code values. If instead a
-// SMPTE "legal" signal is desired, there is a runtime flag to output
-// SMPTE legal signal. In ctlrender, this can be achieved by appending
-// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
-//
-// Assumed observer adapted white point:
-// CIE 1931 chromaticities: x y
-// 0.3127 0.329
-//
-// Viewing Environment:
-// This ODT has a compensation for viewing environment variables more typical
-// of those associated with video mastering.
-//
-half3 ODT_Rec709_100nits_dim(half3 oces)
-{
- // OCES to RGB rendering space
- half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
-
- // Apply the tonescale independently in rendering-space RGB
- half3 rgbPost;
- rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
- rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
- rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
-
- // Scale luminance to linear code value
- half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
-
- // Apply gamma adjustment to compensate for dim surround
- linearCV = darkSurround_to_dimSurround(linearCV);
-
- // Apply desaturation to compensate for luminance difference
- //linearCV = mul(ODT_SAT_MAT, linearCV);
- linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
-
- // Convert to display primary encoding
- // Rendering space RGB to XYZ
- half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
-
- // Apply CAT from ACES white point to assumed observer adapted white point
- XYZ = mul(D60_2_D65_CAT, XYZ);
-
- // CIE XYZ to display primaries
- linearCV = mul(XYZ_2_REC709_MAT, XYZ);
-
- // Handle out-of-gamut values
- // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
- linearCV = saturate(linearCV);
-
- // Encode linear code values with transfer function
- const half DISPGAMMA = 2.4;
- const half L_W = 1.0;
- const half L_B = 0.0;
- half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
-
- // TODO: Implement support for legal range.
-
- // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
- // by default which will result in double perceptual encoding, thus for now if one want to use
- // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
- // compensate for Unity default behaviour.
-
- return outputCV;
-}
-
-// <ACEStransformID>ODT.Academy.Rec709_D60sim_100nits_dim.a1.0.3</ACEStransformID>
-// <ACESuserName>ACES 1.0 Output - Rec.709 (D60 sim.)</ACESuserName>
-
-//
-// Output Device Transform - Rec709 (D60 simulation)
-//
-
-//
-// Summary :
-// This transform is intended for mapping OCES onto a Rec.709 broadcast monitor
-// that is calibrated to a D65 white point at 100 cd/m^2. The assumed observer
-// adapted white is D60, and the viewing environment is a dim surround.
-//
-// A possible use case for this transform would be cinema "soft-proofing".
-//
-// Device Primaries :
-// Primaries are those specified in Rec. ITU-R BT.709
-// CIE 1931 chromaticities: x y Y
-// Red: 0.64 0.33
-// Green: 0.3 0.6
-// Blue: 0.15 0.06
-// White: 0.3127 0.329 100 cd/m^2
-//
-// Display EOTF :
-// The reference electro-optical transfer function specified in
-// Rec. ITU-R BT.1886.
-//
-// Signal Range:
-// By default, this transform outputs full range code values. If instead a
-// SMPTE "legal" signal is desired, there is a runtime flag to output
-// SMPTE legal signal. In ctlrender, this can be achieved by appending
-// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
-//
-// Assumed observer adapted white point:
-// CIE 1931 chromaticities: x y
-// 0.32168 0.33767
-//
-// Viewing Environment:
-// This ODT has a compensation for viewing environment variables more typical
-// of those associated with video mastering.
-//
-half3 ODT_Rec709_D60sim_100nits_dim(half3 oces)
-{
- // OCES to RGB rendering space
- half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
-
- // Apply the tonescale independently in rendering-space RGB
- half3 rgbPost;
- rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
- rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
- rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
-
- // Scale luminance to linear code value
- half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
-
- // --- Compensate for different white point being darker --- //
- // This adjustment is to correct an issue that exists in ODTs where the device
- // is calibrated to a white chromaticity other than D60. In order to simulate
- // D60 on such devices, unequal code values must be sent to the display to achieve
- // the chromaticities of D60. More specifically, in order to produce D60 on a device
- // calibrated to a D65 white point (i.e. equal code values yield CIE x,y
- // chromaticities of 0.3127, 0.329) the red channel must be slightly higher than
- // that of green and blue in order to compensate for the relatively more "blue-ish"
- // D65 white. This unequalness of color channels is the correct behavior but it
- // means that as neutral highlights increase, the red channel will hit the
- // device maximum first and clip, resulting in a small chromaticity shift as the
- // green and blue channels continue to increase to their maximums.
- // To avoid this clipping error, a slight scale factor is applied to allow the
- // ODTs to simulate D60 within the D65 calibration white point.
-
- // Scale and clamp white to avoid casted highlights due to D60 simulation
- const half SCALE = 0.955;
- linearCV = min(linearCV, 1.0) * SCALE;
-
- // Apply gamma adjustment to compensate for dim surround
- linearCV = darkSurround_to_dimSurround(linearCV);
-
- // Apply desaturation to compensate for luminance difference
- //linearCV = mul(ODT_SAT_MAT, linearCV);
- linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
-
- // Convert to display primary encoding
- // Rendering space RGB to XYZ
- half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
-
- // CIE XYZ to display primaries
- linearCV = mul(XYZ_2_REC709_MAT, XYZ);
-
- // Handle out-of-gamut values
- // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
- linearCV = saturate(linearCV);
-
- // Encode linear code values with transfer function
- const half DISPGAMMA = 2.4;
- const half L_W = 1.0;
- const half L_B = 0.0;
- half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
-
- // TODO: Implement support for legal range.
-
- // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
- // by default which will result in double perceptual encoding, thus for now if one want to use
- // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
- // compensate for Unity default behaviour.
-
- return outputCV;
-}
-
-// <ACEStransformID>ODT.Academy.Rec2020_100nits_dim.a1.0.3</ACEStransformID>
-// <ACESuserName>ACES 1.0 Output - Rec.2020</ACESuserName>
-
-//
-// Output Device Transform - Rec2020
-//
-
-//
-// Summary :
-// This transform is intended for mapping OCES onto a Rec.2020 broadcast
-// monitor that is calibrated to a D65 white point at 100 cd/m^2. The assumed
-// observer adapted white is D65, and the viewing environment is that of a dim
-// surround.
-//
-// A possible use case for this transform would be UHDTV/video mastering.
-//
-// Device Primaries :
-// Primaries are those specified in Rec. ITU-R BT.2020
-// CIE 1931 chromaticities: x y Y
-// Red: 0.708 0.292
-// Green: 0.17 0.797
-// Blue: 0.131 0.046
-// White: 0.3127 0.329 100 cd/m^2
-//
-// Display EOTF :
-// The reference electro-optical transfer function specified in
-// Rec. ITU-R BT.1886.
-//
-// Signal Range:
-// By default, this transform outputs full range code values. If instead a
-// SMPTE "legal" signal is desired, there is a runtime flag to output
-// SMPTE legal signal. In ctlrender, this can be achieved by appending
-// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
-//
-// Assumed observer adapted white point:
-// CIE 1931 chromaticities: x y
-// 0.3127 0.329
-//
-// Viewing Environment:
-// This ODT has a compensation for viewing environment variables more typical
-// of those associated with video mastering.
-//
-
-half3 ODT_Rec2020_100nits_dim(half3 oces)
-{
- // OCES to RGB rendering space
- half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
-
- // Apply the tonescale independently in rendering-space RGB
- half3 rgbPost;
- rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
- rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
- rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
-
- // Scale luminance to linear code value
- half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
-
- // Apply gamma adjustment to compensate for dim surround
- linearCV = darkSurround_to_dimSurround(linearCV);
-
- // Apply desaturation to compensate for luminance difference
- //linearCV = mul(ODT_SAT_MAT, linearCV);
- linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
-
- // Convert to display primary encoding
- // Rendering space RGB to XYZ
- half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
-
- // Apply CAT from ACES white point to assumed observer adapted white point
- XYZ = mul(D60_2_D65_CAT, XYZ);
-
- // CIE XYZ to display primaries
- linearCV = mul(XYZ_2_REC2020_MAT, XYZ);
-
- // Handle out-of-gamut values
- // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
- linearCV = saturate(linearCV);
-
- // Encode linear code values with transfer function
- const half DISPGAMMA = 2.4;
- const half L_W = 1.0;
- const half L_B = 0.0;
- half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
-
- // TODO: Implement support for legal range.
-
- // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
- // by default which will result in double perceptual encoding, thus for now if one want to use
- // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
- // compensate for Unity default behaviour.
-
- return outputCV;
-}
-
-// <ACEStransformID>ODT.Academy.P3DCI_48nits.a1.0.3</ACEStransformID>
-// <ACESuserName>ACES 1.0 Output - P3-DCI</ACESuserName>
-
-//
-// Output Device Transform - P3DCI (D60 Simulation)
-//
-
-//
-// Summary :
-// This transform is intended for mapping OCES onto a P3 digital cinema
-// projector that is calibrated to a DCI white point at 48 cd/m^2. The assumed
-// observer adapted white is D60, and the viewing environment is that of a dark
-// theater.
-//
-// Device Primaries :
-// CIE 1931 chromaticities: x y Y
-// Red: 0.68 0.32
-// Green: 0.265 0.69
-// Blue: 0.15 0.06
-// White: 0.314 0.351 48 cd/m^2
-//
-// Display EOTF :
-// Gamma: 2.6
-//
-// Assumed observer adapted white point:
-// CIE 1931 chromaticities: x y
-// 0.32168 0.33767
-//
-// Viewing Environment:
-// Environment specified in SMPTE RP 431-2-2007
-//
-half3 ODT_P3DCI_48nits(half3 oces)
-{
- // OCES to RGB rendering space
- half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
-
- // Apply the tonescale independently in rendering-space RGB
- half3 rgbPost;
- rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
- rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
- rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
-
- // Scale luminance to linear code value
- half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
-
- // --- Compensate for different white point being darker --- //
- // This adjustment is to correct an issue that exists in ODTs where the device
- // is calibrated to a white chromaticity other than D60. In order to simulate
- // D60 on such devices, unequal code values are sent to the display to achieve
- // neutrals at D60. In order to produce D60 on a device calibrated to the DCI
- // white point (i.e. equal code values yield CIE x,y chromaticities of 0.314,
- // 0.351) the red channel is higher than green and blue to compensate for the
- // "greenish" DCI white. This is the correct behavior but it means that as
- // highlight increase, the red channel will hit the device maximum first and
- // clip, resulting in a chromaticity shift as the green and blue channels
- // continue to increase.
- // To avoid this clipping error, a slight scale factor is applied to allow the
- // ODTs to simulate D60 within the D65 calibration white point. However, the
- // magnitude of the scale factor required for the P3DCI ODT was considered too
- // large. Therefore, the scale factor was reduced and the additional required
- // compression was achieved via a reshaping of the highlight rolloff in
- // conjunction with the scale. The shape of this rolloff was determined
- // throught subjective experiments and deemed to best reproduce the
- // "character" of the highlights in the P3D60 ODT.
-
- // Roll off highlights to avoid need for as much scaling
- const half NEW_WHT = 0.918;
- const half ROLL_WIDTH = 0.5;
- linearCV.x = roll_white_fwd(linearCV.x, NEW_WHT, ROLL_WIDTH);
- linearCV.y = roll_white_fwd(linearCV.y, NEW_WHT, ROLL_WIDTH);
- linearCV.z = roll_white_fwd(linearCV.z, NEW_WHT, ROLL_WIDTH);
-
- // Scale and clamp white to avoid casted highlights due to D60 simulation
- const half SCALE = 0.96;
- linearCV = min(linearCV, NEW_WHT) * SCALE;
-
- // Convert to display primary encoding
- // Rendering space RGB to XYZ
- half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
-
- // CIE XYZ to display primaries
- linearCV = mul(XYZ_2_DCIP3_MAT, XYZ);
-
- // Handle out-of-gamut values
- // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
- linearCV = saturate(linearCV);
-
- // Encode linear code values with transfer function
- const half DISPGAMMA = 2.6;
- half3 outputCV = pow(linearCV, 1.0 / DISPGAMMA);
-
- // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
- // by default which will result in double perceptual encoding, thus for now if one want to use
- // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
- // compensate for Unity default behaviour.
-
- return outputCV;
-}
-
-#endif // __ACES__
+#ifndef __ACES__
+#define __ACES__
+
+/**
+ * https://github.com/ampas/aces-dev
+ *
+ * Academy Color Encoding System (ACES) software and tools are provided by the
+ * Academy under the following terms and conditions: A worldwide, royalty-free,
+ * non-exclusive right to copy, modify, create derivatives, and use, in source and
+ * binary forms, is hereby granted, subject to acceptance of this license.
+ *
+ * Copyright 2015 Academy of Motion Picture Arts and Sciences (A.M.P.A.S.).
+ * Portions contributed by others as indicated. All rights reserved.
+ *
+ * Performance of any of the aforementioned acts indicates acceptance to be bound
+ * by the following terms and conditions:
+ *
+ * * Copies of source code, in whole or in part, must retain the above copyright
+ * notice, this list of conditions and the Disclaimer of Warranty.
+ *
+ * * Use in binary form must retain the above copyright notice, this list of
+ * conditions and the Disclaimer of Warranty in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * * Nothing in this license shall be deemed to grant any rights to trademarks,
+ * copyrights, patents, trade secrets or any other intellectual property of
+ * A.M.P.A.S. or any contributors, except as expressly stated herein.
+ *
+ * * Neither the name "A.M.P.A.S." nor the name of any other contributors to this
+ * software may be used to endorse or promote products derivative of or based on
+ * this software without express prior written permission of A.M.P.A.S. or the
+ * contributors, as appropriate.
+ *
+ * This license shall be construed pursuant to the laws of the State of
+ * California, and any disputes related thereto shall be subject to the
+ * jurisdiction of the courts therein.
+ *
+ * Disclaimer of Warranty: THIS SOFTWARE IS PROVIDED BY A.M.P.A.S. AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+ * THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
+ * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL A.M.P.A.S., OR ANY
+ * CONTRIBUTORS OR DISTRIBUTORS, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, RESITUTIONARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, THE ACADEMY SPECIFICALLY
+ * DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER RELATED TO PATENT OR
+ * OTHER INTELLECTUAL PROPERTY RIGHTS IN THE ACADEMY COLOR ENCODING SYSTEM, OR
+ * APPLICATIONS THEREOF, HELD BY PARTIES OTHER THAN A.M.P.A.S.,WHETHER DISCLOSED OR
+ * UNDISCLOSED.
+ */
+
+//#define CUSTOM_WHITE_POINT
+
+/*
+ Basic usage :
+
+ half4 color = tex2D(_MainTex, i.uv);
+ half3 aces = unity_to_ACES(color.rgb);
+ half3 oces = RRT(aces);
+ half3 odt = ODT_RGBmonitor_100nits_dim(oces);
+ return half4(odt, color.a);
+
+ If you want to customize the white point, uncomment the previous define and set uniforms accordingly:
+
+ float whitePoint = 48f; // Default ACES value
+ material.SetFloat("CINEMA_WHITE", whitePoint);
+ material.SetFloat("CINEMA_DARK", whitePoint / 2400f);
+ */
+
+#include "Common.cginc"
+
+#define ACEScc_MAX 1.4679964
+#define ACEScc_MIDGRAY 0.4135884
+
+//
+// Precomputed matrices (pre-transposed)
+// See https://github.com/ampas/aces-dev/blob/master/transforms/ctl/README-MATRIX.md
+//
+static const half3x3 sRGB_2_AP0 = {
+ 0.4397010, 0.3829780, 0.1773350,
+ 0.0897923, 0.8134230, 0.0967616,
+ 0.0175440, 0.1115440, 0.8707040
+};
+
+static const half3x3 sRGB_2_AP1 = {
+ 0.61319, 0.33951, 0.04737,
+ 0.07021, 0.91634, 0.01345,
+ 0.02062, 0.10957, 0.86961
+};
+
+static const half3x3 AP0_2_sRGB = {
+ 2.52169, -1.13413, -0.38756,
+ -0.27648, 1.37272, -0.09624,
+ -0.01538, -0.15298, 1.16835,
+};
+
+static const half3x3 AP1_2_sRGB = {
+ 1.70505, -0.62179, -0.08326,
+ -0.13026, 1.14080, -0.01055,
+ -0.02400, -0.12897, 1.15297,
+};
+
+static const half3x3 AP0_2_AP1_MAT = {
+ 1.4514393161, -0.2365107469, -0.2149285693,
+ -0.0765537734, 1.1762296998, -0.0996759264,
+ 0.0083161484, -0.0060324498, 0.9977163014
+};
+
+static const half3x3 AP1_2_AP0_MAT = {
+ 0.6954522414, 0.1406786965, 0.1638690622,
+ 0.0447945634, 0.8596711185, 0.0955343182,
+ -0.0055258826, 0.0040252103, 1.0015006723
+};
+
+static const half3x3 AP1_2_XYZ_MAT = {
+ 0.6624541811, 0.1340042065, 0.1561876870,
+ 0.2722287168, 0.6740817658, 0.0536895174,
+ -0.0055746495, 0.0040607335, 1.0103391003
+};
+
+static const half3x3 XYZ_2_AP1_MAT = {
+ 1.6410233797, -0.3248032942, -0.2364246952,
+ -0.6636628587, 1.6153315917, 0.0167563477,
+ 0.0117218943, -0.0082844420, 0.9883948585
+};
+
+static const half3x3 XYZ_2_REC709_MAT = {
+ 3.2409699419, -1.5373831776, -0.4986107603,
+ -0.9692436363, 1.8759675015, 0.0415550574,
+ 0.0556300797, -0.2039769589, 1.0569715142
+};
+
+static const half3x3 XYZ_2_REC2020_MAT = {
+ 1.7166511880, -0.3556707838, -0.2533662814,
+ -0.6666843518, 1.6164812366, 0.0157685458,
+ 0.0176398574, -0.0427706133, 0.9421031212
+};
+
+static const half3x3 XYZ_2_DCIP3_MAT = {
+ 2.7253940305, -1.0180030062, -0.4401631952,
+ -0.7951680258, 1.6897320548, 0.0226471906,
+ 0.0412418914, -0.0876390192, 1.1009293786
+};
+
+static const half3 AP1_RGB2Y = half3(0.272229, 0.674082, 0.0536895);
+
+static const half3x3 RRT_SAT_MAT = {
+ 0.9708890, 0.0269633, 0.00214758,
+ 0.0108892, 0.9869630, 0.00214758,
+ 0.0108892, 0.0269633, 0.96214800
+};
+
+static const half3x3 ODT_SAT_MAT = {
+ 0.949056, 0.0471857, 0.00375827,
+ 0.019056, 0.9771860, 0.00375827,
+ 0.019056, 0.0471857, 0.93375800
+};
+
+static const half3x3 D60_2_D65_CAT = {
+ 0.98722400, -0.00611327, 0.0159533,
+ -0.00759836, 1.00186000, 0.0053302,
+ 0.00307257, -0.00509595, 1.0816800
+};
+
+//
+// Unity to ACES
+//
+// converts Unity raw (sRGB primaries) to
+// ACES2065-1 (AP0 w/ linear encoding)
+//
+half3 unity_to_ACES(half3 x)
+{
+ x = mul(sRGB_2_AP0, x);
+ return x;
+}
+
+//
+// ACES to Unity
+//
+// converts ACES2065-1 (AP0 w/ linear encoding)
+// Unity raw (sRGB primaries) to
+//
+half3 ACES_to_unity(half3 x)
+{
+ x = mul(AP0_2_sRGB, x);
+ return x;
+}
+
+//
+// Unity to ACEScg
+//
+// converts Unity raw (sRGB primaries) to
+// ACEScg (AP1 w/ linear encoding)
+//
+half3 unity_to_ACEScg(half3 x)
+{
+ x = mul(sRGB_2_AP1, x);
+ return x;
+}
+
+//
+// ACEScg to Unity
+//
+// converts ACEScg (AP1 w/ linear encoding) to
+// Unity raw (sRGB primaries)
+//
+half3 ACEScg_to_unity(half3 x)
+{
+ x = mul(AP1_2_sRGB, x);
+ return x;
+}
+
+//
+// ACES Color Space Conversion - ACES to ACEScc
+//
+// converts ACES2065-1 (AP0 w/ linear encoding) to
+// ACEScc (AP1 w/ logarithmic encoding)
+//
+// This transform follows the formulas from section 4.4 in S-2014-003
+//
+half ACES_to_ACEScc(half x)
+{
+ if (x <= 0.0)
+ return -0.35828683; // = (log2(pow(2.0, -15.0) * 0.5) + 9.72) / 17.52
+ else if (x < pow(2.0, -15.0))
+ return (log2(pow(2.0, -16.0) + x * 0.5) + 9.72) / 17.52;
+ else // (x >= pow(2.0, -15.0))
+ return (log2(x) + 9.72) / 17.52;
+}
+
+half3 ACES_to_ACEScc(half3 x)
+{
+ x = clamp(x, 0.0, HALF_MAX);
+
+ // x is clamped to [0, HALF_MAX], skip the <= 0 check
+ return (x < 0.00003051757) ? (log2(0.00001525878 + x * 0.5) + 9.72) / 17.52 : (log2(x) + 9.72) / 17.52;
+
+ /*
+ return half3(
+ ACES_to_ACEScc(x.r),
+ ACES_to_ACEScc(x.g),
+ ACES_to_ACEScc(x.b)
+ );
+ */
+}
+
+//
+// ACES Color Space Conversion - ACEScc to ACES
+//
+// converts ACEScc (AP1 w/ ACESlog encoding) to
+// ACES2065-1 (AP0 w/ linear encoding)
+//
+// This transform follows the formulas from section 4.4 in S-2014-003
+//
+half ACEScc_to_ACES(half x)
+{
+ // TODO: Optimize me
+ if (x < -0.3013698630) // (9.72 - 15) / 17.52
+ return (pow(2.0, x * 17.52 - 9.72) - pow(2.0, -16.0)) * 2.0;
+ else if (x < (log2(HALF_MAX) + 9.72) / 17.52)
+ return pow(2.0, x * 17.52 - 9.72);
+ else // (x >= (log2(HALF_MAX) + 9.72) / 17.52)
+ return HALF_MAX;
+}
+
+half3 ACEScc_to_ACES(half3 x)
+{
+ return half3(
+ ACEScc_to_ACES(x.r),
+ ACEScc_to_ACES(x.g),
+ ACEScc_to_ACES(x.b)
+ );
+}
+
+//
+// ACES Color Space Conversion - ACES to ACEScg
+//
+// converts ACES2065-1 (AP0 w/ linear encoding) to
+// ACEScg (AP1 w/ linear encoding)
+//
+half3 ACES_to_ACEScg(half3 x)
+{
+ return mul(AP0_2_AP1_MAT, x);
+}
+
+//
+// ACES Color Space Conversion - ACEScg to ACES
+//
+// converts ACEScg (AP1 w/ linear encoding) to
+// ACES2065-1 (AP0 w/ linear encoding)
+//
+half3 ACEScg_to_ACES(half3 x)
+{
+ return mul(AP1_2_AP0_MAT, x);
+}
+
+//
+// Reference Rendering Transform (RRT)
+//
+// Input is ACES
+// Output is OCES
+//
+half rgb_2_saturation(half3 rgb)
+{
+ const half TINY = 1e-10;
+ half mi = Min3(rgb);
+ half ma = Max3(rgb);
+ return (max(ma, TINY) - max(mi, TINY)) / max(ma, 1e-2);
+}
+
+half rgb_2_yc(half3 rgb)
+{
+ const half ycRadiusWeight = 1.75;
+
+ // Converts RGB to a luminance proxy, here called YC
+ // YC is ~ Y + K * Chroma
+ // Constant YC is a cone-shaped surface in RGB space, with the tip on the
+ // neutral axis, towards white.
+ // YC is normalized: RGB 1 1 1 maps to YC = 1
+ //
+ // ycRadiusWeight defaults to 1.75, although can be overridden in function
+ // call to rgb_2_yc
+ // ycRadiusWeight = 1 -> YC for pure cyan, magenta, yellow == YC for neutral
+ // of same value
+ // ycRadiusWeight = 2 -> YC for pure red, green, blue == YC for neutral of
+ // same value.
+
+ half r = rgb.x;
+ half g = rgb.y;
+ half b = rgb.z;
+ half chroma = sqrt(b * (b - g) + g * (g - r) + r * (r - b));
+ return (b + g + r + ycRadiusWeight * chroma) / 3.0;
+}
+
+half rgb_2_hue(half3 rgb)
+{
+ // Returns a geometric hue angle in degrees (0-360) based on RGB values.
+ // For neutral colors, hue is undefined and the function will return a quiet NaN value.
+ half hue;
+ if (rgb.x == rgb.y && rgb.y == rgb.z)
+ hue = 0.0; // RGB triplets where RGB are equal have an undefined hue
+ else
+ hue = (180.0 / UNITY_PI) * atan2(sqrt(3.0) * (rgb.y - rgb.z), 2.0 * rgb.x - rgb.y - rgb.z);
+
+ if (hue < 0.0) hue = hue + 360.0;
+
+ return hue;
+}
+
+half center_hue(half hue, half centerH)
+{
+ half hueCentered = hue - centerH;
+ if (hueCentered < -180.0) hueCentered = hueCentered + 360.0;
+ else if (hueCentered > 180.0) hueCentered = hueCentered - 360.0;
+ return hueCentered;
+}
+
+half sigmoid_shaper(half x)
+{
+ // Sigmoid function in the range 0 to 1 spanning -2 to +2.
+
+ half t = max(1.0 - abs(x / 2.0), 0.0);
+ half y = 1.0 + sign(x) * (1.0 - t * t);
+
+ return y / 2.0;
+}
+
+half glow_fwd(half ycIn, half glowGainIn, half glowMid)
+{
+ half glowGainOut;
+
+ if (ycIn <= 2.0 / 3.0 * glowMid)
+ glowGainOut = glowGainIn;
+ else if (ycIn >= 2.0 * glowMid)
+ glowGainOut = 0.0;
+ else
+ glowGainOut = glowGainIn * (glowMid / ycIn - 1.0 / 2.0);
+
+ return glowGainOut;
+}
+
+/*
+half cubic_basis_shaper
+(
+ half x,
+ half w // full base width of the shaper function (in degrees)
+)
+{
+ half M[4][4] = {
+ { -1.0 / 6, 3.0 / 6, -3.0 / 6, 1.0 / 6 },
+ { 3.0 / 6, -6.0 / 6, 3.0 / 6, 0.0 / 6 },
+ { -3.0 / 6, 0.0 / 6, 3.0 / 6, 0.0 / 6 },
+ { 1.0 / 6, 4.0 / 6, 1.0 / 6, 0.0 / 6 }
+ };
+
+ half knots[5] = {
+ -w / 2.0,
+ -w / 4.0,
+ 0.0,
+ w / 4.0,
+ w / 2.0
+ };
+
+ half y = 0.0;
+ if ((x > knots[0]) && (x < knots[4]))
+ {
+ half knot_coord = (x - knots[0]) * 4.0 / w;
+ int j = knot_coord;
+ half t = knot_coord - j;
+
+ half monomials[4] = { t*t*t, t*t, t, 1.0 };
+
+ // (if/else structure required for compatibility with CTL < v1.5.)
+ if (j == 3)
+ {
+ y = monomials[0] * M[0][0] + monomials[1] * M[1][0] +
+ monomials[2] * M[2][0] + monomials[3] * M[3][0];
+ }
+ else if (j == 2)
+ {
+ y = monomials[0] * M[0][1] + monomials[1] * M[1][1] +
+ monomials[2] * M[2][1] + monomials[3] * M[3][1];
+ }
+ else if (j == 1)
+ {
+ y = monomials[0] * M[0][2] + monomials[1] * M[1][2] +
+ monomials[2] * M[2][2] + monomials[3] * M[3][2];
+ }
+ else if (j == 0)
+ {
+ y = monomials[0] * M[0][3] + monomials[1] * M[1][3] +
+ monomials[2] * M[2][3] + monomials[3] * M[3][3];
+ }
+ else
+ {
+ y = 0.0;
+ }
+ }
+
+ return y * 3.0 / 2.0;
+}
+*/
+
+static const half3x3 M = {
+ 0.5, -1.0, 0.5,
+ -1.0, 1.0, 0.0,
+ 0.5, 0.5, 0.0
+};
+
+half segmented_spline_c5_fwd(half x)
+{
+ const half coefsLow[6] = { -4.0000000000, -4.0000000000, -3.1573765773, -0.4852499958, 1.8477324706, 1.8477324706 }; // coefs for B-spline between minPoint and midPoint (units of log luminance)
+ const half coefsHigh[6] = { -0.7185482425, 2.0810307172, 3.6681241237, 4.0000000000, 4.0000000000, 4.0000000000 }; // coefs for B-spline between midPoint and maxPoint (units of log luminance)
+ const half2 minPoint = half2(0.18 * exp2(-15.0), 0.0001); // {luminance, luminance} linear extension below this
+ const half2 midPoint = half2(0.18, 0.48); // {luminance, luminance}
+ const half2 maxPoint = half2(0.18 * exp2(18.0), 10000.0); // {luminance, luminance} linear extension above this
+ const half slopeLow = 0.0; // log-log slope of low linear extension
+ const half slopeHigh = 0.0; // log-log slope of high linear extension
+
+ const int N_KNOTS_LOW = 4;
+ const int N_KNOTS_HIGH = 4;
+
+ // Check for negatives or zero before taking the log. If negative or zero,
+ // set to ACESMIN.1
+ float xCheck = x;
+ if (xCheck <= 0.0) xCheck = 0.00006103515; // = pow(2.0, -14.0);
+
+ half logx = log10(xCheck);
+ half logy;
+
+ if (logx <= log10(minPoint.x))
+ {
+ logy = logx * slopeLow + (log10(minPoint.y) - slopeLow * log10(minPoint.x));
+ }
+ else if ((logx > log10(minPoint.x)) && (logx < log10(midPoint.x)))
+ {
+ half knot_coord = (N_KNOTS_LOW - 1) * (logx - log10(minPoint.x)) / (log10(midPoint.x) - log10(minPoint.x));
+ int j = knot_coord;
+ half t = knot_coord - j;
+
+ half3 cf = half3(coefsLow[j], coefsLow[j + 1], coefsLow[j + 2]);
+ half3 monomials = half3(t * t, t, 1.0);
+ logy = dot(monomials, mul(M, cf));
+ }
+ else if ((logx >= log10(midPoint.x)) && (logx < log10(maxPoint.x)))
+ {
+ half knot_coord = (N_KNOTS_HIGH - 1) * (logx - log10(midPoint.x)) / (log10(maxPoint.x) - log10(midPoint.x));
+ int j = knot_coord;
+ half t = knot_coord - j;
+
+ half3 cf = half3(coefsHigh[j], coefsHigh[j + 1], coefsHigh[j + 2]);
+ half3 monomials = half3(t * t, t, 1.0);
+ logy = dot(monomials, mul(M, cf));
+ }
+ else
+ { //if (logIn >= log10(maxPoint.x)) {
+ logy = logx * slopeHigh + (log10(maxPoint.y) - slopeHigh * log10(maxPoint.x));
+ }
+
+ return pow(10.0, logy);
+}
+
+half segmented_spline_c9_fwd(half x)
+{
+ const half coefsLow[10] = { -1.6989700043, -1.6989700043, -1.4779000000, -1.2291000000, -0.8648000000, -0.4480000000, 0.0051800000, 0.4511080334, 0.9113744414, 0.9113744414 }; // coefs for B-spline between minPoint and midPoint (units of log luminance)
+ const half coefsHigh[10] = { 0.5154386965, 0.8470437783, 1.1358000000, 1.3802000000, 1.5197000000, 1.5985000000, 1.6467000000, 1.6746091357, 1.6878733390, 1.6878733390 }; // coefs for B-spline between midPoint and maxPoint (units of log luminance)
+ const half2 minPoint = half2(segmented_spline_c5_fwd(0.18 * exp2(-6.5)), 0.02); // {luminance, luminance} linear extension below this
+ const half2 midPoint = half2(segmented_spline_c5_fwd(0.18), 4.8); // {luminance, luminance}
+ const half2 maxPoint = half2(segmented_spline_c5_fwd(0.18 * exp2(6.5)), 48.0); // {luminance, luminance} linear extension above this
+ const half slopeLow = 0.0; // log-log slope of low linear extension
+ const half slopeHigh = 0.04; // log-log slope of high linear extension
+
+ const int N_KNOTS_LOW = 8;
+ const int N_KNOTS_HIGH = 8;
+
+ // Check for negatives or zero before taking the log. If negative or zero,
+ // set to OCESMIN.
+ half xCheck = x;
+ if (xCheck <= 0.0) xCheck = 1e-4;
+
+ half logx = log10(xCheck);
+ half logy;
+
+ if (logx <= log10(minPoint.x))
+ {
+ logy = logx * slopeLow + (log10(minPoint.y) - slopeLow * log10(minPoint.x));
+ }
+ else if ((logx > log10(minPoint.x)) && (logx < log10(midPoint.x)))
+ {
+ half knot_coord = (N_KNOTS_LOW - 1) * (logx - log10(minPoint.x)) / (log10(midPoint.x) - log10(minPoint.x));
+ int j = knot_coord;
+ half t = knot_coord - j;
+
+ half3 cf = half3(coefsLow[j], coefsLow[j + 1], coefsLow[j + 2]);
+ half3 monomials = half3(t * t, t, 1.0);
+ logy = dot(monomials, mul(M, cf));
+ }
+ else if ((logx >= log10(midPoint.x)) && (logx < log10(maxPoint.x)))
+ {
+ half knot_coord = (N_KNOTS_HIGH - 1) * (logx - log10(midPoint.x)) / (log10(maxPoint.x) - log10(midPoint.x));
+ int j = knot_coord;
+ half t = knot_coord - j;
+
+ half3 cf = half3(coefsHigh[j], coefsHigh[j + 1], coefsHigh[j + 2]);
+ half3 monomials = half3(t * t, t, 1.0);
+ logy = dot(monomials, mul(M, cf));
+ }
+ else
+ { //if (logIn >= log10(maxPoint.x)) {
+ logy = logx * slopeHigh + (log10(maxPoint.y) - slopeHigh * log10(maxPoint.x));
+ }
+
+ return pow(10.0, logy);
+}
+
+static const half RRT_GLOW_GAIN = 0.05;
+static const half RRT_GLOW_MID = 0.08;
+
+static const half RRT_RED_SCALE = 0.82;
+static const half RRT_RED_PIVOT = 0.03;
+static const half RRT_RED_HUE = 0.0;
+static const half RRT_RED_WIDTH = 135.0;
+
+static const half RRT_SAT_FACTOR = 0.96;
+
+half3 RRT(half3 aces)
+{
+ // --- Glow module --- //
+ half saturation = rgb_2_saturation(aces);
+ half ycIn = rgb_2_yc(aces);
+ half s = sigmoid_shaper((saturation - 0.4) / 0.2);
+ half addedGlow = 1.0 + glow_fwd(ycIn, RRT_GLOW_GAIN * s, RRT_GLOW_MID);
+ aces *= addedGlow;
+
+ // --- Red modifier --- //
+ half hue = rgb_2_hue(aces);
+ half centeredHue = center_hue(hue, RRT_RED_HUE);
+ half hueWeight;
+ {
+ //hueWeight = cubic_basis_shaper(centeredHue, RRT_RED_WIDTH);
+ hueWeight = smoothstep(0.0, 1.0, 1.0 - abs(2.0 * centeredHue / RRT_RED_WIDTH));
+ hueWeight *= hueWeight;
+ }
+
+ aces.r += hueWeight * saturation * (RRT_RED_PIVOT - aces.r) * (1.0 - RRT_RED_SCALE);
+
+ // --- ACES to RGB rendering space --- //
+ aces = clamp(aces, 0.0, HALF_MAX); // avoids saturated negative colors from becoming positive in the matrix
+ half3 rgbPre = mul(AP0_2_AP1_MAT, aces);
+ rgbPre = clamp(rgbPre, 0, HALF_MAX);
+
+ // --- Global desaturation --- //
+ //rgbPre = mul(RRT_SAT_MAT, rgbPre);
+ rgbPre = lerp(dot(rgbPre, AP1_RGB2Y).xxx, rgbPre, RRT_SAT_FACTOR.xxx);
+
+ // --- Apply the tonescale independently in rendering-space RGB --- //
+ half3 rgbPost;
+ rgbPost.x = segmented_spline_c5_fwd(rgbPre.x);
+ rgbPost.y = segmented_spline_c5_fwd(rgbPre.y);
+ rgbPost.z = segmented_spline_c5_fwd(rgbPre.z);
+
+ // --- RGB rendering space to OCES --- //
+ half3 rgbOces = mul(AP1_2_AP0_MAT, rgbPost);
+
+ return rgbOces;
+}
+
+//
+// Output Device Transform
+//
+half3 Y_2_linCV(half3 Y, half Ymax, half Ymin)
+{
+ return (Y - Ymin) / (Ymax - Ymin);
+}
+
+half3 XYZ_2_xyY(half3 XYZ)
+{
+ half divisor = max(dot(XYZ, (1.0).xxx), 1e-4);
+ return half3(XYZ.xy / divisor, XYZ.y);
+}
+
+half3 xyY_2_XYZ(half3 xyY)
+{
+ half m = xyY.z / max(xyY.y, 1e-4);
+ half3 XYZ = half3(xyY.xz, (1.0 - xyY.x - xyY.y));
+ XYZ.xz *= m;
+ return XYZ;
+}
+
+static const half DIM_SURROUND_GAMMA = 0.9811;
+
+half3 darkSurround_to_dimSurround(half3 linearCV)
+{
+ half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
+
+ half3 xyY = XYZ_2_xyY(XYZ);
+ xyY.z = clamp(xyY.z, 0.0, HALF_MAX);
+ xyY.z = pow(xyY.z, DIM_SURROUND_GAMMA);
+ XYZ = xyY_2_XYZ(xyY);
+
+ return mul(XYZ_2_AP1_MAT, XYZ);
+}
+
+half moncurve_r(half y, half gamma, half offs)
+{
+ // Reverse monitor curve
+ half x;
+ const half yb = pow(offs * gamma / ((gamma - 1.0) * (1.0 + offs)), gamma);
+ const half rs = pow((gamma - 1.0) / offs, gamma - 1.0) * pow((1.0 + offs) / gamma, gamma);
+ if (y >= yb)
+ x = (1.0 + offs) * pow(y, 1.0 / gamma) - offs;
+ else
+ x = y * rs;
+ return x;
+}
+
+half bt1886_r(half L, half gamma, half Lw, half Lb)
+{
+ // The reference EOTF specified in Rec. ITU-R BT.1886
+ // L = a(max[(V+b),0])^g
+ half a = pow(pow(Lw, 1.0 / gamma) - pow(Lb, 1.0 / gamma), gamma);
+ half b = pow(Lb, 1.0 / gamma) / (pow(Lw, 1.0 / gamma) - pow(Lb, 1.0 / gamma));
+ half V = pow(max(L / a, 0.0), 1.0 / gamma) - b;
+ return V;
+}
+
+half roll_white_fwd(
+ half x, // color value to adjust (white scaled to around 1.0)
+ half new_wht, // white adjustment (e.g. 0.9 for 10% darkening)
+ half width // adjusted width (e.g. 0.25 for top quarter of the tone scale)
+ )
+{
+ const half x0 = -1.0;
+ const half x1 = x0 + width;
+ const half y0 = -new_wht;
+ const half y1 = x1;
+ const half m1 = (x1 - x0);
+ const half a = y0 - y1 + m1;
+ const half b = 2.0 * (y1 - y0) - m1;
+ const half c = y0;
+ const half t = (-x - x0) / (x1 - x0);
+ half o = 0.0;
+ if (t < 0.0)
+ o = -(t * b + c);
+ else if (t > 1.0)
+ o = x;
+ else
+ o = -((t * a + b) * t + c);
+ return o;
+}
+
+half3 linear_to_sRGB(half3 x)
+{
+ return (x <= 0.0031308 ? (x * 12.9232102) : 1.055 * pow(x, 1.0 / 2.4) - 0.055);
+}
+
+half3 linear_to_bt1886(half3 x, half gamma, half Lw, half Lb)
+{
+ // Good enough approximation for now, may consider using the exact formula instead
+ // TODO: Experiment
+ return pow(max(x, 0.0), 1.0 / 2.4);
+
+ // Correct implementation (Reference EOTF specified in Rec. ITU-R BT.1886) :
+ // L = a(max[(V+b),0])^g
+ half invgamma = 1.0 / gamma;
+ half p_Lw = pow(Lw, invgamma);
+ half p_Lb = pow(Lb, invgamma);
+ half3 a = pow(p_Lw - p_Lb, gamma).xxx;
+ half3 b = (p_Lb / p_Lw - p_Lb).xxx;
+ half3 V = pow(max(x / a, 0.0), invgamma.xxx) - b;
+ return V;
+}
+
+#if defined(CUSTOM_WHITE_POINT)
+half CINEMA_WHITE;
+half CINEMA_BLACK;
+#else
+static const half CINEMA_WHITE = 48.0;
+static const half CINEMA_BLACK = CINEMA_WHITE / 2400.0;
+#endif
+
+static const half ODT_SAT_FACTOR = 0.93;
+
+// <ACEStransformID>ODT.Academy.RGBmonitor_100nits_dim.a1.0.3</ACEStransformID>
+// <ACESuserName>ACES 1.0 Output - sRGB</ACESuserName>
+
+//
+// Output Device Transform - RGB computer monitor
+//
+
+//
+// Summary :
+// This transform is intended for mapping OCES onto a desktop computer monitor
+// typical of those used in motion picture visual effects production. These
+// monitors may occasionally be referred to as "sRGB" displays, however, the
+// monitor for which this transform is designed does not exactly match the
+// specifications in IEC 61966-2-1:1999.
+//
+// The assumed observer adapted white is D65, and the viewing environment is
+// that of a dim surround.
+//
+// The monitor specified is intended to be more typical of those found in
+// visual effects production.
+//
+// Device Primaries :
+// Primaries are those specified in Rec. ITU-R BT.709
+// CIE 1931 chromaticities: x y Y
+// Red: 0.64 0.33
+// Green: 0.3 0.6
+// Blue: 0.15 0.06
+// White: 0.3127 0.329 100 cd/m^2
+//
+// Display EOTF :
+// The reference electro-optical transfer function specified in
+// IEC 61966-2-1:1999.
+//
+// Signal Range:
+// This transform outputs full range code values.
+//
+// Assumed observer adapted white point:
+// CIE 1931 chromaticities: x y
+// 0.3127 0.329
+//
+// Viewing Environment:
+// This ODT has a compensation for viewing environment variables more typical
+// of those associated with video mastering.
+//
+half3 ODT_RGBmonitor_100nits_dim(half3 oces)
+{
+ // OCES to RGB rendering space
+ half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
+
+ // Apply the tonescale independently in rendering-space RGB
+ half3 rgbPost;
+ rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
+ rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
+ rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
+
+ // Scale luminance to linear code value
+ half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
+
+ // Apply gamma adjustment to compensate for dim surround
+ linearCV = darkSurround_to_dimSurround(linearCV);
+
+ // Apply desaturation to compensate for luminance difference
+ //linearCV = mul(ODT_SAT_MAT, linearCV);
+ linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
+
+ // Convert to display primary encoding
+ // Rendering space RGB to XYZ
+ half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
+
+ // Apply CAT from ACES white point to assumed observer adapted white point
+ XYZ = mul(D60_2_D65_CAT, XYZ);
+
+ // CIE XYZ to display primaries
+ linearCV = mul(XYZ_2_REC709_MAT, XYZ);
+
+ // Handle out-of-gamut values
+ // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
+ linearCV = saturate(linearCV);
+
+ // TODO: Revisit when it is possible to deactivate Unity default framebuffer encoding
+ // with sRGB opto-electrical transfer function (OETF).
+ /*
+ // Encode linear code values with transfer function
+ half3 outputCV;
+ // moncurve_r with gamma of 2.4 and offset of 0.055 matches the EOTF found in IEC 61966-2-1:1999 (sRGB)
+ const half DISPGAMMA = 2.4;
+ const half OFFSET = 0.055;
+ outputCV.x = moncurve_r(linearCV.x, DISPGAMMA, OFFSET);
+ outputCV.y = moncurve_r(linearCV.y, DISPGAMMA, OFFSET);
+ outputCV.z = moncurve_r(linearCV.z, DISPGAMMA, OFFSET);
+
+ outputCV = linear_to_sRGB(linearCV);
+ */
+
+ // Unity already draws to a sRGB target
+ return linearCV;
+}
+
+// <ACEStransformID>ODT.Academy.RGBmonitor_D60sim_100nits_dim.a1.0.3</ACEStransformID>
+// <ACESuserName>ACES 1.0 Output - sRGB (D60 sim.)</ACESuserName>
+
+//
+// Output Device Transform - RGB computer monitor (D60 simulation)
+//
+
+//
+// Summary :
+// This transform is intended for mapping OCES onto a desktop computer monitor
+// typical of those used in motion picture visual effects production. These
+// monitors may occasionally be referred to as "sRGB" displays, however, the
+// monitor for which this transform is designed does not exactly match the
+// specifications in IEC 61966-2-1:1999.
+//
+// The assumed observer adapted white is D60, and the viewing environment is
+// that of a dim surround.
+//
+// The monitor specified is intended to be more typical of those found in
+// visual effects production.
+//
+// Device Primaries :
+// Primaries are those specified in Rec. ITU-R BT.709
+// CIE 1931 chromaticities: x y Y
+// Red: 0.64 0.33
+// Green: 0.3 0.6
+// Blue: 0.15 0.06
+// White: 0.3127 0.329 100 cd/m^2
+//
+// Display EOTF :
+// The reference electro-optical transfer function specified in
+// IEC 61966-2-1:1999.
+//
+// Signal Range:
+// This transform outputs full range code values.
+//
+// Assumed observer adapted white point:
+// CIE 1931 chromaticities: x y
+// 0.32168 0.33767
+//
+// Viewing Environment:
+// This ODT has a compensation for viewing environment variables more typical
+// of those associated with video mastering.
+//
+half3 ODT_RGBmonitor_D60sim_100nits_dim(half3 oces)
+{
+ // OCES to RGB rendering space
+ half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
+
+ // Apply the tonescale independently in rendering-space RGB
+ half3 rgbPost;
+ rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
+ rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
+ rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
+
+ // Scale luminance to linear code value
+ half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
+
+ // --- Compensate for different white point being darker --- //
+ // This adjustment is to correct an issue that exists in ODTs where the device
+ // is calibrated to a white chromaticity other than D60. In order to simulate
+ // D60 on such devices, unequal code values are sent to the display to achieve
+ // neutrals at D60. In order to produce D60 on a device calibrated to the DCI
+ // white point (i.e. equal code values yield CIE x,y chromaticities of 0.314,
+ // 0.351) the red channel is higher than green and blue to compensate for the
+ // "greenish" DCI white. This is the correct behavior but it means that as
+ // highlight increase, the red channel will hit the device maximum first and
+ // clip, resulting in a chromaticity shift as the green and blue channels
+ // continue to increase.
+ // To avoid this clipping error, a slight scale factor is applied to allow the
+ // ODTs to simulate D60 within the D65 calibration white point.
+
+ // Scale and clamp white to avoid casted highlights due to D60 simulation
+ const half SCALE = 0.955;
+ linearCV = min(linearCV, 1.0) * SCALE;
+
+ // Apply gamma adjustment to compensate for dim surround
+ linearCV = darkSurround_to_dimSurround(linearCV);
+
+ // Apply desaturation to compensate for luminance difference
+ //linearCV = mul(ODT_SAT_MAT, linearCV);
+ linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
+
+ // Convert to display primary encoding
+ // Rendering space RGB to XYZ
+ half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
+
+ // CIE XYZ to display primaries
+ linearCV = mul(XYZ_2_REC709_MAT, XYZ);
+
+ // Handle out-of-gamut values
+ // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
+ linearCV = saturate(linearCV);
+
+ // TODO: Revisit when it is possible to deactivate Unity default framebuffer encoding
+ // with sRGB opto-electrical transfer function (OETF).
+ /*
+ // Encode linear code values with transfer function
+ half3 outputCV;
+ // moncurve_r with gamma of 2.4 and offset of 0.055 matches the EOTF found in IEC 61966-2-1:1999 (sRGB)
+ const half DISPGAMMA = 2.4;
+ const half OFFSET = 0.055;
+ outputCV.x = moncurve_r(linearCV.x, DISPGAMMA, OFFSET);
+ outputCV.y = moncurve_r(linearCV.y, DISPGAMMA, OFFSET);
+ outputCV.z = moncurve_r(linearCV.z, DISPGAMMA, OFFSET);
+
+ outputCV = linear_to_sRGB(linearCV);
+ */
+
+ // Unity already draws to a sRGB target
+ return linearCV;
+}
+
+// <ACEStransformID>ODT.Academy.Rec709_100nits_dim.a1.0.3</ACEStransformID>
+// <ACESuserName>ACES 1.0 Output - Rec.709</ACESuserName>
+
+//
+// Output Device Transform - Rec709
+//
+
+//
+// Summary :
+// This transform is intended for mapping OCES onto a Rec.709 broadcast monitor
+// that is calibrated to a D65 white point at 100 cd/m^2. The assumed observer
+// adapted white is D65, and the viewing environment is a dim surround.
+//
+// A possible use case for this transform would be HDTV/video mastering.
+//
+// Device Primaries :
+// Primaries are those specified in Rec. ITU-R BT.709
+// CIE 1931 chromaticities: x y Y
+// Red: 0.64 0.33
+// Green: 0.3 0.6
+// Blue: 0.15 0.06
+// White: 0.3127 0.329 100 cd/m^2
+//
+// Display EOTF :
+// The reference electro-optical transfer function specified in
+// Rec. ITU-R BT.1886.
+//
+// Signal Range:
+// By default, this transform outputs full range code values. If instead a
+// SMPTE "legal" signal is desired, there is a runtime flag to output
+// SMPTE legal signal. In ctlrender, this can be achieved by appending
+// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
+//
+// Assumed observer adapted white point:
+// CIE 1931 chromaticities: x y
+// 0.3127 0.329
+//
+// Viewing Environment:
+// This ODT has a compensation for viewing environment variables more typical
+// of those associated with video mastering.
+//
+half3 ODT_Rec709_100nits_dim(half3 oces)
+{
+ // OCES to RGB rendering space
+ half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
+
+ // Apply the tonescale independently in rendering-space RGB
+ half3 rgbPost;
+ rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
+ rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
+ rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
+
+ // Scale luminance to linear code value
+ half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
+
+ // Apply gamma adjustment to compensate for dim surround
+ linearCV = darkSurround_to_dimSurround(linearCV);
+
+ // Apply desaturation to compensate for luminance difference
+ //linearCV = mul(ODT_SAT_MAT, linearCV);
+ linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
+
+ // Convert to display primary encoding
+ // Rendering space RGB to XYZ
+ half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
+
+ // Apply CAT from ACES white point to assumed observer adapted white point
+ XYZ = mul(D60_2_D65_CAT, XYZ);
+
+ // CIE XYZ to display primaries
+ linearCV = mul(XYZ_2_REC709_MAT, XYZ);
+
+ // Handle out-of-gamut values
+ // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
+ linearCV = saturate(linearCV);
+
+ // Encode linear code values with transfer function
+ const half DISPGAMMA = 2.4;
+ const half L_W = 1.0;
+ const half L_B = 0.0;
+ half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
+
+ // TODO: Implement support for legal range.
+
+ // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
+ // by default which will result in double perceptual encoding, thus for now if one want to use
+ // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
+ // compensate for Unity default behaviour.
+
+ return outputCV;
+}
+
+// <ACEStransformID>ODT.Academy.Rec709_D60sim_100nits_dim.a1.0.3</ACEStransformID>
+// <ACESuserName>ACES 1.0 Output - Rec.709 (D60 sim.)</ACESuserName>
+
+//
+// Output Device Transform - Rec709 (D60 simulation)
+//
+
+//
+// Summary :
+// This transform is intended for mapping OCES onto a Rec.709 broadcast monitor
+// that is calibrated to a D65 white point at 100 cd/m^2. The assumed observer
+// adapted white is D60, and the viewing environment is a dim surround.
+//
+// A possible use case for this transform would be cinema "soft-proofing".
+//
+// Device Primaries :
+// Primaries are those specified in Rec. ITU-R BT.709
+// CIE 1931 chromaticities: x y Y
+// Red: 0.64 0.33
+// Green: 0.3 0.6
+// Blue: 0.15 0.06
+// White: 0.3127 0.329 100 cd/m^2
+//
+// Display EOTF :
+// The reference electro-optical transfer function specified in
+// Rec. ITU-R BT.1886.
+//
+// Signal Range:
+// By default, this transform outputs full range code values. If instead a
+// SMPTE "legal" signal is desired, there is a runtime flag to output
+// SMPTE legal signal. In ctlrender, this can be achieved by appending
+// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
+//
+// Assumed observer adapted white point:
+// CIE 1931 chromaticities: x y
+// 0.32168 0.33767
+//
+// Viewing Environment:
+// This ODT has a compensation for viewing environment variables more typical
+// of those associated with video mastering.
+//
+half3 ODT_Rec709_D60sim_100nits_dim(half3 oces)
+{
+ // OCES to RGB rendering space
+ half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
+
+ // Apply the tonescale independently in rendering-space RGB
+ half3 rgbPost;
+ rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
+ rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
+ rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
+
+ // Scale luminance to linear code value
+ half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
+
+ // --- Compensate for different white point being darker --- //
+ // This adjustment is to correct an issue that exists in ODTs where the device
+ // is calibrated to a white chromaticity other than D60. In order to simulate
+ // D60 on such devices, unequal code values must be sent to the display to achieve
+ // the chromaticities of D60. More specifically, in order to produce D60 on a device
+ // calibrated to a D65 white point (i.e. equal code values yield CIE x,y
+ // chromaticities of 0.3127, 0.329) the red channel must be slightly higher than
+ // that of green and blue in order to compensate for the relatively more "blue-ish"
+ // D65 white. This unequalness of color channels is the correct behavior but it
+ // means that as neutral highlights increase, the red channel will hit the
+ // device maximum first and clip, resulting in a small chromaticity shift as the
+ // green and blue channels continue to increase to their maximums.
+ // To avoid this clipping error, a slight scale factor is applied to allow the
+ // ODTs to simulate D60 within the D65 calibration white point.
+
+ // Scale and clamp white to avoid casted highlights due to D60 simulation
+ const half SCALE = 0.955;
+ linearCV = min(linearCV, 1.0) * SCALE;
+
+ // Apply gamma adjustment to compensate for dim surround
+ linearCV = darkSurround_to_dimSurround(linearCV);
+
+ // Apply desaturation to compensate for luminance difference
+ //linearCV = mul(ODT_SAT_MAT, linearCV);
+ linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
+
+ // Convert to display primary encoding
+ // Rendering space RGB to XYZ
+ half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
+
+ // CIE XYZ to display primaries
+ linearCV = mul(XYZ_2_REC709_MAT, XYZ);
+
+ // Handle out-of-gamut values
+ // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
+ linearCV = saturate(linearCV);
+
+ // Encode linear code values with transfer function
+ const half DISPGAMMA = 2.4;
+ const half L_W = 1.0;
+ const half L_B = 0.0;
+ half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
+
+ // TODO: Implement support for legal range.
+
+ // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
+ // by default which will result in double perceptual encoding, thus for now if one want to use
+ // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
+ // compensate for Unity default behaviour.
+
+ return outputCV;
+}
+
+// <ACEStransformID>ODT.Academy.Rec2020_100nits_dim.a1.0.3</ACEStransformID>
+// <ACESuserName>ACES 1.0 Output - Rec.2020</ACESuserName>
+
+//
+// Output Device Transform - Rec2020
+//
+
+//
+// Summary :
+// This transform is intended for mapping OCES onto a Rec.2020 broadcast
+// monitor that is calibrated to a D65 white point at 100 cd/m^2. The assumed
+// observer adapted white is D65, and the viewing environment is that of a dim
+// surround.
+//
+// A possible use case for this transform would be UHDTV/video mastering.
+//
+// Device Primaries :
+// Primaries are those specified in Rec. ITU-R BT.2020
+// CIE 1931 chromaticities: x y Y
+// Red: 0.708 0.292
+// Green: 0.17 0.797
+// Blue: 0.131 0.046
+// White: 0.3127 0.329 100 cd/m^2
+//
+// Display EOTF :
+// The reference electro-optical transfer function specified in
+// Rec. ITU-R BT.1886.
+//
+// Signal Range:
+// By default, this transform outputs full range code values. If instead a
+// SMPTE "legal" signal is desired, there is a runtime flag to output
+// SMPTE legal signal. In ctlrender, this can be achieved by appending
+// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
+//
+// Assumed observer adapted white point:
+// CIE 1931 chromaticities: x y
+// 0.3127 0.329
+//
+// Viewing Environment:
+// This ODT has a compensation for viewing environment variables more typical
+// of those associated with video mastering.
+//
+
+half3 ODT_Rec2020_100nits_dim(half3 oces)
+{
+ // OCES to RGB rendering space
+ half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
+
+ // Apply the tonescale independently in rendering-space RGB
+ half3 rgbPost;
+ rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
+ rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
+ rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
+
+ // Scale luminance to linear code value
+ half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
+
+ // Apply gamma adjustment to compensate for dim surround
+ linearCV = darkSurround_to_dimSurround(linearCV);
+
+ // Apply desaturation to compensate for luminance difference
+ //linearCV = mul(ODT_SAT_MAT, linearCV);
+ linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
+
+ // Convert to display primary encoding
+ // Rendering space RGB to XYZ
+ half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
+
+ // Apply CAT from ACES white point to assumed observer adapted white point
+ XYZ = mul(D60_2_D65_CAT, XYZ);
+
+ // CIE XYZ to display primaries
+ linearCV = mul(XYZ_2_REC2020_MAT, XYZ);
+
+ // Handle out-of-gamut values
+ // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
+ linearCV = saturate(linearCV);
+
+ // Encode linear code values with transfer function
+ const half DISPGAMMA = 2.4;
+ const half L_W = 1.0;
+ const half L_B = 0.0;
+ half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
+
+ // TODO: Implement support for legal range.
+
+ // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
+ // by default which will result in double perceptual encoding, thus for now if one want to use
+ // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
+ // compensate for Unity default behaviour.
+
+ return outputCV;
+}
+
+// <ACEStransformID>ODT.Academy.P3DCI_48nits.a1.0.3</ACEStransformID>
+// <ACESuserName>ACES 1.0 Output - P3-DCI</ACESuserName>
+
+//
+// Output Device Transform - P3DCI (D60 Simulation)
+//
+
+//
+// Summary :
+// This transform is intended for mapping OCES onto a P3 digital cinema
+// projector that is calibrated to a DCI white point at 48 cd/m^2. The assumed
+// observer adapted white is D60, and the viewing environment is that of a dark
+// theater.
+//
+// Device Primaries :
+// CIE 1931 chromaticities: x y Y
+// Red: 0.68 0.32
+// Green: 0.265 0.69
+// Blue: 0.15 0.06
+// White: 0.314 0.351 48 cd/m^2
+//
+// Display EOTF :
+// Gamma: 2.6
+//
+// Assumed observer adapted white point:
+// CIE 1931 chromaticities: x y
+// 0.32168 0.33767
+//
+// Viewing Environment:
+// Environment specified in SMPTE RP 431-2-2007
+//
+half3 ODT_P3DCI_48nits(half3 oces)
+{
+ // OCES to RGB rendering space
+ half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
+
+ // Apply the tonescale independently in rendering-space RGB
+ half3 rgbPost;
+ rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
+ rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
+ rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
+
+ // Scale luminance to linear code value
+ half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
+
+ // --- Compensate for different white point being darker --- //
+ // This adjustment is to correct an issue that exists in ODTs where the device
+ // is calibrated to a white chromaticity other than D60. In order to simulate
+ // D60 on such devices, unequal code values are sent to the display to achieve
+ // neutrals at D60. In order to produce D60 on a device calibrated to the DCI
+ // white point (i.e. equal code values yield CIE x,y chromaticities of 0.314,
+ // 0.351) the red channel is higher than green and blue to compensate for the
+ // "greenish" DCI white. This is the correct behavior but it means that as
+ // highlight increase, the red channel will hit the device maximum first and
+ // clip, resulting in a chromaticity shift as the green and blue channels
+ // continue to increase.
+ // To avoid this clipping error, a slight scale factor is applied to allow the
+ // ODTs to simulate D60 within the D65 calibration white point. However, the
+ // magnitude of the scale factor required for the P3DCI ODT was considered too
+ // large. Therefore, the scale factor was reduced and the additional required
+ // compression was achieved via a reshaping of the highlight rolloff in
+ // conjunction with the scale. The shape of this rolloff was determined
+ // throught subjective experiments and deemed to best reproduce the
+ // "character" of the highlights in the P3D60 ODT.
+
+ // Roll off highlights to avoid need for as much scaling
+ const half NEW_WHT = 0.918;
+ const half ROLL_WIDTH = 0.5;
+ linearCV.x = roll_white_fwd(linearCV.x, NEW_WHT, ROLL_WIDTH);
+ linearCV.y = roll_white_fwd(linearCV.y, NEW_WHT, ROLL_WIDTH);
+ linearCV.z = roll_white_fwd(linearCV.z, NEW_WHT, ROLL_WIDTH);
+
+ // Scale and clamp white to avoid casted highlights due to D60 simulation
+ const half SCALE = 0.96;
+ linearCV = min(linearCV, NEW_WHT) * SCALE;
+
+ // Convert to display primary encoding
+ // Rendering space RGB to XYZ
+ half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
+
+ // CIE XYZ to display primaries
+ linearCV = mul(XYZ_2_DCIP3_MAT, XYZ);
+
+ // Handle out-of-gamut values
+ // Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
+ linearCV = saturate(linearCV);
+
+ // Encode linear code values with transfer function
+ const half DISPGAMMA = 2.6;
+ half3 outputCV = pow(linearCV, 1.0 / DISPGAMMA);
+
+ // NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
+ // by default which will result in double perceptual encoding, thus for now if one want to use
+ // this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
+ // compensate for Unity default behaviour.
+
+ return outputCV;
+}
+
+#endif // __ACES__
--
Gitblit v1.8.0